1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
/*
* PowerPC64 memory management structures
*
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
* PPC64 rework.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/page.h>
#include <asm/bug.h>
#include <asm/asm-const.h>
/*
* This is necessary to get the definition of PGTABLE_RANGE which we
* need for various slices related matters. Note that this isn't the
* complete pgtable.h but only a portion of it.
*/
#include <asm/book3s/64/pgtable.h>
#include <asm/bug.h>
#include <asm/processor.h>
#include <asm/cpu_has_feature.h>
/*
* SLB
*/
#define SLB_NUM_BOLTED 3
#define SLB_CACHE_ENTRIES 8
#define SLB_MIN_SIZE 32
/* Bits in the SLB ESID word */
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT 12
#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
#define SLB_VSID_SHIFT_1T 24
#define SLB_VSID_SSIZE_SHIFT 62
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
#define SLB_VSID_KERNEL (SLB_VSID_KP)
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
#define SLBIE_C (0x08000000)
#define SLBIE_SSIZE_SHIFT 25
/*
* Hash table
*/
#define HPTES_PER_GROUP 8
#define HPTE_V_SSIZE_SHIFT 62
#define HPTE_V_AVPN_SHIFT 7
#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
/*
* ISA 3.0 has a different HPTE format.
*/
#define HPTE_R_3_0_SSIZE_SHIFT 58
#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
#define HPTE_R_KEY_BIT0 ASM_CONST(0x2000000000000000)
#define HPTE_R_KEY_BIT1 ASM_CONST(0x1000000000000000)
#define HPTE_R_RPN_SHIFT 12
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
#define HPTE_R_N ASM_CONST(0x0000000000000004)
#define HPTE_R_G ASM_CONST(0x0000000000000008)
#define HPTE_R_M ASM_CONST(0x0000000000000010)
#define HPTE_R_I ASM_CONST(0x0000000000000020)
#define HPTE_R_W ASM_CONST(0x0000000000000040)
#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
#define HPTE_R_C ASM_CONST(0x0000000000000080)
#define HPTE_R_R ASM_CONST(0x0000000000000100)
#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
#define HPTE_R_KEY_BIT3 ASM_CONST(0x0000000000000400)
#define HPTE_R_KEY_BIT4 ASM_CONST(0x0000000000000200)
#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
/* Values for PP (assumes Ks=0, Kp=1) */
#define PP_RWXX 0 /* Supervisor read/write, User none */
#define PP_RWRX 1 /* Supervisor read/write, User read */
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
#define PP_RXRX 3 /* Supervisor read, User read */
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
/* Fields for tlbiel instruction in architecture 2.06 */
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
#define TLBIEL_INVAL_SET_SHIFT 12
#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
#ifndef __ASSEMBLY__
struct mmu_hash_ops {
void (*hpte_invalidate)(unsigned long slot,
unsigned long vpn,
int bpsize, int apsize,
int ssize, int local);
long (*hpte_updatepp)(unsigned long slot,
unsigned long newpp,
unsigned long vpn,
int bpsize, int apsize,
int ssize, unsigned long flags);
void (*hpte_updateboltedpp)(unsigned long newpp,
unsigned long ea,
int psize, int ssize);
long (*hpte_insert)(unsigned long hpte_group,
unsigned long vpn,
unsigned long prpn,
unsigned long rflags,
unsigned long vflags,
int psize, int apsize,
int ssize);
long (*hpte_remove)(unsigned long hpte_group);
int (*hpte_removebolted)(unsigned long ea,
int psize, int ssize);
void (*flush_hash_range)(unsigned long number, int local);
void (*hugepage_invalidate)(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local);
int (*resize_hpt)(unsigned long shift);
/*
* Special for kexec.
* To be called in real mode with interrupts disabled. No locks are
* taken as such, concurrent access on pre POWER5 hardware could result
* in a deadlock.
* The linear mapping is destroyed as well.
*/
void (*hpte_clear_all)(void);
};
extern struct mmu_hash_ops mmu_hash_ops;
struct hash_pte {
__be64 v;
__be64 r;
};
extern struct hash_pte *htab_address;
extern unsigned long htab_size_bytes;
extern unsigned long htab_hash_mask;
static inline int shift_to_mmu_psize(unsigned int shift)
{
int psize;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
if (mmu_psize_defs[psize].shift == shift)
return psize;
return -1;
}
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
if (mmu_psize_defs[mmu_psize].shift)
return mmu_psize_defs[mmu_psize].shift;
BUG();
}
static inline unsigned int ap_to_shift(unsigned long ap)
{
int psize;
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
if (mmu_psize_defs[psize].ap == ap)
return mmu_psize_defs[psize].shift;
}
return -1;
}
static inline unsigned long get_sllp_encoding(int psize)
{
unsigned long sllp;
sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
return sllp;
}
#endif /* __ASSEMBLY__ */
/*
* Segment sizes.
* These are the values used by hardware in the B field of
* SLB entries and the first dword of MMU hashtable entries.
* The B field is 2 bits; the values 2 and 3 are unused and reserved.
*/
#define MMU_SEGSIZE_256M 0
#define MMU_SEGSIZE_1T 1
/*
* encode page number shift.
* in order to fit the 78 bit va in a 64 bit variable we shift the va by
* 12 bits. This enable us to address upto 76 bit va.
* For hpt hash from a va we can ignore the page size bits of va and for
* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
* we work in all cases including 4k page size.
*/
#define VPN_SHIFT 12
/*
* HPTE Large Page (LP) details
*/
#define LP_SHIFT 12
#define LP_BITS 8
#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
#ifndef __ASSEMBLY__
static inline int slb_vsid_shift(int ssize)
{
if (ssize == MMU_SEGSIZE_256M)
return SLB_VSID_SHIFT;
return SLB_VSID_SHIFT_1T;
}
static inline int segment_shift(int ssize)
{
if (ssize == MMU_SEGSIZE_256M)
return SID_SHIFT;
return SID_SHIFT_1T;
}
/*
* This array is indexed by the LP field of the HPTE second dword.
* Since this field may contain some RPN bits, some entries are
* replicated so that we get the same value irrespective of RPN.
* The top 4 bits are the page size index (MMU_PAGE_*) for the
* actual page size, the bottom 4 bits are the base page size.
*/
extern u8 hpte_page_sizes[1 << LP_BITS];
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
bool is_base_size)
{
unsigned int i, lp;
if (!(h & HPTE_V_LARGE))
return 1ul << 12;
/* Look at the 8 bit LP value */
lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
i = hpte_page_sizes[lp];
if (!i)
return 0;
if (!is_base_size)
i >>= 4;
return 1ul << mmu_psize_defs[i & 0xf].shift;
}
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 0);
}
static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 1);
}
/*
* The current system page and segment sizes
*/
extern int mmu_kernel_ssize;
extern int mmu_highuser_ssize;
extern u16 mmu_slb_size;
extern unsigned long tce_alloc_start, tce_alloc_end;
/*
* If the processor supports 64k normal pages but not 64k cache
* inhibited pages, we have to be prepared to switch processes
* to use 4k pages when they create cache-inhibited mappings.
* If this is the case, mmu_ci_restrictions will be set to 1.
*/
extern int mmu_ci_restrictions;
/*
* This computes the AVPN and B fields of the first dword of a HPTE,
* for use when we want to match an existing PTE. The bottom 7 bits
* of the returned value are zero.
*/
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
int ssize)
{
unsigned long v;
/*
* The AVA field omits the low-order 23 bits of the 78 bits VA.
* These bits are not needed in the PTE, because the
* low-order b of these bits are part of the byte offset
* into the virtual page and, if b < 23, the high-order
* 23-b of these bits are always used in selecting the
* PTEGs to be searched
*/
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
v <<= HPTE_V_AVPN_SHIFT;
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
return v;
}
/*
* ISA v3.0 defines a new HPTE format, which differs from the old
* format in having smaller AVPN and ARPN fields, and the B field
* in the second dword instead of the first.
*/
static inline unsigned long hpte_old_to_new_v(unsigned long v)
{
/* trim AVPN, drop B */
return v & HPTE_V_COMMON_BITS;
}
static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
{
/* move B field from 1st to 2nd dword, trim ARPN */
return (r & ~HPTE_R_3_0_SSIZE_MASK) |
(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
}
static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
{
/* insert B field */
return (v & HPTE_V_COMMON_BITS) |
((r & HPTE_R_3_0_SSIZE_MASK) <<
(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
}
static inline unsigned long hpte_new_to_old_r(unsigned long r)
{
/* clear out B field */
return r & ~HPTE_R_3_0_SSIZE_MASK;
}
static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
{
unsigned long hpte_v;
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
return hpte_v;
}
/*
* This function sets the AVPN and L fields of the HPTE appropriately
* using the base page size and actual page size.
*/
static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
int actual_psize, int ssize)
{
unsigned long v;
v = hpte_encode_avpn(vpn, base_psize, ssize);
if (actual_psize != MMU_PAGE_4K)
v |= HPTE_V_LARGE;
return v;
}
/*
* This function sets the ARPN, and LP fields of the HPTE appropriately
* for the page size. We assume the pa is already "clean" that is properly
* aligned for the requested page size
*/
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
int actual_psize)
{
/* A 4K page needs no special encoding */
if (actual_psize == MMU_PAGE_4K)
return pa & HPTE_R_RPN;
else {
unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
unsigned int shift = mmu_psize_defs[actual_psize].shift;
return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
}
}
/*
* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
*/
static inline unsigned long hpt_vpn(unsigned long ea,
unsigned long vsid, int ssize)
{
unsigned long mask;
int s_shift = segment_shift(ssize);
mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
}
/*
* This hashes a virtual address
*/
static inline unsigned long hpt_hash(unsigned long vpn,
unsigned int shift, int ssize)
{
unsigned long mask;
unsigned long hash, vsid;
/* VPN_SHIFT can be atmost 12 */
if (ssize == MMU_SEGSIZE_256M) {
mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
((vpn & mask) >> (shift - VPN_SHIFT));
} else {
mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
hash = vsid ^ (vsid << 25) ^
((vpn & mask) >> (shift - VPN_SHIFT)) ;
}
return hash & 0x7fffffffffUL;
}
#define HPTE_LOCAL_UPDATE 0x1
#define HPTE_NOHPTE_UPDATE 0x2
extern int __hash_page_4K(unsigned long ea, unsigned long access,
unsigned long vsid, pte_t *ptep, unsigned long trap,
unsigned long flags, int ssize, int subpage_prot);
extern int __hash_page_64K(unsigned long ea, unsigned long access,
unsigned long vsid, pte_t *ptep, unsigned long trap,
unsigned long flags, int ssize);
struct mm_struct;
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
unsigned long access, unsigned long trap,
unsigned long flags);
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
unsigned long dsisr);
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
pte_t *ptep, unsigned long trap, unsigned long flags,
int ssize, unsigned int shift, unsigned int mmu_psize);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int __hash_page_thp(unsigned long ea, unsigned long access,
unsigned long vsid, pmd_t *pmdp, unsigned long trap,
unsigned long flags, int ssize, unsigned int psize);
#else
static inline int __hash_page_thp(unsigned long ea, unsigned long access,
unsigned long vsid, pmd_t *pmdp,
unsigned long trap, unsigned long flags,
int ssize, unsigned int psize)
{
BUG();
return -1;
}
#endif
extern void hash_failure_debug(unsigned long ea, unsigned long access,
unsigned long vsid, unsigned long trap,
int ssize, int psize, int lpsize,
unsigned long pte);
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
unsigned long pstart, unsigned long prot,
int psize, int ssize);
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
int psize, int ssize);
extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
#ifdef CONFIG_PPC_PSERIES
void hpte_init_pseries(void);
#else
static inline void hpte_init_pseries(void) { }
#endif
extern void hpte_init_native(void);
extern void slb_initialize(void);
extern void slb_flush_and_rebolt(void);
void slb_flush_all_realmode(void);
void __slb_restore_bolted_realmode(void);
void slb_restore_bolted_realmode(void);
extern void slb_vmalloc_update(void);
extern void slb_set_size(u16 size);
#endif /* __ASSEMBLY__ */
/*
* VSID allocation (256MB segment)
*
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
* from mmu context id and effective segment id of the address.
*
* For user processes max context id is limited to MAX_USER_CONTEXT.
* For kernel space, we use context ids 1-4 to map addresses as below:
* NOTE: each context only support 64TB now.
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
*
* The proto-VSIDs are then scrambled into real VSIDs with the
* multiplicative hash:
*
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
*
* VSID_MULTIPLIER is prime, so in particular it is
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
* Because the modulus is 2^n-1 we can compute it efficiently without
* a divide or extra multiply (see below). The scramble function gives
* robust scattering in the hash table (at least based on some initial
* results).
*
* We use VSID 0 to indicate an invalid VSID. The means we can't use context id
* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
* will produce a VSID of 0.
*
* We also need to avoid the last segment of the last context, because that
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
* because of the modulo operation in vsid scramble.
*/
/*
* Max Va bits we support as of now is 68 bits. We want 19 bit
* context ID.
* Restrictions:
* GPU has restrictions of not able to access beyond 128TB
* (47 bit effective address). We also cannot do more than 20bit PID.
* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
* to 16 bits (ie, we can only have 2^16 pids at the same time).
*/
#define VA_BITS 68
#define CONTEXT_BITS 19
#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
/*
* 256MB segment
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
* context maps 2^49 bytes (512TB).
*
* We also need to avoid the last segment of the last context, because that
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
* because of the modulo operation in vsid scramble.
*/
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
#define MIN_USER_CONTEXT (5)
/* Would be nice to use KERNEL_REGION_ID here */
#define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
/*
* For platforms that support on 65bit VA we limit the context bits
*/
#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
/*
* This should be computed such that protovosid * vsid_mulitplier
* doesn't overflow 64 bits. The vsid_mutliplier should also be
* co-prime to vsid_modulus. We also need to make sure that number
* of bits in multiplied result (dividend) is less than twice the number of
* protovsid bits for our modulus optmization to work.
*
* The below table shows the current values used.
* |-------+------------+----------------------+------------+-------------------|
* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
* |-------+------------+----------------------+------------+-------------------|
* | 1T | 24 | 25 | 49 | 50 |
* |-------+------------+----------------------+------------+-------------------|
* | 256MB | 24 | 37 | 61 | 74 |
* |-------+------------+----------------------+------------+-------------------|
*
* |-------+------------+----------------------+------------+--------------------|
* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
* |-------+------------+----------------------+------------+--------------------|
* | 1T | 24 | 28 | 52 | 56 |
* |-------+------------+----------------------+------------+--------------------|
* | 256MB | 24 | 40 | 64 | 80 |
* |-------+------------+----------------------+------------+--------------------|
*
*/
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
#define VSID_BITS_65_256M (65 - SID_SHIFT)
/*
* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
*/
#define VSID_MULINV_256M ASM_CONST(665548017062)
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
#define VSID_MULINV_1T ASM_CONST(209034062)
/* 1TB VSID reserved for VRMA */
#define VRMA_VSID 0x1ffffffUL
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
/* 4 bits per slice and we have one slice per 1TB */
#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
#define TASK_SLICE_ARRAY_SZ(x) ((x)->context.slb_addr_limit >> 41)
#ifndef __ASSEMBLY__
#ifdef CONFIG_PPC_SUBPAGE_PROT
/*
* For the sub-page protection option, we extend the PGD with one of
* these. Basically we have a 3-level tree, with the top level being
* the protptrs array. To optimize speed and memory consumption when
* only addresses < 4GB are being protected, pointers to the first
* four pages of sub-page protection words are stored in the low_prot
* array.
* Each page of sub-page protection words protects 1GB (4 bytes
* protects 64k). For the 3-level tree, each page of pointers then
* protects 8TB.
*/
struct subpage_prot_table {
unsigned long maxaddr; /* only addresses < this are protected */
unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
unsigned int *low_prot[4];
};
#define SBP_L1_BITS (PAGE_SHIFT - 2)
#define SBP_L2_BITS (PAGE_SHIFT - 3)
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
extern void subpage_prot_free(struct mm_struct *mm);
extern void subpage_prot_init_new_context(struct mm_struct *mm);
#else
static inline void subpage_prot_free(struct mm_struct *mm) {}
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
#endif /* CONFIG_PPC_SUBPAGE_PROT */
#if 0
/*
* The code below is equivalent to this function for arguments
* < 2^VSID_BITS, which is all this should ever be called
* with. However gcc is not clever enough to compute the
* modulus (2^n-1) without a second multiply.
*/
#define vsid_scramble(protovsid, size) \
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
/* simplified form avoiding mod operation */
#define vsid_scramble(protovsid, size) \
({ \
unsigned long x; \
x = (protovsid) * VSID_MULTIPLIER_##size; \
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
})
#else /* 1 */
static inline unsigned long vsid_scramble(unsigned long protovsid,
unsigned long vsid_multiplier, int vsid_bits)
{
unsigned long vsid;
unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
/*
* We have same multipler for both 256 and 1T segements now
*/
vsid = protovsid * vsid_multiplier;
vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
}
#endif /* 1 */
/* Returns the segment size indicator for a user address */
static inline int user_segment_size(unsigned long addr)
{
/* Use 1T segments if possible for addresses >= 1T */
if (addr >= (1UL << SID_SHIFT_1T))
return mmu_highuser_ssize;
return MMU_SEGSIZE_256M;
}
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
int ssize)
{
unsigned long va_bits = VA_BITS;
unsigned long vsid_bits;
unsigned long protovsid;
/*
* Bad address. We return VSID 0 for that
*/
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
return 0;
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
va_bits = 65;
if (ssize == MMU_SEGSIZE_256M) {
vsid_bits = va_bits - SID_SHIFT;
protovsid = (context << ESID_BITS) |
((ea >> SID_SHIFT) & ESID_BITS_MASK);
return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
}
/* 1T segment */
vsid_bits = va_bits - SID_SHIFT_1T;
protovsid = (context << ESID_BITS_1T) |
((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
}
/*
* This is only valid for addresses >= PAGE_OFFSET
*/
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
{
unsigned long context;
if (!is_kernel_addr(ea))
return 0;
/*
* For kernel space, we use context ids 1-4 to map the address space as
* below:
*
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
*
* So we can compute the context from the region (top nibble) by
* subtracting 11, or 0xc - 1.
*/
context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
return get_vsid(context, ea, ssize);
}
unsigned htab_shift_for_mem_size(unsigned long mem_size);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
|