summaryrefslogtreecommitdiffstats
path: root/Documentation/media/kapi/v4l2-device.rst
blob: 6d521b313beb6f218036280a761bfc8cc19becb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
V4L2 Device register logic
--------------------------

Each device instance is represented by a struct v4l2_device (v4l2-device.h).
Very simple devices can just allocate this struct, but most of the time you
would embed this struct inside a larger struct.

You must register the device instance:

.. code-block:: none

	v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);

Registration will initialize the v4l2_device struct. If the dev->driver_data
field is NULL, it will be linked to v4l2_dev.

Drivers that want integration with the media device framework need to set
dev->driver_data manually to point to the driver-specific device structure
that embed the struct v4l2_device instance. This is achieved by a
dev_set_drvdata() call before registering the V4L2 device instance. They must
also set the struct v4l2_device mdev field to point to a properly initialized
and registered media_device instance.

If v4l2_dev->name is empty then it will be set to a value derived from dev
(driver name followed by the bus_id, to be precise). If you set it up before
calling v4l2_device_register then it will be untouched. If dev is NULL, then
you **must** setup v4l2_dev->name before calling v4l2_device_register.

You can use v4l2_device_set_name() to set the name based on a driver name and
a driver-global atomic_t instance. This will generate names like ivtv0, ivtv1,
etc. If the name ends with a digit, then it will insert a dash: cx18-0,
cx18-1, etc. This function returns the instance number.

The first 'dev' argument is normally the struct device pointer of a pci_dev,
usb_interface or platform_device. It is rare for dev to be NULL, but it happens
with ISA devices or when one device creates multiple PCI devices, thus making
it impossible to associate v4l2_dev with a particular parent.

You can also supply a notify() callback that can be called by sub-devices to
notify you of events. Whether you need to set this depends on the sub-device.
Any notifications a sub-device supports must be defined in a header in
include/media/<subdevice>.h.

You unregister with:

.. code-block:: none

	v4l2_device_unregister(struct v4l2_device *v4l2_dev);

If the dev->driver_data field points to v4l2_dev, it will be reset to NULL.
Unregistering will also automatically unregister all subdevs from the device.

If you have a hotpluggable device (e.g. a USB device), then when a disconnect
happens the parent device becomes invalid. Since v4l2_device has a pointer to
that parent device it has to be cleared as well to mark that the parent is
gone. To do this call:

.. code-block:: none

	v4l2_device_disconnect(struct v4l2_device *v4l2_dev);

This does *not* unregister the subdevs, so you still need to call the
v4l2_device_unregister() function for that. If your driver is not hotpluggable,
then there is no need to call v4l2_device_disconnect().

Sometimes you need to iterate over all devices registered by a specific
driver. This is usually the case if multiple device drivers use the same
hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
hardware. The same is true for alsa drivers for example.

You can iterate over all registered devices as follows:

.. code-block:: none

	static int callback(struct device *dev, void *p)
	{
		struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);

		/* test if this device was inited */
		if (v4l2_dev == NULL)
			return 0;
		...
		return 0;
	}

	int iterate(void *p)
	{
		struct device_driver *drv;
		int err;

		/* Find driver 'ivtv' on the PCI bus.
		pci_bus_type is a global. For USB busses use usb_bus_type. */
		drv = driver_find("ivtv", &pci_bus_type);
		/* iterate over all ivtv device instances */
		err = driver_for_each_device(drv, NULL, p, callback);
		put_driver(drv);
		return err;
	}

Sometimes you need to keep a running counter of the device instance. This is
commonly used to map a device instance to an index of a module option array.

The recommended approach is as follows:

.. code-block:: none

	static atomic_t drv_instance = ATOMIC_INIT(0);

	static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
	{
		...
		state->instance = atomic_inc_return(&drv_instance) - 1;
	}

If you have multiple device nodes then it can be difficult to know when it is
safe to unregister v4l2_device for hotpluggable devices. For this purpose
v4l2_device has refcounting support. The refcount is increased whenever
video_register_device is called and it is decreased whenever that device node
is released. When the refcount reaches zero, then the v4l2_device release()
callback is called. You can do your final cleanup there.

If other device nodes (e.g. ALSA) are created, then you can increase and
decrease the refcount manually as well by calling:

.. code-block:: none

	void v4l2_device_get(struct v4l2_device *v4l2_dev);

or:

.. code-block:: none

	int v4l2_device_put(struct v4l2_device *v4l2_dev);

Since the initial refcount is 1 you also need to call v4l2_device_put in the
disconnect() callback (for USB devices) or in the remove() callback (for e.g.
PCI devices), otherwise the refcount will never reach 0.

V4L2 device kAPI
^^^^^^^^^^^^^^^^

.. kernel-doc:: include/media/v4l2-device.h