1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
zram: Compressed RAM based block devices
----------------------------------------
* Introduction
The zram module creates RAM based block devices named /dev/zram<id>
(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
in memory itself. These disks allow very fast I/O and compression provides
good amounts of memory savings. Some of the usecases include /tmp storage,
use as swap disks, various caches under /var and maybe many more :)
Statistics for individual zram devices are exported through sysfs nodes at
/sys/block/zram<id>/
* Usage
There are several ways to configure and manage zram device(-s):
a) using zram and zram_control sysfs attributes
b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org).
In this document we will describe only 'manual' zram configuration steps,
IOW, zram and zram_control sysfs attributes.
In order to get a better idea about zramctl please consult util-linux
documentation, zramctl man-page or `zramctl --help'. Please be informed
that zram maintainers do not develop/maintain util-linux or zramctl, should
you have any questions please contact util-linux@vger.kernel.org
Following shows a typical sequence of steps for using zram.
WARNING
=======
For the sake of simplicity we skip error checking parts in most of the
examples below. However, it is your sole responsibility to handle errors.
zram sysfs attributes always return negative values in case of errors.
The list of possible return codes:
-EBUSY -- an attempt to modify an attribute that cannot be changed once
the device has been initialised. Please reset device first;
-ENOMEM -- zram was not able to allocate enough memory to fulfil your
needs;
-EINVAL -- invalid input has been provided.
If you use 'echo', the returned value that is changed by 'echo' utility,
and, in general case, something like:
echo 3 > /sys/block/zram0/max_comp_streams
if [ $? -ne 0 ];
handle_error
fi
should suffice.
1) Load Module:
modprobe zram num_devices=4
This creates 4 devices: /dev/zram{0,1,2,3}
num_devices parameter is optional and tells zram how many devices should be
pre-created. Default: 1.
2) Set max number of compression streams
Regardless the value passed to this attribute, ZRAM will always
allocate multiple compression streams - one per online CPUs - thus
allowing several concurrent compression operations. The number of
allocated compression streams goes down when some of the CPUs
become offline. There is no single-compression-stream mode anymore,
unless you are running a UP system or has only 1 CPU online.
To find out how many streams are currently available:
cat /sys/block/zram0/max_comp_streams
3) Select compression algorithm
Using comp_algorithm device attribute one can see available and
currently selected (shown in square brackets) compression algorithms,
change selected compression algorithm (once the device is initialised
there is no way to change compression algorithm).
Examples:
#show supported compression algorithms
cat /sys/block/zram0/comp_algorithm
lzo [lz4]
#select lzo compression algorithm
echo lzo > /sys/block/zram0/comp_algorithm
For the time being, the `comp_algorithm' content does not necessarily
show every compression algorithm supported by the kernel. We keep this
list primarily to simplify device configuration and one can configure
a new device with a compression algorithm that is not listed in
`comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API
and, if some of the algorithms were built as modules, it's impossible
to list all of them using, for instance, /proc/crypto or any other
method. This, however, has an advantage of permitting the usage of
custom crypto compression modules (implementing S/W or H/W compression).
4) Set Disksize
Set disk size by writing the value to sysfs node 'disksize'.
The value can be either in bytes or you can use mem suffixes.
Examples:
# Initialize /dev/zram0 with 50MB disksize
echo $((50*1024*1024)) > /sys/block/zram0/disksize
# Using mem suffixes
echo 256K > /sys/block/zram0/disksize
echo 512M > /sys/block/zram0/disksize
echo 1G > /sys/block/zram0/disksize
Note:
There is little point creating a zram of greater than twice the size of memory
since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
size of the disk when not in use so a huge zram is wasteful.
5) Set memory limit: Optional
Set memory limit by writing the value to sysfs node 'mem_limit'.
The value can be either in bytes or you can use mem suffixes.
In addition, you could change the value in runtime.
Examples:
# limit /dev/zram0 with 50MB memory
echo $((50*1024*1024)) > /sys/block/zram0/mem_limit
# Using mem suffixes
echo 256K > /sys/block/zram0/mem_limit
echo 512M > /sys/block/zram0/mem_limit
echo 1G > /sys/block/zram0/mem_limit
# To disable memory limit
echo 0 > /sys/block/zram0/mem_limit
6) Activate:
mkswap /dev/zram0
swapon /dev/zram0
mkfs.ext4 /dev/zram1
mount /dev/zram1 /tmp
7) Add/remove zram devices
zram provides a control interface, which enables dynamic (on-demand) device
addition and removal.
In order to add a new /dev/zramX device, perform read operation on hot_add
attribute. This will return either new device's device id (meaning that you
can use /dev/zram<id>) or error code.
Example:
cat /sys/class/zram-control/hot_add
1
To remove the existing /dev/zramX device (where X is a device id)
execute
echo X > /sys/class/zram-control/hot_remove
8) Stats:
Per-device statistics are exported as various nodes under /sys/block/zram<id>/
A brief description of exported device attributes. For more details please
read Documentation/ABI/testing/sysfs-block-zram.
Name access description
---- ------ -----------
disksize RW show and set the device's disk size
initstate RO shows the initialization state of the device
reset WO trigger device reset
mem_used_max WO reset the `mem_used_max' counter (see later)
mem_limit WO specifies the maximum amount of memory ZRAM can use
to store the compressed data
writeback_limit WO specifies the maximum amount of write IO zram can
write out to backing device as 4KB unit
max_comp_streams RW the number of possible concurrent compress operations
comp_algorithm RW show and change the compression algorithm
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
idle WO mark allocated slot as idle
User space is advised to use the following files to read the device statistics.
File /sys/block/zram<id>/stat
Represents block layer statistics. Read Documentation/block/stat.txt for
details.
File /sys/block/zram<id>/io_stat
The stat file represents device's I/O statistics not accounted by block
layer and, thus, not available in zram<id>/stat file. It consists of a
single line of text and contains the following stats separated by
whitespace:
failed_reads the number of failed reads
failed_writes the number of failed writes
invalid_io the number of non-page-size-aligned I/O requests
notify_free Depending on device usage scenario it may account
a) the number of pages freed because of swap slot free
notifications or b) the number of pages freed because of
REQ_OP_DISCARD requests sent by bio. The former ones are
sent to a swap block device when a swap slot is freed,
which implies that this disk is being used as a swap disk.
The latter ones are sent by filesystem mounted with
discard option, whenever some data blocks are getting
discarded.
File /sys/block/zram<id>/mm_stat
The stat file represents device's mm statistics. It consists of a single
line of text and contains the following stats separated by whitespace:
orig_data_size uncompressed size of data stored in this disk.
This excludes same-element-filled pages (same_pages) since
no memory is allocated for them.
Unit: bytes
compr_data_size compressed size of data stored in this disk
mem_used_total the amount of memory allocated for this disk. This
includes allocator fragmentation and metadata overhead,
allocated for this disk. So, allocator space efficiency
can be calculated using compr_data_size and this statistic.
Unit: bytes
mem_limit the maximum amount of memory ZRAM can use to store
the compressed data
mem_used_max the maximum amount of memory zram have consumed to
store the data
same_pages the number of same element filled pages written to this disk.
No memory is allocated for such pages.
pages_compacted the number of pages freed during compaction
huge_pages the number of incompressible pages
File /sys/block/zram<id>/bd_stat
The stat file represents device's backing device statistics. It consists of
a single line of text and contains the following stats separated by whitespace:
bd_count size of data written in backing device.
Unit: 4K bytes
bd_reads the number of reads from backing device
Unit: 4K bytes
bd_writes the number of writes to backing device
Unit: 4K bytes
9) Deactivate:
swapoff /dev/zram0
umount /dev/zram1
10) Reset:
Write any positive value to 'reset' sysfs node
echo 1 > /sys/block/zram0/reset
echo 1 > /sys/block/zram1/reset
This frees all the memory allocated for the given device and
resets the disksize to zero. You must set the disksize again
before reusing the device.
* Optional Feature
= writeback
With CONFIG_ZRAM_WRITEBACK, zram can write idle/incompressible page
to backing storage rather than keeping it in memory.
To use the feature, admin should set up backing device via
"echo /dev/sda5 > /sys/block/zramX/backing_dev"
before disksize setting. It supports only partition at this moment.
If admin want to use incompressible page writeback, they could do via
"echo huge > /sys/block/zramX/write"
To use idle page writeback, first, user need to declare zram pages
as idle.
"echo all > /sys/block/zramX/idle"
From now on, any pages on zram are idle pages. The idle mark
will be removed until someone request access of the block.
IOW, unless there is access request, those pages are still idle pages.
Admin can request writeback of those idle pages at right timing via
"echo idle > /sys/block/zramX/writeback"
With the command, zram writeback idle pages from memory to the storage.
If there are lots of write IO with flash device, potentially, it has
flash wearout problem so that admin needs to design write limitation
to guarantee storage health for entire product life.
To overcome the concern, zram supports "writeback_limit".
The "writeback_limit"'s default value is 0 so that it doesn't limit
any writeback. If admin want to measure writeback count in a certain
period, he could know it via /sys/block/zram0/bd_stat's 3rd column.
If admin want to limit writeback as per-day 400M, he could do it
like below.
MB_SHIFT=20
4K_SHIFT=12
echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit.
If admin want to allow further write again, he could do it like below
echo 0 > /sys/block/zram0/writeback_limit
If admin want to see remaining writeback budget since he set,
cat /sys/block/zram0/writeback_limit
The writeback_limit count will reset whenever you reset zram(e.g.,
system reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of
writeback happened until you reset the zram to allocate extra writeback
budget in next setting is user's job.
= memory tracking
With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the
zram block. It could be useful to catch cold or incompressible
pages of the process with*pagemap.
If you enable the feature, you could see block state via
/sys/kernel/debug/zram/zram0/block_state". The output is as follows,
300 75.033841 .wh.
301 63.806904 s...
302 63.806919 ..hi
First column is zram's block index.
Second column is access time since the system was booted
Third column is state of the block.
(s: same page
w: written page to backing store
h: huge page
i: idle page)
First line of above example says 300th block is accessed at 75.033841sec
and the block's state is huge so it is written back to the backing
storage. It's a debugging feature so anyone shouldn't rely on it to work
properly.
Nitin Gupta
ngupta@vflare.org
|