summaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/init.c
blob: 13df239dbed1682c74c5746ebdbaa7320054faec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/*
 * Initialize MMU support.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 */
#include <linux/kernel.h>
#include <linux/init.h>

#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/elf.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/personality.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/proc_fs.h>
#include <linux/bitops.h>
#include <linux/kexec.h>

#include <asm/dma.h>
#include <asm/io.h>
#include <asm/machvec.h>
#include <asm/numa.h>
#include <asm/patch.h>
#include <asm/pgalloc.h>
#include <asm/sal.h>
#include <asm/sections.h>
#include <asm/system.h>
#include <asm/tlb.h>
#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/mca.h>
#include <asm/paravirt.h>

extern void ia64_tlb_init (void);

unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;

#ifdef CONFIG_VIRTUAL_MEM_MAP
unsigned long VMALLOC_END = VMALLOC_END_INIT;
EXPORT_SYMBOL(VMALLOC_END);
struct page *vmem_map;
EXPORT_SYMBOL(vmem_map);
#endif

struct page *zero_page_memmap_ptr;	/* map entry for zero page */
EXPORT_SYMBOL(zero_page_memmap_ptr);

void
__ia64_sync_icache_dcache (pte_t pte)
{
	unsigned long addr;
	struct page *page;

	page = pte_page(pte);
	addr = (unsigned long) page_address(page);

	if (test_bit(PG_arch_1, &page->flags))
		return;				/* i-cache is already coherent with d-cache */

	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
}

/*
 * Since DMA is i-cache coherent, any (complete) pages that were written via
 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 * flush them when they get mapped into an executable vm-area.
 */
void
dma_mark_clean(void *addr, size_t size)
{
	unsigned long pg_addr, end;

	pg_addr = PAGE_ALIGN((unsigned long) addr);
	end = (unsigned long) addr + size;
	while (pg_addr + PAGE_SIZE <= end) {
		struct page *page = virt_to_page(pg_addr);
		set_bit(PG_arch_1, &page->flags);
		pg_addr += PAGE_SIZE;
	}
}

inline void
ia64_set_rbs_bot (void)
{
	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;

	if (stack_size > MAX_USER_STACK_SIZE)
		stack_size = MAX_USER_STACK_SIZE;
	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
}

/*
 * This performs some platform-dependent address space initialization.
 * On IA-64, we want to setup the VM area for the register backing
 * store (which grows upwards) and install the gateway page which is
 * used for signal trampolines, etc.
 */
void
ia64_init_addr_space (void)
{
	struct vm_area_struct *vma;

	ia64_set_rbs_bot();

	/*
	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
	 * the problem.  When the process attempts to write to the register backing store
	 * for the first time, it will get a SEGFAULT in this case.
	 */
	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
	if (vma) {
		INIT_LIST_HEAD(&vma->anon_vma_chain);
		vma->vm_mm = current->mm;
		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
		vma->vm_end = vma->vm_start + PAGE_SIZE;
		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
		down_write(&current->mm->mmap_sem);
		if (insert_vm_struct(current->mm, vma)) {
			up_write(&current->mm->mmap_sem);
			kmem_cache_free(vm_area_cachep, vma);
			return;
		}
		up_write(&current->mm->mmap_sem);
	}

	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
	if (!(current->personality & MMAP_PAGE_ZERO)) {
		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
		if (vma) {
			INIT_LIST_HEAD(&vma->anon_vma_chain);
			vma->vm_mm = current->mm;
			vma->vm_end = PAGE_SIZE;
			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
			down_write(&current->mm->mmap_sem);
			if (insert_vm_struct(current->mm, vma)) {
				up_write(&current->mm->mmap_sem);
				kmem_cache_free(vm_area_cachep, vma);
				return;
			}
			up_write(&current->mm->mmap_sem);
		}
	}
}

void
free_initmem (void)
{
	unsigned long addr, eaddr;

	addr = (unsigned long) ia64_imva(__init_begin);
	eaddr = (unsigned long) ia64_imva(__init_end);
	while (addr < eaddr) {
		ClearPageReserved(virt_to_page(addr));
		init_page_count(virt_to_page(addr));
		free_page(addr);
		++totalram_pages;
		addr += PAGE_SIZE;
	}
	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
	       (__init_end - __init_begin) >> 10);
}

void __init
free_initrd_mem (unsigned long start, unsigned long end)
{
	struct page *page;
	/*
	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
	 * Thus EFI and the kernel may have different page sizes. It is
	 * therefore possible to have the initrd share the same page as
	 * the end of the kernel (given current setup).
	 *
	 * To avoid freeing/using the wrong page (kernel sized) we:
	 *	- align up the beginning of initrd
	 *	- align down the end of initrd
	 *
	 *  |             |
	 *  |=============| a000
	 *  |             |
	 *  |             |
	 *  |             | 9000
	 *  |/////////////|
	 *  |/////////////|
	 *  |=============| 8000
	 *  |///INITRD////|
	 *  |/////////////|
	 *  |/////////////| 7000
	 *  |             |
	 *  |KKKKKKKKKKKKK|
	 *  |=============| 6000
	 *  |KKKKKKKKKKKKK|
	 *  |KKKKKKKKKKKKK|
	 *  K=kernel using 8KB pages
	 *
	 * In this example, we must free page 8000 ONLY. So we must align up
	 * initrd_start and keep initrd_end as is.
	 */
	start = PAGE_ALIGN(start);
	end = end & PAGE_MASK;

	if (start < end)
		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);

	for (; start < end; start += PAGE_SIZE) {
		if (!virt_addr_valid(start))
			continue;
		page = virt_to_page(start);
		ClearPageReserved(page);
		init_page_count(page);
		free_page(start);
		++totalram_pages;
	}
}

/*
 * This installs a clean page in the kernel's page table.
 */
static struct page * __init
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	if (!PageReserved(page))
		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
		       page_address(page));

	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */

	{
		pud = pud_alloc(&init_mm, pgd, address);
		if (!pud)
			goto out;
		pmd = pmd_alloc(&init_mm, pud, address);
		if (!pmd)
			goto out;
		pte = pte_alloc_kernel(pmd, address);
		if (!pte)
			goto out;
		if (!pte_none(*pte))
			goto out;
		set_pte(pte, mk_pte(page, pgprot));
	}
  out:
	/* no need for flush_tlb */
	return page;
}

static void __init
setup_gate (void)
{
	void *gate_section;
	struct page *page;

	/*
	 * Map the gate page twice: once read-only to export the ELF
	 * headers etc. and once execute-only page to enable
	 * privilege-promotion via "epc":
	 */
	gate_section = paravirt_get_gate_section();
	page = virt_to_page(ia64_imva(gate_section));
	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
#ifdef HAVE_BUGGY_SEGREL
	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
#else
	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
	/* Fill in the holes (if any) with read-only zero pages: */
	{
		unsigned long addr;

		for (addr = GATE_ADDR + PAGE_SIZE;
		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
		     addr += PAGE_SIZE)
		{
			put_kernel_page(ZERO_PAGE(0), addr,
					PAGE_READONLY);
			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
					PAGE_READONLY);
		}
	}
#endif
	ia64_patch_gate();
}

void __devinit
ia64_mmu_init (void *my_cpu_data)
{
	unsigned long pta, impl_va_bits;
	extern void __devinit tlb_init (void);

#ifdef CONFIG_DISABLE_VHPT
#	define VHPT_ENABLE_BIT	0
#else
#	define VHPT_ENABLE_BIT	1
#endif

	/*
	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
	 * virtual address space are implemented but if we pick a large enough page size
	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
	 * problem in practice.  Alternatively, we could truncate the top of the mapped
	 * address space to not permit mappings that would overlap with the VMLPT.
	 * --davidm 00/12/06
	 */
#	define pte_bits			3
#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
	/*
	 * The virtual page table has to cover the entire implemented address space within
	 * a region even though not all of this space may be mappable.  The reason for
	 * this is that the Access bit and Dirty bit fault handlers perform
	 * non-speculative accesses to the virtual page table, so the address range of the
	 * virtual page table itself needs to be covered by virtual page table.
	 */
#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
#	define POW2(n)			(1ULL << (n))

	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));

	if (impl_va_bits < 51 || impl_va_bits > 61)
		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
	/*
	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
	 * the test makes sure that our mapped space doesn't overlap the
	 * unimplemented hole in the middle of the region.
	 */
	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
	    (mapped_space_bits > impl_va_bits - 1))
		panic("Cannot build a big enough virtual-linear page table"
		      " to cover mapped address space.\n"
		      " Try using a smaller page size.\n");


	/* place the VMLPT at the end of each page-table mapped region: */
	pta = POW2(61) - POW2(vmlpt_bits);

	/*
	 * Set the (virtually mapped linear) page table address.  Bit
	 * 8 selects between the short and long format, bits 2-7 the
	 * size of the table, and bit 0 whether the VHPT walker is
	 * enabled.
	 */
	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);

	ia64_tlb_init();

#ifdef	CONFIG_HUGETLB_PAGE
	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
	ia64_srlz_d();
#endif
}

#ifdef CONFIG_VIRTUAL_MEM_MAP
int vmemmap_find_next_valid_pfn(int node, int i)
{
	unsigned long end_address, hole_next_pfn;
	unsigned long stop_address;
	pg_data_t *pgdat = NODE_DATA(node);

	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
	end_address = PAGE_ALIGN(end_address);

	stop_address = (unsigned long) &vmem_map[
		pgdat->node_start_pfn + pgdat->node_spanned_pages];

	do {
		pgd_t *pgd;
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

		pgd = pgd_offset_k(end_address);
		if (pgd_none(*pgd)) {
			end_address += PGDIR_SIZE;
			continue;
		}

		pud = pud_offset(pgd, end_address);
		if (pud_none(*pud)) {
			end_address += PUD_SIZE;
			continue;
		}

		pmd = pmd_offset(pud, end_address);
		if (pmd_none(*pmd)) {
			end_address += PMD_SIZE;
			continue;
		}

		pte = pte_offset_kernel(pmd, end_address);
retry_pte:
		if (pte_none(*pte)) {
			end_address += PAGE_SIZE;
			pte++;
			if ((end_address < stop_address) &&
			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
				goto retry_pte;
			continue;
		}
		/* Found next valid vmem_map page */
		break;
	} while (end_address < stop_address);

	end_address = min(end_address, stop_address);
	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
	hole_next_pfn = end_address / sizeof(struct page);
	return hole_next_pfn - pgdat->node_start_pfn;
}

int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
{
	unsigned long address, start_page, end_page;
	struct page *map_start, *map_end;
	int node;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);

	start_page = (unsigned long) map_start & PAGE_MASK;
	end_page = PAGE_ALIGN((unsigned long) map_end);
	node = paddr_to_nid(__pa(start));

	for (address = start_page; address < end_page; address += PAGE_SIZE) {
		pgd = pgd_offset_k(address);
		if (pgd_none(*pgd))
			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
		pud = pud_offset(pgd, address);

		if (pud_none(*pud))
			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
		pmd = pmd_offset(pud, address);

		if (pmd_none(*pmd))
			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
		pte = pte_offset_kernel(pmd, address);

		if (pte_none(*pte))
			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
					     PAGE_KERNEL));
	}
	return 0;
}

struct memmap_init_callback_data {
	struct page *start;
	struct page *end;
	int nid;
	unsigned long zone;
};

static int __meminit
virtual_memmap_init(u64 start, u64 end, void *arg)
{
	struct memmap_init_callback_data *args;
	struct page *map_start, *map_end;

	args = (struct memmap_init_callback_data *) arg;
	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);

	if (map_start < args->start)
		map_start = args->start;
	if (map_end > args->end)
		map_end = args->end;

	/*
	 * We have to initialize "out of bounds" struct page elements that fit completely
	 * on the same pages that were allocated for the "in bounds" elements because they
	 * may be referenced later (and found to be "reserved").
	 */
	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
		    / sizeof(struct page));

	if (map_start < map_end)
		memmap_init_zone((unsigned long)(map_end - map_start),
				 args->nid, args->zone, page_to_pfn(map_start),
				 MEMMAP_EARLY);
	return 0;
}

void __meminit
memmap_init (unsigned long size, int nid, unsigned long zone,
	     unsigned long start_pfn)
{
	if (!vmem_map)
		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
	else {
		struct page *start;
		struct memmap_init_callback_data args;

		start = pfn_to_page(start_pfn);
		args.start = start;
		args.end = start + size;
		args.nid = nid;
		args.zone = zone;

		efi_memmap_walk(virtual_memmap_init, &args);
	}
}

int
ia64_pfn_valid (unsigned long pfn)
{
	char byte;
	struct page *pg = pfn_to_page(pfn);

	return     (__get_user(byte, (char __user *) pg) == 0)
		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
}
EXPORT_SYMBOL(ia64_pfn_valid);

int __init find_largest_hole(u64 start, u64 end, void *arg)
{
	u64 *max_gap = arg;

	static u64 last_end = PAGE_OFFSET;

	/* NOTE: this algorithm assumes efi memmap table is ordered */

	if (*max_gap < (start - last_end))
		*max_gap = start - last_end;
	last_end = end;
	return 0;
}

#endif /* CONFIG_VIRTUAL_MEM_MAP */

int __init register_active_ranges(u64 start, u64 len, int nid)
{
	u64 end = start + len;

#ifdef CONFIG_KEXEC
	if (start > crashk_res.start && start < crashk_res.end)
		start = crashk_res.end;
	if (end > crashk_res.start && end < crashk_res.end)
		end = crashk_res.start;
#endif

	if (start < end)
		memblock_add_node(__pa(start), end - start, nid);
	return 0;
}

static int __init
count_reserved_pages(u64 start, u64 end, void *arg)
{
	unsigned long num_reserved = 0;
	unsigned long *count = arg;

	for (; start < end; start += PAGE_SIZE)
		if (PageReserved(virt_to_page(start)))
			++num_reserved;
	*count += num_reserved;
	return 0;
}

int
find_max_min_low_pfn (u64 start, u64 end, void *arg)
{
	unsigned long pfn_start, pfn_end;
#ifdef CONFIG_FLATMEM
	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
#else
	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
#endif
	min_low_pfn = min(min_low_pfn, pfn_start);
	max_low_pfn = max(max_low_pfn, pfn_end);
	return 0;
}

/*
 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 * useful for performance testing, but conceivably could also come in handy for debugging
 * purposes.
 */

static int nolwsys __initdata;

static int __init
nolwsys_setup (char *s)
{
	nolwsys = 1;
	return 1;
}

__setup("nolwsys", nolwsys_setup);

void __init
mem_init (void)
{
	long reserved_pages, codesize, datasize, initsize;
	pg_data_t *pgdat;
	int i;

	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);

#ifdef CONFIG_PCI
	/*
	 * This needs to be called _after_ the command line has been parsed but _before_
	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
	 * been freed.
	 */
	platform_dma_init();
#endif

#ifdef CONFIG_FLATMEM
	BUG_ON(!mem_map);
	max_mapnr = max_low_pfn;
#endif

	high_memory = __va(max_low_pfn * PAGE_SIZE);

	for_each_online_pgdat(pgdat)
		if (pgdat->bdata->node_bootmem_map)
			totalram_pages += free_all_bootmem_node(pgdat);

	reserved_pages = 0;
	efi_memmap_walk(count_reserved_pages, &reserved_pages);

	codesize =  (unsigned long) _etext - (unsigned long) _stext;
	datasize =  (unsigned long) _edata - (unsigned long) _etext;
	initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;

	printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
	       "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
	       num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
	       reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);


	/*
	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
	 * code can tell them apart.
	 */
	for (i = 0; i < NR_syscalls; ++i) {
		extern unsigned long sys_call_table[NR_syscalls];
		unsigned long *fsyscall_table = paravirt_get_fsyscall_table();

		if (!fsyscall_table[i] || nolwsys)
			fsyscall_table[i] = sys_call_table[i] | 1;
	}
	setup_gate();
}

#ifdef CONFIG_MEMORY_HOTPLUG
int arch_add_memory(int nid, u64 start, u64 size)
{
	pg_data_t *pgdat;
	struct zone *zone;
	unsigned long start_pfn = start >> PAGE_SHIFT;
	unsigned long nr_pages = size >> PAGE_SHIFT;
	int ret;

	pgdat = NODE_DATA(nid);

	zone = pgdat->node_zones + ZONE_NORMAL;
	ret = __add_pages(nid, zone, start_pfn, nr_pages);

	if (ret)
		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
		       __func__,  ret);

	return ret;
}
#endif

/*
 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 * useful to have the Linux/x86 domain registered to
 * avoid an attempted module load when emulators call
 * personality(PER_LINUX32). This saves several milliseconds
 * on each such call.
 */
static struct exec_domain ia32_exec_domain;

static int __init
per_linux32_init(void)
{
	ia32_exec_domain.name = "Linux/x86";
	ia32_exec_domain.handler = NULL;
	ia32_exec_domain.pers_low = PER_LINUX32;
	ia32_exec_domain.pers_high = PER_LINUX32;
	ia32_exec_domain.signal_map = default_exec_domain.signal_map;
	ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
	register_exec_domain(&ia32_exec_domain);

	return 0;
}

__initcall(per_linux32_init);