/* * builtin-test.c * * Builtin regression testing command: ever growing number of sanity tests */ #include "builtin.h" #include "util/cache.h" #include "util/debug.h" #include "util/evlist.h" #include "util/parse-options.h" #include "util/parse-events.h" #include "util/symbol.h" #include "util/thread_map.h" static long page_size; static int vmlinux_matches_kallsyms_filter(struct map *map __used, struct symbol *sym) { bool *visited = symbol__priv(sym); *visited = true; return 0; } static int test__vmlinux_matches_kallsyms(void) { int err = -1; struct rb_node *nd; struct symbol *sym; struct map *kallsyms_map, *vmlinux_map; struct machine kallsyms, vmlinux; enum map_type type = MAP__FUNCTION; struct ref_reloc_sym ref_reloc_sym = { .name = "_stext", }; /* * Step 1: * * Init the machines that will hold kernel, modules obtained from * both vmlinux + .ko files and from /proc/kallsyms split by modules. */ machine__init(&kallsyms, "", HOST_KERNEL_ID); machine__init(&vmlinux, "", HOST_KERNEL_ID); /* * Step 2: * * Create the kernel maps for kallsyms and the DSO where we will then * load /proc/kallsyms. Also create the modules maps from /proc/modules * and find the .ko files that match them in /lib/modules/`uname -r`/. */ if (machine__create_kernel_maps(&kallsyms) < 0) { pr_debug("machine__create_kernel_maps "); return -1; } /* * Step 3: * * Load and split /proc/kallsyms into multiple maps, one per module. */ if (machine__load_kallsyms(&kallsyms, "/proc/kallsyms", type, NULL) <= 0) { pr_debug("dso__load_kallsyms "); goto out; } /* * Step 4: * * kallsyms will be internally on demand sorted by name so that we can * find the reference relocation * symbol, i.e. the symbol we will use * to see if the running kernel was relocated by checking if it has the * same value in the vmlinux file we load. */ kallsyms_map = machine__kernel_map(&kallsyms, type); sym = map__find_symbol_by_name(kallsyms_map, ref_reloc_sym.name, NULL); if (sym == NULL) { pr_debug("dso__find_symbol_by_name "); goto out; } ref_reloc_sym.addr = sym->start; /* * Step 5: * * Now repeat step 2, this time for the vmlinux file we'll auto-locate. */ if (machine__create_kernel_maps(&vmlinux) < 0) { pr_debug("machine__create_kernel_maps "); goto out; } vmlinux_map = machine__kernel_map(&vmlinux, type); map__kmap(vmlinux_map)->ref_reloc_sym = &ref_reloc_sym; /* * Step 6: * * Locate a vmlinux file in the vmlinux path that has a buildid that * matches the one of the running kernel. * * While doing that look if we find the ref reloc symbol, if we find it * we'll have its ref_reloc_symbol.unrelocated_addr and then * maps__reloc_vmlinux will notice and set proper ->[un]map_ip routines * to fixup the symbols. */ if (machine__load_vmlinux_path(&vmlinux, type, vmlinux_matches_kallsyms_filter) <= 0) { pr_debug("machine__load_vmlinux_path "); goto out; } err = 0; /* * Step 7: * * Now look at the symbols in the vmlinux DSO and check if we find all of them * in the kallsyms dso. For the ones that are in both, check its names and * end addresses too. */ for (nd = rb_first(&vmlinux_map->dso->symbols[type]); nd; nd = rb_next(nd)) { struct symbol *pair, *first_pair; bool backwards = true; sym = rb_entry(nd, struct symbol, rb_node); if (sym->start == sym->end) continue; first_pair = machine__find_kernel_symbol(&kallsyms, type, sym->start, NULL, NULL); pair = first_pair; if (pair && pair->start == sym->start) { next_pair: if (strcmp(sym->name, pair->name) == 0) { /* * kallsyms don't have the symbol end, so we * set that by using the next symbol start - 1, * in some cases we get this up to a page * wrong, trace_kmalloc when I was developing * this code was one such example, 2106 bytes * off the real size. More than that and we * _really_ have a problem. */ s64 skew = sym->end - pair->end; if (llabs(skew) < page_size) continue; pr_debug("%#" PRIx64 ": diff end addr for %s v: %#" PRIx64 " k: %#" PRIx64 "\n", sym->start, sym->name, sym->end, pair->end); } else { struct rb_node *nnd; detour: nnd = backwards ? rb_prev(&pair->rb_node) : rb_next(&pair->rb_node); if (nnd) { struct symbol *next = rb_entry(nnd, struct symbol, rb_node); if (next->start == sym->start) { pair = next; goto next_pair; } } if (backwards) { backwards = false; pair = first_pair; goto detour; } pr_debug("%#" PRIx64 ": diff name v: %s k: %s\n", sym->start, sym->name, pair->name); } } else pr_debug("%#" PRIx64 ": %s not on kallsyms\n", sym->start, sym->name); err = -1; } if (!verbose) goto out; pr_info("Maps only in vmlinux:\n"); for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node), *pair; /* * If it is the kernel, kallsyms is always "[kernel.kallsyms]", while * the kernel will have the path for the vmlinux file being used, * so use the short name, less descriptive but the same ("[kernel]" in * both cases. */ pair = map_groups__find_by_name(&kallsyms.kmaps, type, (pos->dso->kernel ? pos->dso->short_name : pos->dso->name)); if (pair) pair->priv = 1; else map__fprintf(pos, stderr); } pr_info("Maps in vmlinux with a different name in kallsyms:\n"); for (nd = rb_first(&vmlinux.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node), *pair; pair = map_groups__find(&kallsyms.kmaps, type, pos->start); if (pair == NULL || pair->priv) continue; if (pair->start == pos->start) { pair->priv = 1; pr_info(" %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s in kallsyms as", pos->start, pos->end, pos->pgoff, pos->dso->name); if (pos->pgoff != pair->pgoff || pos->end != pair->end) pr_info(": \n*%" PRIx64 "-%" PRIx64 " %" PRIx64 "", pair->start, pair->end, pair->pgoff); pr_info(" %s\n", pair->dso->name); pair->priv = 1; } } pr_info("Maps only in kallsyms:\n"); for (nd = rb_first(&kallsyms.kmaps.maps[type]); nd; nd = rb_next(nd)) { struct map *pos = rb_entry(nd, struct map, rb_node); if (!pos->priv) map__fprintf(pos, stderr); } out: return err; } #include "util/cpumap.h" #include "util/evsel.h" #include static int trace_event__id(const char *evname) { char *filename; int err = -1, fd; if (asprintf(&filename, "/sys/kernel/debug/tracing/events/syscalls/%s/id", evname) < 0) return -1; fd = open(filename, O_RDONLY); if (fd >= 0) { char id[16]; if (read(fd, id, sizeof(id)) > 0) err = atoi(id); close(fd); } free(filename); return err; } static int test__open_syscall_event(void) { int err = -1, fd; struct thread_map *threads; struct perf_evsel *evsel; struct perf_event_attr attr; unsigned int nr_open_calls = 111, i; int id = trace_event__id("sys_enter_open"); if (id < 0) { pr_debug("is debugfs mounted on /sys/kernel/debug?\n"); return -1; } threads = thread_map__new(-1, getpid()); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_TRACEPOINT; attr.config = id; evsel = perf_evsel__new(&attr, 0); if (evsel == NULL) { pr_debug("perf_evsel__new\n"); goto out_thread_map_delete; } if (perf_evsel__open_per_thread(evsel, threads, false, false) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_evsel_delete; } for (i = 0; i < nr_open_calls; ++i) { fd = open("/etc/passwd", O_RDONLY); close(fd); } if (perf_evsel__read_on_cpu(evsel, 0, 0) < 0) { pr_debug("perf_evsel__open_read_on_cpu\n"); goto out_close_fd; } if (evsel->counts->cpu[0].val != nr_open_calls) { pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls, got %" PRIu64 "\n", nr_open_calls, evsel->counts->cpu[0].val); goto out_close_fd; } err = 0; out_close_fd: perf_evsel__close_fd(evsel, 1, threads->nr); out_evsel_delete: perf_evsel__delete(evsel); out_thread_map_delete: thread_map__delete(threads); return err; } #include static int test__open_syscall_event_on_all_cpus(void) { int err = -1, fd, cpu; struct thread_map *threads; struct cpu_map *cpus; struct perf_evsel *evsel; struct perf_event_attr attr; unsigned int nr_open_calls = 111, i; cpu_set_t cpu_set; int id = trace_event__id("sys_enter_open"); if (id < 0) { pr_debug("is debugfs mounted on /sys/kernel/debug?\n"); return -1; } threads = thread_map__new(-1, getpid()); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } cpus = cpu_map__new(NULL); if (cpus == NULL) { pr_debug("cpu_map__new\n"); goto out_thread_map_delete; } CPU_ZERO(&cpu_set); memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_TRACEPOINT; attr.config = id; evsel = perf_evsel__new(&attr, 0); if (evsel == NULL) { pr_debug("perf_evsel__new\n"); goto out_thread_map_delete; } if (perf_evsel__open(evsel, cpus, threads, false, false) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_evsel_delete; } for (cpu = 0; cpu < cpus->nr; ++cpu) { unsigned int ncalls = nr_open_calls + cpu; /* * XXX eventually lift this restriction in a way that * keeps perf building on older glibc installations * without CPU_ALLOC. 1024 cpus in 2010 still seems * a reasonable upper limit tho :-) */ if (cpus->map[cpu] >= CPU_SETSIZE) { pr_debug("Ignoring CPU %d\n", cpus->map[cpu]); continue; } CPU_SET(cpus->map[cpu], &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { pr_debug("sched_setaffinity() failed on CPU %d: %s ", cpus->map[cpu], strerror(errno)); goto out_close_fd; } for (i = 0; i < ncalls; ++i) { fd = open("/etc/passwd", O_RDONLY); close(fd); } CPU_CLR(cpus->map[cpu], &cpu_set); } /* * Here we need to explicitely preallocate the counts, as if * we use the auto allocation it will allocate just for 1 cpu, * as we start by cpu 0. */ if (perf_evsel__alloc_counts(evsel, cpus->nr) < 0) { pr_debug("perf_evsel__alloc_counts(ncpus=%d)\n", cpus->nr); goto out_close_fd; } err = 0; for (cpu = 0; cpu < cpus->nr; ++cpu) { unsigned int expected; if (cpus->map[cpu] >= CPU_SETSIZE) continue; if (perf_evsel__read_on_cpu(evsel, cpu, 0) < 0) { pr_debug("perf_evsel__open_read_on_cpu\n"); err = -1; break; } expected = nr_open_calls + cpu; if (evsel->counts->cpu[cpu].val != expected) { pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls on cpu %d, got %" PRIu64 "\n", expected, cpus->map[cpu], evsel->counts->cpu[cpu].val); err = -1; } } out_close_fd: perf_evsel__close_fd(evsel, 1, threads->nr); out_evsel_delete: perf_evsel__delete(evsel); out_thread_map_delete: thread_map__delete(threads); return err; } /* * This test will generate random numbers of calls to some getpid syscalls, * then establish an mmap for a group of events that are created to monitor * the syscalls. * * It will receive the events, using mmap, use its PERF_SAMPLE_ID generated * sample.id field to map back to its respective perf_evsel instance. * * Then it checks if the number of syscalls reported as perf events by * the kernel corresponds to the number of syscalls made. */ static int test__basic_mmap(void) { int err = -1; event_t *event; struct thread_map *threads; struct cpu_map *cpus; struct perf_evlist *evlist; struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .read_format = PERF_FORMAT_ID, .sample_type = PERF_SAMPLE_ID, .watermark = 0, }; cpu_set_t cpu_set; const char *syscall_names[] = { "getsid", "getppid", "getpgrp", "getpgid", }; pid_t (*syscalls[])(void) = { (void *)getsid, getppid, getpgrp, (void*)getpgid }; #define nsyscalls ARRAY_SIZE(syscall_names) int ids[nsyscalls]; unsigned int nr_events[nsyscalls], expected_nr_events[nsyscalls], i, j; struct perf_evsel *evsels[nsyscalls], *evsel; for (i = 0; i < nsyscalls; ++i) { char name[64]; snprintf(name, sizeof(name), "sys_enter_%s", syscall_names[i]); ids[i] = trace_event__id(name); if (ids[i] < 0) { pr_debug("Is debugfs mounted on /sys/kernel/debug?\n"); return -1; } nr_events[i] = 0; expected_nr_events[i] = random() % 257; } threads = thread_map__new(-1, getpid()); if (threads == NULL) { pr_debug("thread_map__new\n"); return -1; } cpus = cpu_map__new(NULL); if (cpus == NULL) { pr_debug("cpu_map__new\n"); goto out_free_threads; } CPU_ZERO(&cpu_set); CPU_SET(cpus->map[0], &cpu_set); sched_setaffinity(0, sizeof(cpu_set), &cpu_set); if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) { pr_debug("sched_setaffinity() failed on CPU %d: %s ", cpus->map[0], strerror(errno)); goto out_free_cpus; } evlist = perf_evlist__new(); if (evlist == NULL) { pr_debug("perf_evlist__new\n"); goto out_free_cpus; } /* anonymous union fields, can't be initialized above */ attr.wakeup_events = 1; attr.sample_period = 1; for (i = 0; i < nsyscalls; ++i) { attr.config = ids[i]; evsels[i] = perf_evsel__new(&attr, i); if (evsels[i] == NULL) { pr_debug("perf_evsel__new\n"); goto out_free_evlist; } perf_evlist__add(evlist, evsels[i]); if (perf_evsel__open(evsels[i], cpus, threads, false, false) < 0) { pr_debug("failed to open counter: %s, " "tweak /proc/sys/kernel/perf_event_paranoid?\n", strerror(errno)); goto out_close_fd; } } if (perf_evlist__mmap(evlist, cpus, threads, 128, true) < 0) { pr_debug("failed to mmap events: %d (%s)\n", errno, strerror(errno)); goto out_close_fd; } for (i = 0; i < nsyscalls; ++i) for (j = 0; j < expected_nr_events[i]; ++j) { int foo = syscalls[i](); ++foo; } while ((event = perf_evlist__read_on_cpu(evlist, 0)) != NULL) { struct perf_sample sample; if (event->header.type != PERF_RECORD_SAMPLE) { pr_debug("unexpected %s event\n", event__get_event_name(event->header.type)); goto out_munmap; } event__parse_sample(event, attr.sample_type, false, &sample); evsel = perf_evlist__id2evsel(evlist, sample.id); if (evsel == NULL) { pr_debug("event with id %" PRIu64 " doesn't map to an evsel\n", sample.id); goto out_munmap; } nr_events[evsel->idx]++; } list_for_each_entry(evsel, &evlist->entries, node) { if (nr_events[evsel->idx] != expected_nr_events[evsel->idx]) { pr_debug("expected %d %s events, got %d\n", expected_nr_events[evsel->idx], event_name(evsel), nr_events[evsel->idx]); goto out_munmap; } } err = 0; out_munmap: perf_evlist__munmap(evlist, 1); out_close_fd: for (i = 0; i < nsyscalls; ++i) perf_evsel__close_fd(evsels[i], 1, threads->nr); out_free_evlist: perf_evlist__delete(evlist); out_free_cpus: cpu_map__delete(cpus); out_free_threads: thread_map__delete(threads); return err; #undef nsyscalls } static struct test { const char *desc; int (*func)(void); } tests[] = { { .desc = "vmlinux symtab matches kallsyms", .func = test__vmlinux_matches_kallsyms, }, { .desc = "detect open syscall event", .func = test__open_syscall_event, }, { .desc = "detect open syscall event on all cpus", .func = test__open_syscall_event_on_all_cpus, }, { .desc = "read samples using the mmap interface", .func = test__basic_mmap, }, { .func = NULL, }, }; static int __cmd_test(void) { int i = 0; page_size = sysconf(_SC_PAGE_SIZE); while (tests[i].func) { int err; pr_info("%2d: %s:", i + 1, tests[i].desc); pr_debug("\n--- start ---\n"); err = tests[i].func(); pr_debug("---- end ----\n%s:", tests[i].desc); pr_info(" %s\n", err ? "FAILED!\n" : "Ok"); ++i; } return 0; } static const char * const test_usage[] = { "perf test []", NULL, }; static const struct option test_options[] = { OPT_INTEGER('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_END() }; int cmd_test(int argc, const char **argv, const char *prefix __used) { argc = parse_options(argc, argv, test_options, test_usage, 0); if (argc) usage_with_options(test_usage, test_options); symbol_conf.priv_size = sizeof(int); symbol_conf.sort_by_name = true; symbol_conf.try_vmlinux_path = true; if (symbol__init() < 0) return -1; setup_pager(); return __cmd_test(); }