/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ /* Copyright (c) 2018 Facebook */ /*! \file */ #ifndef __LIBBPF_BTF_H #define __LIBBPF_BTF_H #include #include #include #include #include "libbpf_common.h" #ifdef __cplusplus extern "C" { #endif #define BTF_ELF_SEC ".BTF" #define BTF_EXT_ELF_SEC ".BTF.ext" #define MAPS_ELF_SEC ".maps" struct btf; struct btf_ext; struct btf_type; struct bpf_object; enum btf_endianness { BTF_LITTLE_ENDIAN = 0, BTF_BIG_ENDIAN = 1, }; /** * @brief **btf__free()** frees all data of a BTF object * @param btf BTF object to free */ LIBBPF_API void btf__free(struct btf *btf); /** * @brief **btf__new()** creates a new instance of a BTF object from the raw * bytes of an ELF's BTF section * @param data raw bytes * @param size number of bytes passed in `data` * @return new BTF object instance which has to be eventually freed with * **btf__free()** * * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract * error code from such a pointer `libbpf_get_error()` should be used. If * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is * returned on error instead. In both cases thread-local `errno` variable is * always set to error code as well. */ LIBBPF_API struct btf *btf__new(const void *data, __u32 size); /** * @brief **btf__new_split()** create a new instance of a BTF object from the * provided raw data bytes. It takes another BTF instance, **base_btf**, which * serves as a base BTF, which is extended by types in a newly created BTF * instance * @param data raw bytes * @param size length of raw bytes * @param base_btf the base BTF object * @return new BTF object instance which has to be eventually freed with * **btf__free()** * * If *base_btf* is NULL, `btf__new_split()` is equivalent to `btf__new()` and * creates non-split BTF. * * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract * error code from such a pointer `libbpf_get_error()` should be used. If * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is * returned on error instead. In both cases thread-local `errno` variable is * always set to error code as well. */ LIBBPF_API struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf); /** * @brief **btf__new_empty()** creates an empty BTF object. Use * `btf__add_*()` to populate such BTF object. * @return new BTF object instance which has to be eventually freed with * **btf__free()** * * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract * error code from such a pointer `libbpf_get_error()` should be used. If * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is * returned on error instead. In both cases thread-local `errno` variable is * always set to error code as well. */ LIBBPF_API struct btf *btf__new_empty(void); /** * @brief **btf__new_empty_split()** creates an unpopulated BTF object from an * ELF BTF section except with a base BTF on top of which split BTF should be * based * @return new BTF object instance which has to be eventually freed with * **btf__free()** * * If *base_btf* is NULL, `btf__new_empty_split()` is equivalent to * `btf__new_empty()` and creates non-split BTF. * * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract * error code from such a pointer `libbpf_get_error()` should be used. If * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is * returned on error instead. In both cases thread-local `errno` variable is * always set to error code as well. */ LIBBPF_API struct btf *btf__new_empty_split(struct btf *base_btf); /** * @brief **btf__distill_base()** creates new versions of the split BTF * *src_btf* and its base BTF. The new base BTF will only contain the types * needed to improve robustness of the split BTF to small changes in base BTF. * When that split BTF is loaded against a (possibly changed) base, this * distilled base BTF will help update references to that (possibly changed) * base BTF. * * Both the new split and its associated new base BTF must be freed by * the caller. * * If successful, 0 is returned and **new_base_btf** and **new_split_btf** * will point at new base/split BTF. Both the new split and its associated * new base BTF must be freed by the caller. * * A negative value is returned on error and the thread-local `errno` variable * is set to the error code as well. */ LIBBPF_API int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, struct btf **new_split_btf); LIBBPF_API struct btf *btf__parse(const char *path, struct btf_ext **btf_ext); LIBBPF_API struct btf *btf__parse_split(const char *path, struct btf *base_btf); LIBBPF_API struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext); LIBBPF_API struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf); LIBBPF_API struct btf *btf__parse_raw(const char *path); LIBBPF_API struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf); LIBBPF_API struct btf *btf__load_vmlinux_btf(void); LIBBPF_API struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf); LIBBPF_API struct btf *btf__load_from_kernel_by_id(__u32 id); LIBBPF_API struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf); LIBBPF_API int btf__load_into_kernel(struct btf *btf); LIBBPF_API __s32 btf__find_by_name(const struct btf *btf, const char *type_name); LIBBPF_API __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, __u32 kind); LIBBPF_API __u32 btf__type_cnt(const struct btf *btf); LIBBPF_API const struct btf *btf__base_btf(const struct btf *btf); LIBBPF_API const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 id); LIBBPF_API size_t btf__pointer_size(const struct btf *btf); LIBBPF_API int btf__set_pointer_size(struct btf *btf, size_t ptr_sz); LIBBPF_API enum btf_endianness btf__endianness(const struct btf *btf); LIBBPF_API int btf__set_endianness(struct btf *btf, enum btf_endianness endian); LIBBPF_API __s64 btf__resolve_size(const struct btf *btf, __u32 type_id); LIBBPF_API int btf__resolve_type(const struct btf *btf, __u32 type_id); LIBBPF_API int btf__align_of(const struct btf *btf, __u32 id); LIBBPF_API int btf__fd(const struct btf *btf); LIBBPF_API void btf__set_fd(struct btf *btf, int fd); LIBBPF_API const void *btf__raw_data(const struct btf *btf, __u32 *size); LIBBPF_API const char *btf__name_by_offset(const struct btf *btf, __u32 offset); LIBBPF_API const char *btf__str_by_offset(const struct btf *btf, __u32 offset); LIBBPF_API struct btf_ext *btf_ext__new(const __u8 *data, __u32 size); LIBBPF_API void btf_ext__free(struct btf_ext *btf_ext); LIBBPF_API const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size); LIBBPF_API int btf__find_str(struct btf *btf, const char *s); LIBBPF_API int btf__add_str(struct btf *btf, const char *s); LIBBPF_API int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type); /** * @brief **btf__add_btf()** appends all the BTF types from *src_btf* into *btf* * @param btf BTF object which all the BTF types and strings are added to * @param src_btf BTF object which all BTF types and referenced strings are copied from * @return BTF type ID of the first appended BTF type, or negative error code * * **btf__add_btf()** can be used to simply and efficiently append the entire * contents of one BTF object to another one. All the BTF type data is copied * over, all referenced type IDs are adjusted by adding a necessary ID offset. * Only strings referenced from BTF types are copied over and deduplicated, so * if there were some unused strings in *src_btf*, those won't be copied over, * which is consistent with the general string deduplication semantics of BTF * writing APIs. * * If any error is encountered during this process, the contents of *btf* is * left intact, which means that **btf__add_btf()** follows the transactional * semantics and the operation as a whole is all-or-nothing. * * *src_btf* has to be non-split BTF, as of now copying types from split BTF * is not supported and will result in -ENOTSUP error code returned. */ LIBBPF_API int btf__add_btf(struct btf *btf, const struct btf *src_btf); LIBBPF_API int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding); LIBBPF_API int btf__add_float(struct btf *btf, const char *name, size_t byte_sz); LIBBPF_API int btf__add_ptr(struct btf *btf, int ref_type_id); LIBBPF_API int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems); /* struct/union construction APIs */ LIBBPF_API int btf__add_struct(struct btf *btf, const char *name, __u32 sz); LIBBPF_API int btf__add_union(struct btf *btf, const char *name, __u32 sz); LIBBPF_API int btf__add_field(struct btf *btf, const char *name, int field_type_id, __u32 bit_offset, __u32 bit_size); /* enum construction APIs */ LIBBPF_API int btf__add_enum(struct btf *btf, const char *name, __u32 bytes_sz); LIBBPF_API int btf__add_enum_value(struct btf *btf, const char *name, __s64 value); LIBBPF_API int btf__add_enum64(struct btf *btf, const char *name, __u32 bytes_sz, bool is_signed); LIBBPF_API int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value); enum btf_fwd_kind { BTF_FWD_STRUCT = 0, BTF_FWD_UNION = 1, BTF_FWD_ENUM = 2, }; LIBBPF_API int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind); LIBBPF_API int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id); LIBBPF_API int btf__add_volatile(struct btf *btf, int ref_type_id); LIBBPF_API int btf__add_const(struct btf *btf, int ref_type_id); LIBBPF_API int btf__add_restrict(struct btf *btf, int ref_type_id); LIBBPF_API int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id); /* func and func_proto construction APIs */ LIBBPF_API int btf__add_func(struct btf *btf, const char *name, enum btf_func_linkage linkage, int proto_type_id); LIBBPF_API int btf__add_func_proto(struct btf *btf, int ret_type_id); LIBBPF_API int btf__add_func_param(struct btf *btf, const char *name, int type_id); /* var & datasec construction APIs */ LIBBPF_API int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id); LIBBPF_API int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz); LIBBPF_API int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz); /* tag construction API */ LIBBPF_API int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, int component_idx); struct btf_dedup_opts { size_t sz; /* optional .BTF.ext info to dedup along the main BTF info */ struct btf_ext *btf_ext; /* force hash collisions (used for testing) */ bool force_collisions; size_t :0; }; #define btf_dedup_opts__last_field force_collisions LIBBPF_API int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts); struct btf_dump; struct btf_dump_opts { size_t sz; }; #define btf_dump_opts__last_field sz typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args); LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf, btf_dump_printf_fn_t printf_fn, void *ctx, const struct btf_dump_opts *opts); LIBBPF_API void btf_dump__free(struct btf_dump *d); LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id); struct btf_dump_emit_type_decl_opts { /* size of this struct, for forward/backward compatiblity */ size_t sz; /* optional field name for type declaration, e.g.: * - struct my_struct * - void (*)(int) * - char (*)[123] */ const char *field_name; /* extra indentation level (in number of tabs) to emit for multi-line * type declarations (e.g., anonymous struct); applies for lines * starting from the second one (first line is assumed to have * necessary indentation already */ int indent_level; /* strip all the const/volatile/restrict mods */ bool strip_mods; size_t :0; }; #define btf_dump_emit_type_decl_opts__last_field strip_mods LIBBPF_API int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, const struct btf_dump_emit_type_decl_opts *opts); struct btf_dump_type_data_opts { /* size of this struct, for forward/backward compatibility */ size_t sz; const char *indent_str; int indent_level; /* below match "show" flags for bpf_show_snprintf() */ bool compact; /* no newlines/indentation */ bool skip_names; /* skip member/type names */ bool emit_zeroes; /* show 0-valued fields */ size_t :0; }; #define btf_dump_type_data_opts__last_field emit_zeroes LIBBPF_API int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, const void *data, size_t data_sz, const struct btf_dump_type_data_opts *opts); /* * A set of helpers for easier BTF types handling. * * The inline functions below rely on constants from the kernel headers which * may not be available for applications including this header file. To avoid * compilation errors, we define all the constants here that were added after * the initial introduction of the BTF_KIND* constants. */ #ifndef BTF_KIND_FUNC #define BTF_KIND_FUNC 12 /* Function */ #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ #endif #ifndef BTF_KIND_VAR #define BTF_KIND_VAR 14 /* Variable */ #define BTF_KIND_DATASEC 15 /* Section */ #endif #ifndef BTF_KIND_FLOAT #define BTF_KIND_FLOAT 16 /* Floating point */ #endif /* The kernel header switched to enums, so the following were never #defined */ #define BTF_KIND_DECL_TAG 17 /* Decl Tag */ #define BTF_KIND_TYPE_TAG 18 /* Type Tag */ #define BTF_KIND_ENUM64 19 /* Enum for up-to 64bit values */ static inline __u16 btf_kind(const struct btf_type *t) { return BTF_INFO_KIND(t->info); } static inline __u16 btf_vlen(const struct btf_type *t) { return BTF_INFO_VLEN(t->info); } static inline bool btf_kflag(const struct btf_type *t) { return BTF_INFO_KFLAG(t->info); } static inline bool btf_is_void(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_UNKN; } static inline bool btf_is_int(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_INT; } static inline bool btf_is_ptr(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_PTR; } static inline bool btf_is_array(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_ARRAY; } static inline bool btf_is_struct(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_STRUCT; } static inline bool btf_is_union(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_UNION; } static inline bool btf_is_composite(const struct btf_type *t) { __u16 kind = btf_kind(t); return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; } static inline bool btf_is_enum(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_ENUM; } static inline bool btf_is_enum64(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_ENUM64; } static inline bool btf_is_fwd(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_FWD; } static inline bool btf_is_typedef(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_TYPEDEF; } static inline bool btf_is_volatile(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_VOLATILE; } static inline bool btf_is_const(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_CONST; } static inline bool btf_is_restrict(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_RESTRICT; } static inline bool btf_is_mod(const struct btf_type *t) { __u16 kind = btf_kind(t); return kind == BTF_KIND_VOLATILE || kind == BTF_KIND_CONST || kind == BTF_KIND_RESTRICT || kind == BTF_KIND_TYPE_TAG; } static inline bool btf_is_func(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_FUNC; } static inline bool btf_is_func_proto(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_FUNC_PROTO; } static inline bool btf_is_var(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_VAR; } static inline bool btf_is_datasec(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_DATASEC; } static inline bool btf_is_float(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_FLOAT; } static inline bool btf_is_decl_tag(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_DECL_TAG; } static inline bool btf_is_type_tag(const struct btf_type *t) { return btf_kind(t) == BTF_KIND_TYPE_TAG; } static inline bool btf_is_any_enum(const struct btf_type *t) { return btf_is_enum(t) || btf_is_enum64(t); } static inline bool btf_kind_core_compat(const struct btf_type *t1, const struct btf_type *t2) { return btf_kind(t1) == btf_kind(t2) || (btf_is_any_enum(t1) && btf_is_any_enum(t2)); } static inline __u8 btf_int_encoding(const struct btf_type *t) { return BTF_INT_ENCODING(*(__u32 *)(t + 1)); } static inline __u8 btf_int_offset(const struct btf_type *t) { return BTF_INT_OFFSET(*(__u32 *)(t + 1)); } static inline __u8 btf_int_bits(const struct btf_type *t) { return BTF_INT_BITS(*(__u32 *)(t + 1)); } static inline struct btf_array *btf_array(const struct btf_type *t) { return (struct btf_array *)(t + 1); } static inline struct btf_enum *btf_enum(const struct btf_type *t) { return (struct btf_enum *)(t + 1); } struct btf_enum64; static inline struct btf_enum64 *btf_enum64(const struct btf_type *t) { return (struct btf_enum64 *)(t + 1); } static inline __u64 btf_enum64_value(const struct btf_enum64 *e) { /* struct btf_enum64 is introduced in Linux 6.0, which is very * bleeding-edge. Here we are avoiding relying on struct btf_enum64 * definition coming from kernel UAPI headers to support wider range * of system-wide kernel headers. * * Given this header can be also included from C++ applications, that * further restricts C tricks we can use (like using compatible * anonymous struct). So just treat struct btf_enum64 as * a three-element array of u32 and access second (lo32) and third * (hi32) elements directly. * * For reference, here is a struct btf_enum64 definition: * * const struct btf_enum64 { * __u32 name_off; * __u32 val_lo32; * __u32 val_hi32; * }; */ const __u32 *e64 = (const __u32 *)e; return ((__u64)e64[2] << 32) | e64[1]; } static inline struct btf_member *btf_members(const struct btf_type *t) { return (struct btf_member *)(t + 1); } /* Get bit offset of a member with specified index. */ static inline __u32 btf_member_bit_offset(const struct btf_type *t, __u32 member_idx) { const struct btf_member *m = btf_members(t) + member_idx; bool kflag = btf_kflag(t); return kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset; } /* * Get bitfield size of a member, assuming t is BTF_KIND_STRUCT or * BTF_KIND_UNION. If member is not a bitfield, zero is returned. */ static inline __u32 btf_member_bitfield_size(const struct btf_type *t, __u32 member_idx) { const struct btf_member *m = btf_members(t) + member_idx; bool kflag = btf_kflag(t); return kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; } static inline struct btf_param *btf_params(const struct btf_type *t) { return (struct btf_param *)(t + 1); } static inline struct btf_var *btf_var(const struct btf_type *t) { return (struct btf_var *)(t + 1); } static inline struct btf_var_secinfo * btf_var_secinfos(const struct btf_type *t) { return (struct btf_var_secinfo *)(t + 1); } struct btf_decl_tag; static inline struct btf_decl_tag *btf_decl_tag(const struct btf_type *t) { return (struct btf_decl_tag *)(t + 1); } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* __LIBBPF_BTF_H */