// SPDX-License-Identifier: GPL-2.0-or-later #define _GNU_SOURCE #include "../kselftest_harness.h" #include /* Force the import of the tools version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vm_util.h" #include "../pidfd/pidfd.h" /* * Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1: * * "If the signal occurs other than as the result of calling the abort or raise * function, the behavior is undefined if the signal handler refers to any * object with static storage duration other than by assigning a value to an * object declared as volatile sig_atomic_t" */ static volatile sig_atomic_t signal_jump_set; static sigjmp_buf signal_jmp_buf; /* * Ignore the checkpatch warning, we must read from x but don't want to do * anything with it in order to trigger a read page fault. We therefore must use * volatile to stop the compiler from optimising this away. */ #define FORCE_READ(x) (*(volatile typeof(x) *)x) /* * How is the test backing the mapping being tested? */ enum backing_type { ANON_BACKED, SHMEM_BACKED, LOCAL_FILE_BACKED, }; FIXTURE(guard_regions) { unsigned long page_size; char path[PATH_MAX]; int fd; }; FIXTURE_VARIANT(guard_regions) { enum backing_type backing; }; FIXTURE_VARIANT_ADD(guard_regions, anon) { .backing = ANON_BACKED, }; FIXTURE_VARIANT_ADD(guard_regions, shmem) { .backing = SHMEM_BACKED, }; FIXTURE_VARIANT_ADD(guard_regions, file) { .backing = LOCAL_FILE_BACKED, }; static bool is_anon_backed(const FIXTURE_VARIANT(guard_regions) * variant) { switch (variant->backing) { case ANON_BACKED: case SHMEM_BACKED: return true; default: return false; } } static void *mmap_(FIXTURE_DATA(guard_regions) * self, const FIXTURE_VARIANT(guard_regions) * variant, void *addr, size_t length, int prot, int extra_flags, off_t offset) { int fd; int flags = extra_flags; switch (variant->backing) { case ANON_BACKED: flags |= MAP_PRIVATE | MAP_ANON; fd = -1; break; case SHMEM_BACKED: case LOCAL_FILE_BACKED: flags |= MAP_SHARED; fd = self->fd; break; default: ksft_exit_fail(); break; } return mmap(addr, length, prot, flags, fd, offset); } static int userfaultfd(int flags) { return syscall(SYS_userfaultfd, flags); } static void handle_fatal(int c) { if (!signal_jump_set) return; siglongjmp(signal_jmp_buf, c); } static ssize_t sys_process_madvise(int pidfd, const struct iovec *iovec, size_t n, int advice, unsigned int flags) { return syscall(__NR_process_madvise, pidfd, iovec, n, advice, flags); } /* * Enable our signal catcher and try to read/write the specified buffer. The * return value indicates whether the read/write succeeds without a fatal * signal. */ static bool try_access_buf(char *ptr, bool write) { bool failed; /* Tell signal handler to jump back here on fatal signal. */ signal_jump_set = true; /* If a fatal signal arose, we will jump back here and failed is set. */ failed = sigsetjmp(signal_jmp_buf, 0) != 0; if (!failed) { if (write) *ptr = 'x'; else FORCE_READ(ptr); } signal_jump_set = false; return !failed; } /* Try and read from a buffer, return true if no fatal signal. */ static bool try_read_buf(char *ptr) { return try_access_buf(ptr, false); } /* Try and write to a buffer, return true if no fatal signal. */ static bool try_write_buf(char *ptr) { return try_access_buf(ptr, true); } /* * Try and BOTH read from AND write to a buffer, return true if BOTH operations * succeed. */ static bool try_read_write_buf(char *ptr) { return try_read_buf(ptr) && try_write_buf(ptr); } static void setup_sighandler(void) { struct sigaction act = { .sa_handler = &handle_fatal, .sa_flags = SA_NODEFER, }; sigemptyset(&act.sa_mask); if (sigaction(SIGSEGV, &act, NULL)) ksft_exit_fail_perror("sigaction"); } static void teardown_sighandler(void) { struct sigaction act = { .sa_handler = SIG_DFL, .sa_flags = SA_NODEFER, }; sigemptyset(&act.sa_mask); sigaction(SIGSEGV, &act, NULL); } static int open_file(const char *prefix, char *path) { int fd; snprintf(path, PATH_MAX, "%sguard_regions_test_file_XXXXXX", prefix); fd = mkstemp(path); if (fd < 0) ksft_exit_fail_perror("mkstemp"); return fd; } /* Establish a varying pattern in a buffer. */ static void set_pattern(char *ptr, size_t num_pages, size_t page_size) { size_t i; for (i = 0; i < num_pages; i++) { char *ptr2 = &ptr[i * page_size]; memset(ptr2, 'a' + (i % 26), page_size); } } /* * Check that a buffer contains the pattern set by set_pattern(), starting at a * page offset of pgoff within the buffer. */ static bool check_pattern_offset(char *ptr, size_t num_pages, size_t page_size, size_t pgoff) { size_t i; for (i = 0; i < num_pages * page_size; i++) { size_t offset = pgoff * page_size + i; char actual = ptr[offset]; char expected = 'a' + ((offset / page_size) % 26); if (actual != expected) return false; } return true; } /* Check that a buffer contains the pattern set by set_pattern(). */ static bool check_pattern(char *ptr, size_t num_pages, size_t page_size) { return check_pattern_offset(ptr, num_pages, page_size, 0); } /* Determine if a buffer contains only repetitions of a specified char. */ static bool is_buf_eq(char *buf, size_t size, char chr) { size_t i; for (i = 0; i < size; i++) { if (buf[i] != chr) return false; } return true; } FIXTURE_SETUP(guard_regions) { self->page_size = (unsigned long)sysconf(_SC_PAGESIZE); setup_sighandler(); if (variant->backing == ANON_BACKED) return; self->fd = open_file( variant->backing == SHMEM_BACKED ? "/tmp/" : "", self->path); /* We truncate file to at least 100 pages, tests can modify as needed. */ ASSERT_EQ(ftruncate(self->fd, 100 * self->page_size), 0); }; FIXTURE_TEARDOWN_PARENT(guard_regions) { teardown_sighandler(); if (variant->backing == ANON_BACKED) return; if (self->fd >= 0) close(self->fd); if (self->path[0] != '\0') unlink(self->path); } TEST_F(guard_regions, basic) { const unsigned long NUM_PAGES = 10; const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap_(self, variant, NULL, NUM_PAGES * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Trivially assert we can touch the first page. */ ASSERT_TRUE(try_read_write_buf(ptr)); ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); /* Establish that 1st page SIGSEGV's. */ ASSERT_FALSE(try_read_write_buf(ptr)); /* Ensure we can touch everything else.*/ for (i = 1; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Establish a guard page at the end of the mapping. */ ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Check that both guard pages result in SIGSEGV. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); /* Remove the first guard page. */ ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE)); /* Make sure we can touch it. */ ASSERT_TRUE(try_read_write_buf(ptr)); /* Remove the last guard page. */ ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, MADV_GUARD_REMOVE)); /* Make sure we can touch it. */ ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); /* * Test setting a _range_ of pages, namely the first 3. The first of * these be faulted in, so this also tests that we can install guard * pages over backed pages. */ ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure they are all guard pages. */ for (i = 0; i < 3; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Make sure the rest are not. */ for (i = 3; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Remove guard pages. */ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); /* Now make sure we can touch everything. */ for (i = 0; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* * Now remove all guard pages, make sure we don't remove existing * entries. */ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < NUM_PAGES * page_size; i += page_size) { char chr = ptr[i]; ASSERT_EQ(chr, 'x'); } ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0); } /* Assert that operations applied across multiple VMAs work as expected. */ TEST_F(guard_regions, multi_vma) { const unsigned long page_size = self->page_size; char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3; int i; /* Reserve a 100 page region over which we can install VMAs. */ ptr_region = mmap_(self, variant, NULL, 100 * page_size, PROT_NONE, 0, 0); ASSERT_NE(ptr_region, MAP_FAILED); /* Place a VMA of 10 pages size at the start of the region. */ ptr1 = mmap_(self, variant, ptr_region, 10 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr1, MAP_FAILED); /* Place a VMA of 5 pages size 50 pages into the region. */ ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr2, MAP_FAILED); /* Place a VMA of 20 pages size at the end of the region. */ ptr3 = mmap_(self, variant, &ptr_region[80 * page_size], 20 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr3, MAP_FAILED); /* Unmap gaps. */ ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0); /* * We end up with VMAs like this: * * 0 10 .. 50 55 .. 80 100 * [---] [---] [---] */ /* * Now mark the whole range as guard pages and make sure all VMAs are as * such. */ /* * madvise() is certifiable and lets you perform operations over gaps, * everything works, but it indicates an error and errno is set to * -ENOMEM. Also if anything runs out of memory it is set to * -ENOMEM. You are meant to guess which is which. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1); ASSERT_EQ(errno, ENOMEM); for (i = 0; i < 10; i++) { char *curr = &ptr1[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 0; i < 5; i++) { char *curr = &ptr2[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 0; i < 20; i++) { char *curr = &ptr3[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now remove guar pages over range and assert the opposite. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1); ASSERT_EQ(errno, ENOMEM); for (i = 0; i < 10; i++) { char *curr = &ptr1[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } for (i = 0; i < 5; i++) { char *curr = &ptr2[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } for (i = 0; i < 20; i++) { char *curr = &ptr3[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Now map incompatible VMAs in the gaps. */ ptr = mmap_(self, variant, &ptr_region[10 * page_size], 40 * page_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0); ASSERT_NE(ptr, MAP_FAILED); ptr = mmap_(self, variant, &ptr_region[55 * page_size], 25 * page_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0); ASSERT_NE(ptr, MAP_FAILED); /* * We end up with VMAs like this: * * 0 10 .. 50 55 .. 80 100 * [---][xxxx][---][xxxx][---] * * Where 'x' signifies VMAs that cannot be merged with those adjacent to * them. */ /* Multiple VMAs adjacent to one another should result in no error. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0); for (i = 0; i < 100; i++) { char *curr = &ptr_region[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < 100; i++) { char *curr = &ptr_region[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0); } /* * Assert that batched operations performed using process_madvise() work as * expected. */ TEST_F(guard_regions, process_madvise) { const unsigned long page_size = self->page_size; char *ptr_region, *ptr1, *ptr2, *ptr3; ssize_t count; struct iovec vec[6]; /* Reserve region to map over. */ ptr_region = mmap_(self, variant, NULL, 100 * page_size, PROT_NONE, 0, 0); ASSERT_NE(ptr_region, MAP_FAILED); /* * 10 pages offset 1 page into reserve region. We MAP_POPULATE so we * overwrite existing entries and test this code path against * overwriting existing entries. */ ptr1 = mmap_(self, variant, &ptr_region[page_size], 10 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_POPULATE, 0); ASSERT_NE(ptr1, MAP_FAILED); /* We want guard markers at start/end of each VMA. */ vec[0].iov_base = ptr1; vec[0].iov_len = page_size; vec[1].iov_base = &ptr1[9 * page_size]; vec[1].iov_len = page_size; /* 5 pages offset 50 pages into reserve region. */ ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr2, MAP_FAILED); vec[2].iov_base = ptr2; vec[2].iov_len = page_size; vec[3].iov_base = &ptr2[4 * page_size]; vec[3].iov_len = page_size; /* 20 pages offset 79 pages into reserve region. */ ptr3 = mmap_(self, variant, &ptr_region[79 * page_size], 20 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr3, MAP_FAILED); vec[4].iov_base = ptr3; vec[4].iov_len = page_size; vec[5].iov_base = &ptr3[19 * page_size]; vec[5].iov_len = page_size; /* Free surrounding VMAs. */ ASSERT_EQ(munmap(ptr_region, page_size), 0); ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0); /* Now guard in one step. */ count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_INSTALL, 0); /* OK we don't have permission to do this, skip. */ if (count == -1 && errno == EPERM) ksft_exit_skip("No process_madvise() permissions, try running as root.\n"); /* Returns the number of bytes advised. */ ASSERT_EQ(count, 6 * page_size); /* Now make sure the guarding was applied. */ ASSERT_FALSE(try_read_write_buf(ptr1)); ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size])); ASSERT_FALSE(try_read_write_buf(ptr2)); ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size])); ASSERT_FALSE(try_read_write_buf(ptr3)); ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size])); /* Now do the same with unguard... */ count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_REMOVE, 0); /* ...and everything should now succeed. */ ASSERT_TRUE(try_read_write_buf(ptr1)); ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size])); ASSERT_TRUE(try_read_write_buf(ptr2)); ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size])); ASSERT_TRUE(try_read_write_buf(ptr3)); ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size])); /* Cleanup. */ ASSERT_EQ(munmap(ptr1, 10 * page_size), 0); ASSERT_EQ(munmap(ptr2, 5 * page_size), 0); ASSERT_EQ(munmap(ptr3, 20 * page_size), 0); } /* Assert that unmapping ranges does not leave guard markers behind. */ TEST_F(guard_regions, munmap) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new1, *ptr_new2; ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard first and last pages. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Assert that they are guarded. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size])); /* Unmap them. */ ASSERT_EQ(munmap(ptr, page_size), 0); ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0); /* Map over them.*/ ptr_new1 = mmap_(self, variant, ptr, page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr_new1, MAP_FAILED); ptr_new2 = mmap_(self, variant, &ptr[9 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr_new2, MAP_FAILED); /* Assert that they are now not guarded. */ ASSERT_TRUE(try_read_write_buf(ptr_new1)); ASSERT_TRUE(try_read_write_buf(ptr_new2)); /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that mprotect() operations have no bearing on guard markers. */ TEST_F(guard_regions, mprotect) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard the middle of the range. */ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, MADV_GUARD_INSTALL), 0); /* Assert that it is indeed guarded. */ ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size])); /* Now make these pages read-only. */ ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0); /* Make sure the range is still guarded. */ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); /* Make sure we can guard again without issue.*/ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the range is, yet again, still guarded. */ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); /* Now unguard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Make sure the whole range is readable. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Split and merge VMAs and make sure guard pages still behave. */ TEST_F(guard_regions, split_merge) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; int i; ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the whole range is guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now unmap some pages in the range so we split. */ ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0); ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0); ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0); /* Make sure the remaining ranges are guarded post-split. */ for (i = 0; i < 2; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 2; i < 5; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 6; i < 8; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 9; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now map them again - the unmap will have cleared the guards. */ ptr_new = mmap_(self, variant, &ptr[2 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr_new, MAP_FAILED); ptr_new = mmap_(self, variant, &ptr[5 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr_new, MAP_FAILED); ptr_new = mmap_(self, variant, &ptr[8 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED, 0); ASSERT_NE(ptr_new, MAP_FAILED); /* Now make sure guard pages are established. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); bool expect_true = i == 2 || i == 5 || i == 8; ASSERT_TRUE(expect_true ? result : !result); } /* Now guard everything again. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the whole range is guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now split the range into three. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); /* Make sure the whole range is guarded for read. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_buf(curr)); } /* Now reset protection bits so we merge the whole thing. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ | PROT_WRITE), 0); /* Make sure the whole range is still guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Split range into 3 again... */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); /* ...and unguard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Make sure the whole range is remedied for read. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(curr)); } /* Merge them again. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ | PROT_WRITE), 0); /* Now ensure the merged range is remedied for read/write. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that MADV_DONTNEED does not remove guard markers. */ TEST_F(guard_regions, dontneed) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Back the whole range. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; *curr = 'y'; } /* Guard every other page. */ for (i = 0; i < 10; i += 2) { char *curr = &ptr[i * page_size]; int res = madvise(curr, page_size, MADV_GUARD_INSTALL); ASSERT_EQ(res, 0); } /* Indicate that we don't need any of the range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0); /* Check to ensure guard markers are still in place. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_buf(curr); if (i % 2 == 0) { ASSERT_FALSE(result); } else { ASSERT_TRUE(result); switch (variant->backing) { case ANON_BACKED: /* If anon, then we get a zero page. */ ASSERT_EQ(*curr, '\0'); break; default: /* Otherwise, we get the file data. */ ASSERT_EQ(*curr, 'y'); break; } } /* Now write... */ result = try_write_buf(&ptr[i * page_size]); /* ...and make sure same result. */ ASSERT_TRUE(i % 2 != 0 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that mlock()'ed pages work correctly with guard markers. */ TEST_F(guard_regions, mlock) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Populate. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; *curr = 'y'; } /* Lock. */ ASSERT_EQ(mlock(ptr, 10 * page_size), 0); /* Now try to guard, should fail with EINVAL. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1); ASSERT_EQ(errno, EINVAL); /* OK unlock. */ ASSERT_EQ(munlock(ptr, 10 * page_size), 0); /* Guard first half of range, should now succeed. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure guard works. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); if (i < 5) { ASSERT_FALSE(result); } else { ASSERT_TRUE(result); ASSERT_EQ(*curr, 'x'); } } /* * Now lock the latter part of the range. We can't lock the guard pages, * as this would result in the pages being populated and the guarding * would cause this to error out. */ ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0); /* * Now remove guard pages, we permit mlock()'d ranges to have guard * pages removed as it is a non-destructive operation. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Now check that no guard pages remain. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * - Moving a mapping alone should retain markers as they are. */ TEST_F(guard_regions, mremap_move) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; /* Map 5 pages. */ ptr = mmap_(self, variant, NULL, 5 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guard pages are in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Map a new region we will move this range into. Doing this ensures * that we have reserved a range to map into. */ ptr_new = mmap_(self, variant, NULL, 5 * page_size, PROT_NONE, 0, 0); ASSERT_NE(ptr_new, MAP_FAILED); ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new); /* Make sure the guard markers are retained. */ ASSERT_FALSE(try_read_write_buf(ptr_new)); ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size])); /* * Clean up - we only need reference the new pointer as we overwrote the * PROT_NONE range and moved the existing one. */ munmap(ptr_new, 5 * page_size); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * Expanding should retain guard pages, only now in different position. The user * will have to remove guard pages manually to fix up (they'd have to do the * same if it were a PROT_NONE mapping). */ TEST_F(guard_regions, mremap_expand) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; /* Map 10 pages... */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* ...But unmap the last 5 so we can ensure we can expand into them. */ ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guarding is in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Now expand to 10 pages. */ ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0); ASSERT_NE(ptr, MAP_FAILED); /* * Make sure the guard markers are retained in their original positions. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Reserve a region which we can move to and expand into. */ ptr_new = mmap_(self, variant, NULL, 20 * page_size, PROT_NONE, 0, 0); ASSERT_NE(ptr_new, MAP_FAILED); /* Now move and expand into it. */ ptr = mremap(ptr, 10 * page_size, 20 * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new); ASSERT_EQ(ptr, ptr_new); /* * Again, make sure the guard markers are retained in their original positions. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* * A real user would have to remove guard markers, but would reasonably * expect all characteristics of the mapping to be retained, including * guard markers. */ /* Cleanup. */ munmap(ptr, 20 * page_size); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * Shrinking will result in markers that are shrunk over being removed. Again, * if the user were using a PROT_NONE mapping they'd have to manually fix this * up also so this is OK. */ TEST_F(guard_regions, mremap_shrink) { const unsigned long page_size = self->page_size; char *ptr; int i; /* Map 5 pages. */ ptr = mmap_(self, variant, NULL, 5 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guarding is in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Now shrink to 3 pages. */ ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE); ASSERT_NE(ptr, MAP_FAILED); /* We expect the guard marker at the start to be retained... */ ASSERT_FALSE(try_read_write_buf(ptr)); /* ...But remaining pages will not have guard markers. */ for (i = 1; i < 3; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* * As with expansion, a real user would have to remove guard pages and * fixup. But you'd have to do similar manual things with PROT_NONE * mappings too. */ /* * If we expand back to the original size, the end marker will, of * course, no longer be present. */ ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0); ASSERT_NE(ptr, MAP_FAILED); /* Again, we expect the guard marker at the start to be retained... */ ASSERT_FALSE(try_read_write_buf(ptr)); /* ...But remaining pages will not have guard markers. */ for (i = 1; i < 5; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ munmap(ptr, 5 * page_size); } /* * Assert that forking a process with VMAs that do not have VM_WIPEONFORK set * retain guard pages. */ TEST_F(guard_regions, fork) { const unsigned long page_size = self->page_size; char *ptr; pid_t pid; int i; /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Establish guard pages in the first 5 pages. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); pid = fork(); ASSERT_NE(pid, -1); if (!pid) { /* This is the child process now. */ /* Assert that the guarding is in effect. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Now unguard the range.*/ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); exit(0); } /* Parent process. */ /* Parent simply waits on child. */ waitpid(pid, NULL, 0); /* Child unguard does not impact parent page table state. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert expected behaviour after we fork populated ranges of anonymous memory * and then guard and unguard the range. */ TEST_F(guard_regions, fork_cow) { const unsigned long page_size = self->page_size; char *ptr; pid_t pid; int i; if (variant->backing != ANON_BACKED) SKIP(return, "CoW only supported on anon mappings"); /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Populate range. */ for (i = 0; i < 10 * page_size; i++) { char chr = 'a' + (i % 26); ptr[i] = chr; } pid = fork(); ASSERT_NE(pid, -1); if (!pid) { /* This is the child process now. */ /* Ensure the range is as expected. */ for (i = 0; i < 10 * page_size; i++) { char expected = 'a' + (i % 26); char actual = ptr[i]; ASSERT_EQ(actual, expected); } /* Establish guard pages across the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Remove it. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* * By removing the guard pages, the page tables will be * cleared. Assert that we are looking at the zero page now. */ for (i = 0; i < 10 * page_size; i++) { char actual = ptr[i]; ASSERT_EQ(actual, '\0'); } exit(0); } /* Parent process. */ /* Parent simply waits on child. */ waitpid(pid, NULL, 0); /* Ensure the range is unchanged in parent anon range. */ for (i = 0; i < 10 * page_size; i++) { char expected = 'a' + (i % 26); char actual = ptr[i]; ASSERT_EQ(actual, expected); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert that forking a process with VMAs that do have VM_WIPEONFORK set * behave as expected. */ TEST_F(guard_regions, fork_wipeonfork) { const unsigned long page_size = self->page_size; char *ptr; pid_t pid; int i; if (variant->backing != ANON_BACKED) SKIP(return, "Wipe on fork only supported on anon mappings"); /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Mark wipe on fork. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0); /* Guard the first 5 pages. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); pid = fork(); ASSERT_NE(pid, -1); if (!pid) { /* This is the child process now. */ /* Guard will have been wiped. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } exit(0); } /* Parent process. */ waitpid(pid, NULL, 0); /* Guard markers should be in effect.*/ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_FREE retains guard entries as expected. */ TEST_F(guard_regions, lazyfree) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing != ANON_BACKED) SKIP(return, "MADV_FREE only supported on anon mappings"); /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Ensure guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Lazyfree range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0); /* This should leave the guard markers in place. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */ TEST_F(guard_regions, populate) { const unsigned long page_size = self->page_size; char *ptr; /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Populate read should error out... */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1); ASSERT_EQ(errno, EFAULT); /* ...as should populate write. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1); ASSERT_EQ(errno, EFAULT); /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */ TEST_F(guard_regions, cold_pageout) { const unsigned long page_size = self->page_size; char *ptr; int i; /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Ensured guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now mark cold. This should have no impact on guard markers. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0); /* Should remain guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* OK, now page out. This should equally, have no effect on markers. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); /* Should remain guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that guard pages do not break userfaultd. */ TEST_F(guard_regions, uffd) { const unsigned long page_size = self->page_size; int uffd; char *ptr; int i; struct uffdio_api api = { .api = UFFD_API, .features = 0, }; struct uffdio_register reg; struct uffdio_range range; if (!is_anon_backed(variant)) SKIP(return, "uffd only works on anon backing"); /* Set up uffd. */ uffd = userfaultfd(0); if (uffd == -1 && errno == EPERM) ksft_exit_skip("No userfaultfd permissions, try running as root.\n"); ASSERT_NE(uffd, -1); ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0); /* Map 10 pages. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Register the range with uffd. */ range.start = (unsigned long)ptr; range.len = 10 * page_size; reg.range = range; reg.mode = UFFDIO_REGISTER_MODE_MISSING; ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, ®), 0); /* Guard the range. This should not trigger the uffd. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* The guarding should behave as usual with no uffd intervention. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0); close(uffd); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Mark a region within a file-backed mapping using MADV_SEQUENTIAL so we * aggressively read-ahead, then install guard regions and assert that it * behaves correctly. * * We page out using MADV_PAGEOUT before checking guard regions so we drop page * cache folios, meaning we maximise the possibility of some broken readahead. */ TEST_F(guard_regions, madvise_sequential) { char *ptr; int i; const unsigned long page_size = self->page_size; if (variant->backing == ANON_BACKED) SKIP(return, "MADV_SEQUENTIAL meaningful only for file-backed"); ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Establish a pattern of data in the file. */ set_pattern(ptr, 10, page_size); ASSERT_TRUE(check_pattern(ptr, 10, page_size)); /* Mark it as being accessed sequentially. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_SEQUENTIAL), 0); /* Mark every other page a guard page. */ for (i = 0; i < 10; i += 2) { char *ptr2 = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr2, page_size, MADV_GUARD_INSTALL), 0); } /* Now page it out. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); /* Now make sure pages are as expected. */ for (i = 0; i < 10; i++) { char *chrp = &ptr[i * page_size]; if (i % 2 == 0) { bool result = try_read_write_buf(chrp); ASSERT_FALSE(result); } else { ASSERT_EQ(*chrp, 'a' + i); } } /* Now remove guard pages. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Now make sure all data is as expected. */ if (!check_pattern(ptr, 10, page_size)) ASSERT_TRUE(false); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Check that file-backed mappings implement guard regions with MAP_PRIVATE * correctly. */ TEST_F(guard_regions, map_private) { const unsigned long page_size = self->page_size; char *ptr_shared, *ptr_private; int i; if (variant->backing == ANON_BACKED) SKIP(return, "MAP_PRIVATE test specific to file-backed"); ptr_shared = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr_shared, MAP_FAILED); /* Manually mmap(), do not use mmap_() wrapper so we can force MAP_PRIVATE. */ ptr_private = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, self->fd, 0); ASSERT_NE(ptr_private, MAP_FAILED); /* Set pattern in shared mapping. */ set_pattern(ptr_shared, 10, page_size); /* Install guard regions in every other page in the shared mapping. */ for (i = 0; i < 10; i += 2) { char *ptr = &ptr_shared[i * page_size]; ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); } for (i = 0; i < 10; i++) { /* Every even shared page should be guarded. */ ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0); /* Private mappings should always be readable. */ ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size])); } /* Install guard regions in every other page in the private mapping. */ for (i = 0; i < 10; i += 2) { char *ptr = &ptr_private[i * page_size]; ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); } for (i = 0; i < 10; i++) { /* Every even shared page should be guarded. */ ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0); /* Every odd private page should be guarded. */ ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0); } /* Remove guard regions from shared mapping. */ ASSERT_EQ(madvise(ptr_shared, 10 * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < 10; i++) { /* Shared mappings should always be readable. */ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); /* Every even private page should be guarded. */ ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0); } /* Remove guard regions from private mapping. */ ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < 10; i++) { /* Shared mappings should always be readable. */ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); /* Private mappings should always be readable. */ ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size])); } /* Ensure patterns are intact. */ ASSERT_TRUE(check_pattern(ptr_shared, 10, page_size)); ASSERT_TRUE(check_pattern(ptr_private, 10, page_size)); /* Now write out every other page to MAP_PRIVATE. */ for (i = 0; i < 10; i += 2) { char *ptr = &ptr_private[i * page_size]; memset(ptr, 'a' + i, page_size); } /* * At this point the mapping is: * * 0123456789 * SPSPSPSPSP * * Where S = shared, P = private mappings. */ /* Now mark the beginning of the mapping guarded. */ ASSERT_EQ(madvise(ptr_private, 5 * page_size, MADV_GUARD_INSTALL), 0); /* * This renders the mapping: * * 0123456789 * xxxxxPSPSP */ for (i = 0; i < 10; i++) { char *ptr = &ptr_private[i * page_size]; /* Ensure guard regions as expected. */ ASSERT_EQ(try_read_buf(ptr), i >= 5); /* The shared mapping should always succeed. */ ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); } /* Remove the guard regions altogether. */ ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0); /* * * We now expect the mapping to be: * * 0123456789 * SSSSSPSPSP * * As we removed guard regions, the private pages from the first 5 will * have been zapped, so on fault will reestablish the shared mapping. */ for (i = 0; i < 10; i++) { char *ptr = &ptr_private[i * page_size]; /* * Assert that shared mappings in the MAP_PRIVATE mapping match * the shared mapping. */ if (i < 5 || i % 2 == 0) { char *ptr_s = &ptr_shared[i * page_size]; ASSERT_EQ(memcmp(ptr, ptr_s, page_size), 0); continue; } /* Everything else is a private mapping. */ ASSERT_TRUE(is_buf_eq(ptr, page_size, 'a' + i)); } ASSERT_EQ(munmap(ptr_shared, 10 * page_size), 0); ASSERT_EQ(munmap(ptr_private, 10 * page_size), 0); } /* Test that guard regions established over a read-only mapping function correctly. */ TEST_F(guard_regions, readonly_file) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing == ANON_BACKED) SKIP(return, "Read-only test specific to file-backed"); /* Map shared so we can populate with pattern, populate it, unmap. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); set_pattern(ptr, 10, page_size); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); /* Close the fd so we can re-open read-only. */ ASSERT_EQ(close(self->fd), 0); /* Re-open read-only. */ self->fd = open(self->path, O_RDONLY); ASSERT_NE(self->fd, -1); /* Re-map read-only. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Mark every other page guarded. */ for (i = 0; i < 10; i += 2) { char *ptr_pg = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_pg, page_size, MADV_GUARD_INSTALL), 0); } /* Assert that the guard regions are in place.*/ for (i = 0; i < 10; i++) { char *ptr_pg = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_pg), i % 2 != 0); } /* Remove guard regions. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Ensure the data is as expected. */ ASSERT_TRUE(check_pattern(ptr, 10, page_size)); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } TEST_F(guard_regions, fault_around) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing == ANON_BACKED) SKIP(return, "Fault-around test specific to file-backed"); ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Establish a pattern in the backing file. */ set_pattern(ptr, 10, page_size); /* * Now drop it from the page cache so we get major faults when next we * map it. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); /* Unmap and remap 'to be sure'. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Now make every even page guarded. */ for (i = 0; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); } /* Now fault in every odd page. This should trigger fault-around. */ for (i = 1; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(ptr_p)); } /* Finally, ensure that guard regions are intact as expected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); } ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } TEST_F(guard_regions, truncation) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing == ANON_BACKED) SKIP(return, "Truncation test specific to file-backed"); ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* * Establish a pattern in the backing file, just so there is data * there. */ set_pattern(ptr, 10, page_size); /* Now make every even page guarded. */ for (i = 0; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); } /* Now assert things are as expected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); } /* Now truncate to actually used size (initialised to 100). */ ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); /* Here the guard regions will remain intact. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); } /* Now truncate to half the size, then truncate again to the full size. */ ASSERT_EQ(ftruncate(self->fd, 5 * page_size), 0); ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); /* Again, guard pages will remain intact. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); } ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } TEST_F(guard_regions, hole_punch) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing == ANON_BACKED) SKIP(return, "Truncation test specific to file-backed"); /* Establish pattern in mapping. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); set_pattern(ptr, 10, page_size); /* Install a guard region in the middle of the mapping. */ ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size, MADV_GUARD_INSTALL), 0); /* * The buffer will now be: * * 0123456789 * ***xxxx*** * * Where * is data and x is the guard region. */ /* Ensure established. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7); } /* Now hole punch the guarded region. */ ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size, MADV_REMOVE), 0); /* Ensure guard regions remain. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7); } /* Now remove guard region throughout. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Check that the pattern exists in non-hole punched region. */ ASSERT_TRUE(check_pattern(ptr, 3, page_size)); /* Check that hole punched region is zeroed. */ ASSERT_TRUE(is_buf_eq(&ptr[3 * page_size], 4 * page_size, '\0')); /* Check that the pattern exists in the remainder of the file. */ ASSERT_TRUE(check_pattern_offset(ptr, 3, page_size, 7)); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Ensure that a memfd works correctly with guard regions, that we can write * seal it then open the mapping read-only and still establish guard regions * within, remove those guard regions and have everything work correctly. */ TEST_F(guard_regions, memfd_write_seal) { const unsigned long page_size = self->page_size; char *ptr; int i; if (variant->backing != SHMEM_BACKED) SKIP(return, "memfd write seal test specific to shmem"); /* OK, we need a memfd, so close existing one. */ ASSERT_EQ(close(self->fd), 0); /* Create and truncate memfd. */ self->fd = memfd_create("guard_regions_memfd_seals_test", MFD_ALLOW_SEALING); ASSERT_NE(self->fd, -1); ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); /* Map, set pattern, unmap. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); set_pattern(ptr, 10, page_size); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); /* Write-seal the memfd. */ ASSERT_EQ(fcntl(self->fd, F_ADD_SEALS, F_SEAL_WRITE), 0); /* Now map the memfd readonly. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Ensure pattern is as expected. */ ASSERT_TRUE(check_pattern(ptr, 10, page_size)); /* Now make every even page guarded. */ for (i = 0; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); } /* Now assert things are as expected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); } /* Now remove guard regions. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Ensure pattern is as expected. */ ASSERT_TRUE(check_pattern(ptr, 10, page_size)); /* Ensure write seal intact. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_FALSE(try_write_buf(ptr_p)); } ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Since we are now permitted to establish guard regions in read-only anonymous * mappings, for the sake of thoroughness, though it probably has no practical * use, test that guard regions function with a mapping to the anonymous zero * page. */ TEST_F(guard_regions, anon_zeropage) { const unsigned long page_size = self->page_size; char *ptr; int i; if (!is_anon_backed(variant)) SKIP(return, "anon zero page test specific to anon/shmem"); /* Obtain a read-only i.e. anon zero page mapping. */ ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Now make every even page guarded. */ for (i = 0; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); } /* Now assert things are as expected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); } /* Now remove all guard regions. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Now assert things are as expected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(ptr_p)); } /* Ensure zero page...*/ ASSERT_TRUE(is_buf_eq(ptr, 10 * page_size, '\0')); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert that /proc/$pid/pagemap correctly identifies guard region ranges. */ TEST_F(guard_regions, pagemap) { const unsigned long page_size = self->page_size; int proc_fd; char *ptr; int i; proc_fd = open("/proc/self/pagemap", O_RDONLY); ASSERT_NE(proc_fd, -1); ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); ASSERT_NE(ptr, MAP_FAILED); /* Read from pagemap, and assert no guard regions are detected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; unsigned long entry = pagemap_get_entry(proc_fd, ptr_p); unsigned long masked = entry & PM_GUARD_REGION; ASSERT_EQ(masked, 0); } /* Install a guard region in every other page. */ for (i = 0; i < 10; i += 2) { char *ptr_p = &ptr[i * page_size]; ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); } /* Re-read from pagemap, and assert guard regions are detected. */ for (i = 0; i < 10; i++) { char *ptr_p = &ptr[i * page_size]; unsigned long entry = pagemap_get_entry(proc_fd, ptr_p); unsigned long masked = entry & PM_GUARD_REGION; ASSERT_EQ(masked, i % 2 == 0 ? PM_GUARD_REGION : 0); } ASSERT_EQ(close(proc_fd), 0); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } TEST_HARNESS_MAIN