1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
* Copyright (C) 2015 Imagination Technologies
* Author: Alex Smith <alex.smith@imgtec.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include "vdso.h"
#include <linux/compiler.h>
#include <linux/irqchip/mips-gic.h>
#include <linux/time.h>
#include <asm/clocksource.h>
#include <asm/io.h>
#include <asm/mips-cm.h>
#include <asm/unistd.h>
#include <asm/vdso.h>
static __always_inline long clock_gettime_fallback(clockid_t _clkid,
struct timespec *_ts)
{
register struct timespec *ts asm("a1") = _ts;
register clockid_t clkid asm("a0") = _clkid;
register long ret asm("v0");
register long nr asm("v0") = __NR_clock_gettime;
register long error asm("a3");
asm volatile(
" syscall\n"
: "=r" (ret), "=r" (error)
: "r" (clkid), "r" (ts), "r" (nr)
: "memory");
return error ? -ret : ret;
}
static __always_inline int do_realtime_coarse(struct timespec *ts,
const union mips_vdso_data *data)
{
u32 start_seq;
do {
start_seq = vdso_data_read_begin(data);
ts->tv_sec = data->xtime_sec;
ts->tv_nsec = data->xtime_nsec >> data->cs_shift;
} while (vdso_data_read_retry(data, start_seq));
return 0;
}
static __always_inline int do_monotonic_coarse(struct timespec *ts,
const union mips_vdso_data *data)
{
u32 start_seq;
u64 to_mono_sec;
u64 to_mono_nsec;
do {
start_seq = vdso_data_read_begin(data);
ts->tv_sec = data->xtime_sec;
ts->tv_nsec = data->xtime_nsec >> data->cs_shift;
to_mono_sec = data->wall_to_mono_sec;
to_mono_nsec = data->wall_to_mono_nsec;
} while (vdso_data_read_retry(data, start_seq));
ts->tv_sec += to_mono_sec;
timespec_add_ns(ts, to_mono_nsec);
return 0;
}
#ifdef CONFIG_CSRC_R4K
static __always_inline u64 read_r4k_count(void)
{
unsigned int count;
__asm__ __volatile__(
" .set push\n"
" .set mips32r2\n"
" rdhwr %0, $2\n"
" .set pop\n"
: "=r" (count));
return count;
}
#endif
#ifdef CONFIG_CLKSRC_MIPS_GIC
static __always_inline u64 read_gic_count(const union mips_vdso_data *data)
{
void __iomem *gic = get_gic(data);
u32 hi, hi2, lo;
do {
hi = __raw_readl(gic + GIC_UMV_SH_COUNTER_63_32_OFS);
lo = __raw_readl(gic + GIC_UMV_SH_COUNTER_31_00_OFS);
hi2 = __raw_readl(gic + GIC_UMV_SH_COUNTER_63_32_OFS);
} while (hi2 != hi);
return (((u64)hi) << 32) + lo;
}
#endif
static __always_inline u64 get_ns(const union mips_vdso_data *data)
{
u64 cycle_now, delta, nsec;
switch (data->clock_mode) {
#ifdef CONFIG_CSRC_R4K
case VDSO_CLOCK_R4K:
cycle_now = read_r4k_count();
break;
#endif
#ifdef CONFIG_CLKSRC_MIPS_GIC
case VDSO_CLOCK_GIC:
cycle_now = read_gic_count(data);
break;
#endif
default:
return 0;
}
delta = (cycle_now - data->cs_cycle_last) & data->cs_mask;
nsec = (delta * data->cs_mult) + data->xtime_nsec;
nsec >>= data->cs_shift;
return nsec;
}
static __always_inline int do_realtime(struct timespec *ts,
const union mips_vdso_data *data)
{
u32 start_seq;
u64 ns;
do {
start_seq = vdso_data_read_begin(data);
if (data->clock_mode == VDSO_CLOCK_NONE)
return -ENOSYS;
ts->tv_sec = data->xtime_sec;
ns = get_ns(data);
} while (vdso_data_read_retry(data, start_seq));
ts->tv_nsec = 0;
timespec_add_ns(ts, ns);
return 0;
}
static __always_inline int do_monotonic(struct timespec *ts,
const union mips_vdso_data *data)
{
u32 start_seq;
u64 ns;
u64 to_mono_sec;
u64 to_mono_nsec;
do {
start_seq = vdso_data_read_begin(data);
if (data->clock_mode == VDSO_CLOCK_NONE)
return -ENOSYS;
ts->tv_sec = data->xtime_sec;
ns = get_ns(data);
to_mono_sec = data->wall_to_mono_sec;
to_mono_nsec = data->wall_to_mono_nsec;
} while (vdso_data_read_retry(data, start_seq));
ts->tv_sec += to_mono_sec;
ts->tv_nsec = 0;
timespec_add_ns(ts, ns + to_mono_nsec);
return 0;
}
#ifdef CONFIG_MIPS_CLOCK_VSYSCALL
/*
* This is behind the ifdef so that we don't provide the symbol when there's no
* possibility of there being a usable clocksource, because there's nothing we
* can do without it. When libc fails the symbol lookup it should fall back on
* the standard syscall path.
*/
int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz)
{
const union mips_vdso_data *data = get_vdso_data();
struct timespec ts;
int ret;
ret = do_realtime(&ts, data);
if (ret)
return ret;
if (tv) {
tv->tv_sec = ts.tv_sec;
tv->tv_usec = ts.tv_nsec / 1000;
}
if (tz) {
tz->tz_minuteswest = data->tz_minuteswest;
tz->tz_dsttime = data->tz_dsttime;
}
return 0;
}
#endif /* CONFIG_CLKSRC_MIPS_GIC */
int __vdso_clock_gettime(clockid_t clkid, struct timespec *ts)
{
const union mips_vdso_data *data = get_vdso_data();
int ret = -1;
switch (clkid) {
case CLOCK_REALTIME_COARSE:
ret = do_realtime_coarse(ts, data);
break;
case CLOCK_MONOTONIC_COARSE:
ret = do_monotonic_coarse(ts, data);
break;
case CLOCK_REALTIME:
ret = do_realtime(ts, data);
break;
case CLOCK_MONOTONIC:
ret = do_monotonic(ts, data);
break;
default:
break;
}
if (ret)
ret = clock_gettime_fallback(clkid, ts);
return ret;
}
|