summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm/e500_mmu.c
blob: 29911a07bcdb071d1f94db55ca8e7ce4e2b9e5d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
/*
 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
 *
 * Author: Yu Liu, yu.liu@freescale.com
 *         Scott Wood, scottwood@freescale.com
 *         Ashish Kalra, ashish.kalra@freescale.com
 *         Varun Sethi, varun.sethi@freescale.com
 *         Alexander Graf, agraf@suse.de
 *
 * Description:
 * This file is based on arch/powerpc/kvm/44x_tlb.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>

#include "e500.h"
#include "trace_booke.h"
#include "timing.h"
#include "e500_mmu_host.h"

static inline unsigned int gtlb0_get_next_victim(
		struct kvmppc_vcpu_e500 *vcpu_e500)
{
	unsigned int victim;

	victim = vcpu_e500->gtlb_nv[0]++;
	if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
		vcpu_e500->gtlb_nv[0] = 0;

	return victim;
}

static int tlb0_set_base(gva_t addr, int sets, int ways)
{
	int set_base;

	set_base = (addr >> PAGE_SHIFT) & (sets - 1);
	set_base *= ways;

	return set_base;
}

static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
{
	return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
			     vcpu_e500->gtlb_params[0].ways);
}

static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int esel = get_tlb_esel_bit(vcpu);

	if (tlbsel == 0) {
		esel &= vcpu_e500->gtlb_params[0].ways - 1;
		esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
	} else {
		esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
	}

	return esel;
}

/* Search the guest TLB for a matching entry. */
static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
		gva_t eaddr, int tlbsel, unsigned int pid, int as)
{
	int size = vcpu_e500->gtlb_params[tlbsel].entries;
	unsigned int set_base, offset;
	int i;

	if (tlbsel == 0) {
		set_base = gtlb0_set_base(vcpu_e500, eaddr);
		size = vcpu_e500->gtlb_params[0].ways;
	} else {
		if (eaddr < vcpu_e500->tlb1_min_eaddr ||
				eaddr > vcpu_e500->tlb1_max_eaddr)
			return -1;
		set_base = 0;
	}

	offset = vcpu_e500->gtlb_offset[tlbsel];

	for (i = 0; i < size; i++) {
		struct kvm_book3e_206_tlb_entry *tlbe =
			&vcpu_e500->gtlb_arch[offset + set_base + i];
		unsigned int tid;

		if (eaddr < get_tlb_eaddr(tlbe))
			continue;

		if (eaddr > get_tlb_end(tlbe))
			continue;

		tid = get_tlb_tid(tlbe);
		if (tid && (tid != pid))
			continue;

		if (!get_tlb_v(tlbe))
			continue;

		if (get_tlb_ts(tlbe) != as && as != -1)
			continue;

		return set_base + i;
	}

	return -1;
}

static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
		gva_t eaddr, int as)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	unsigned int victim, tsized;
	int tlbsel;

	/* since we only have two TLBs, only lower bit is used. */
	tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
	victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
	tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;

	vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
		| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
	vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
		| MAS1_TID(get_tlbmiss_tid(vcpu))
		| MAS1_TSIZE(tsized);
	vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
		| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
	vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
	vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
		| (get_cur_pid(vcpu) << 16)
		| (as ? MAS6_SAS : 0);
}

static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	int size = vcpu_e500->gtlb_params[1].entries;
	unsigned int offset;
	gva_t eaddr;
	int i;

	vcpu_e500->tlb1_min_eaddr = ~0UL;
	vcpu_e500->tlb1_max_eaddr = 0;
	offset = vcpu_e500->gtlb_offset[1];

	for (i = 0; i < size; i++) {
		struct kvm_book3e_206_tlb_entry *tlbe =
			&vcpu_e500->gtlb_arch[offset + i];

		if (!get_tlb_v(tlbe))
			continue;

		eaddr = get_tlb_eaddr(tlbe);
		vcpu_e500->tlb1_min_eaddr =
				min(vcpu_e500->tlb1_min_eaddr, eaddr);

		eaddr = get_tlb_end(tlbe);
		vcpu_e500->tlb1_max_eaddr =
				max(vcpu_e500->tlb1_max_eaddr, eaddr);
	}
}

static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
				struct kvm_book3e_206_tlb_entry *gtlbe)
{
	unsigned long start, end, size;

	size = get_tlb_bytes(gtlbe);
	start = get_tlb_eaddr(gtlbe) & ~(size - 1);
	end = start + size - 1;

	return vcpu_e500->tlb1_min_eaddr == start ||
			vcpu_e500->tlb1_max_eaddr == end;
}

/* This function is supposed to be called for a adding a new valid tlb entry */
static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
				struct kvm_book3e_206_tlb_entry *gtlbe)
{
	unsigned long start, end, size;
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);

	if (!get_tlb_v(gtlbe))
		return;

	size = get_tlb_bytes(gtlbe);
	start = get_tlb_eaddr(gtlbe) & ~(size - 1);
	end = start + size - 1;

	vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
	vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
}

static inline int kvmppc_e500_gtlbe_invalidate(
				struct kvmppc_vcpu_e500 *vcpu_e500,
				int tlbsel, int esel)
{
	struct kvm_book3e_206_tlb_entry *gtlbe =
		get_entry(vcpu_e500, tlbsel, esel);

	if (unlikely(get_tlb_iprot(gtlbe)))
		return -1;

	if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
		kvmppc_recalc_tlb1map_range(vcpu_e500);

	gtlbe->mas1 = 0;

	return 0;
}

int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
{
	int esel;

	if (value & MMUCSR0_TLB0FI)
		for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
	if (value & MMUCSR0_TLB1FI)
		for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);

	/* Invalidate all host shadow mappings */
	kvmppc_core_flush_tlb(&vcpu_e500->vcpu);

	return EMULATE_DONE;
}

int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	unsigned int ia;
	int esel, tlbsel;

	ia = (ea >> 2) & 0x1;

	/* since we only have two TLBs, only lower bit is used. */
	tlbsel = (ea >> 3) & 0x1;

	if (ia) {
		/* invalidate all entries */
		for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
		     esel++)
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
	} else {
		ea &= 0xfffff000;
		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
				get_cur_pid(vcpu), -1);
		if (esel >= 0)
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
	}

	/* Invalidate all host shadow mappings */
	kvmppc_core_flush_tlb(&vcpu_e500->vcpu);

	return EMULATE_DONE;
}

static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
		       int pid, int type)
{
	struct kvm_book3e_206_tlb_entry *tlbe;
	int tid, esel;

	/* invalidate all entries */
	for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
		tlbe = get_entry(vcpu_e500, tlbsel, esel);
		tid = get_tlb_tid(tlbe);
		if (type == 0 || tid == pid) {
			inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
		}
	}
}

static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
		       gva_t ea)
{
	int tlbsel, esel;

	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
		if (esel >= 0) {
			inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
			break;
		}
	}
}

int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int pid = get_cur_spid(vcpu);

	if (type == 0 || type == 1) {
		tlbilx_all(vcpu_e500, 0, pid, type);
		tlbilx_all(vcpu_e500, 1, pid, type);
	} else if (type == 3) {
		tlbilx_one(vcpu_e500, pid, ea);
	}

	return EMULATE_DONE;
}

int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int tlbsel, esel;
	struct kvm_book3e_206_tlb_entry *gtlbe;

	tlbsel = get_tlb_tlbsel(vcpu);
	esel = get_tlb_esel(vcpu, tlbsel);

	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
	vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
	vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
	vcpu->arch.shared->mas1 = gtlbe->mas1;
	vcpu->arch.shared->mas2 = gtlbe->mas2;
	vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;

	return EMULATE_DONE;
}

int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int as = !!get_cur_sas(vcpu);
	unsigned int pid = get_cur_spid(vcpu);
	int esel, tlbsel;
	struct kvm_book3e_206_tlb_entry *gtlbe = NULL;

	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
		if (esel >= 0) {
			gtlbe = get_entry(vcpu_e500, tlbsel, esel);
			break;
		}
	}

	if (gtlbe) {
		esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;

		vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
		vcpu->arch.shared->mas1 = gtlbe->mas1;
		vcpu->arch.shared->mas2 = gtlbe->mas2;
		vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
	} else {
		int victim;

		/* since we only have two TLBs, only lower bit is used. */
		tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
		victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;

		vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
			| MAS0_ESEL(victim)
			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
		vcpu->arch.shared->mas1 =
			  (vcpu->arch.shared->mas6 & MAS6_SPID0)
			| ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0)
			| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
		vcpu->arch.shared->mas2 &= MAS2_EPN;
		vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
					   MAS2_ATTRIB_MASK;
		vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
					     MAS3_U2 | MAS3_U3;
	}

	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
	return EMULATE_DONE;
}

int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	struct kvm_book3e_206_tlb_entry *gtlbe;
	int tlbsel, esel;
	int recal = 0;
	int idx;

	tlbsel = get_tlb_tlbsel(vcpu);
	esel = get_tlb_esel(vcpu, tlbsel);

	gtlbe = get_entry(vcpu_e500, tlbsel, esel);

	if (get_tlb_v(gtlbe)) {
		inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
		if ((tlbsel == 1) &&
			kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
			recal = 1;
	}

	gtlbe->mas1 = vcpu->arch.shared->mas1;
	gtlbe->mas2 = vcpu->arch.shared->mas2;
	if (!(vcpu->arch.shared->msr & MSR_CM))
		gtlbe->mas2 &= 0xffffffffUL;
	gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;

	trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
	                              gtlbe->mas2, gtlbe->mas7_3);

	if (tlbsel == 1) {
		/*
		 * If a valid tlb1 entry is overwritten then recalculate the
		 * min/max TLB1 map address range otherwise no need to look
		 * in tlb1 array.
		 */
		if (recal)
			kvmppc_recalc_tlb1map_range(vcpu_e500);
		else
			kvmppc_set_tlb1map_range(vcpu, gtlbe);
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
	if (tlbe_is_host_safe(vcpu, gtlbe)) {
		u64 eaddr = get_tlb_eaddr(gtlbe);
		u64 raddr = get_tlb_raddr(gtlbe);

		if (tlbsel == 0) {
			gtlbe->mas1 &= ~MAS1_TSIZE(~0);
			gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
		}

		/* Premap the faulting page */
		kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel));
	}

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
	return EMULATE_DONE;
}

static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
				  gva_t eaddr, unsigned int pid, int as)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	int esel, tlbsel;

	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
		esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
		if (esel >= 0)
			return index_of(tlbsel, esel);
	}

	return -1;
}

/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
                               struct kvm_translation *tr)
{
	int index;
	gva_t eaddr;
	u8 pid;
	u8 as;

	eaddr = tr->linear_address;
	pid = (tr->linear_address >> 32) & 0xff;
	as = (tr->linear_address >> 40) & 0x1;

	index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
	if (index < 0) {
		tr->valid = 0;
		return 0;
	}

	tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
	/* XXX what does "writeable" and "usermode" even mean? */
	tr->valid = 1;

	return 0;
}


int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);

	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}

int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
{
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);

	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
}

void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);

	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
}

void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);

	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
}

gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
			gva_t eaddr)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	struct kvm_book3e_206_tlb_entry *gtlbe;
	u64 pgmask;

	gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
	pgmask = get_tlb_bytes(gtlbe) - 1;

	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}

void kvmppc_mmu_destroy_e500(struct kvm_vcpu *vcpu)
{
}

/*****************************************/

static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	int i;

	kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
	kfree(vcpu_e500->g2h_tlb1_map);
	kfree(vcpu_e500->gtlb_priv[0]);
	kfree(vcpu_e500->gtlb_priv[1]);

	if (vcpu_e500->shared_tlb_pages) {
		vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
					  PAGE_SIZE)));

		for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
			set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
			put_page(vcpu_e500->shared_tlb_pages[i]);
		}

		vcpu_e500->num_shared_tlb_pages = 0;

		kfree(vcpu_e500->shared_tlb_pages);
		vcpu_e500->shared_tlb_pages = NULL;
	} else {
		kfree(vcpu_e500->gtlb_arch);
	}

	vcpu_e500->gtlb_arch = NULL;
}

void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
	sregs->u.e.mas0 = vcpu->arch.shared->mas0;
	sregs->u.e.mas1 = vcpu->arch.shared->mas1;
	sregs->u.e.mas2 = vcpu->arch.shared->mas2;
	sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
	sregs->u.e.mas4 = vcpu->arch.shared->mas4;
	sregs->u.e.mas6 = vcpu->arch.shared->mas6;

	sregs->u.e.mmucfg = vcpu->arch.mmucfg;
	sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
	sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
	sregs->u.e.tlbcfg[2] = 0;
	sregs->u.e.tlbcfg[3] = 0;
}

int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
	if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
		vcpu->arch.shared->mas0 = sregs->u.e.mas0;
		vcpu->arch.shared->mas1 = sregs->u.e.mas1;
		vcpu->arch.shared->mas2 = sregs->u.e.mas2;
		vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
		vcpu->arch.shared->mas4 = sregs->u.e.mas4;
		vcpu->arch.shared->mas6 = sregs->u.e.mas6;
	}

	return 0;
}

int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
				union kvmppc_one_reg *val)
{
	int r = 0;
	long int i;

	switch (id) {
	case KVM_REG_PPC_MAS0:
		*val = get_reg_val(id, vcpu->arch.shared->mas0);
		break;
	case KVM_REG_PPC_MAS1:
		*val = get_reg_val(id, vcpu->arch.shared->mas1);
		break;
	case KVM_REG_PPC_MAS2:
		*val = get_reg_val(id, vcpu->arch.shared->mas2);
		break;
	case KVM_REG_PPC_MAS7_3:
		*val = get_reg_val(id, vcpu->arch.shared->mas7_3);
		break;
	case KVM_REG_PPC_MAS4:
		*val = get_reg_val(id, vcpu->arch.shared->mas4);
		break;
	case KVM_REG_PPC_MAS6:
		*val = get_reg_val(id, vcpu->arch.shared->mas6);
		break;
	case KVM_REG_PPC_MMUCFG:
		*val = get_reg_val(id, vcpu->arch.mmucfg);
		break;
	case KVM_REG_PPC_EPTCFG:
		*val = get_reg_val(id, vcpu->arch.eptcfg);
		break;
	case KVM_REG_PPC_TLB0CFG:
	case KVM_REG_PPC_TLB1CFG:
	case KVM_REG_PPC_TLB2CFG:
	case KVM_REG_PPC_TLB3CFG:
		i = id - KVM_REG_PPC_TLB0CFG;
		*val = get_reg_val(id, vcpu->arch.tlbcfg[i]);
		break;
	case KVM_REG_PPC_TLB0PS:
	case KVM_REG_PPC_TLB1PS:
	case KVM_REG_PPC_TLB2PS:
	case KVM_REG_PPC_TLB3PS:
		i = id - KVM_REG_PPC_TLB0PS;
		*val = get_reg_val(id, vcpu->arch.tlbps[i]);
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
			       union kvmppc_one_reg *val)
{
	int r = 0;
	long int i;

	switch (id) {
	case KVM_REG_PPC_MAS0:
		vcpu->arch.shared->mas0 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MAS1:
		vcpu->arch.shared->mas1 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MAS2:
		vcpu->arch.shared->mas2 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MAS7_3:
		vcpu->arch.shared->mas7_3 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MAS4:
		vcpu->arch.shared->mas4 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MAS6:
		vcpu->arch.shared->mas6 = set_reg_val(id, *val);
		break;
	/* Only allow MMU registers to be set to the config supported by KVM */
	case KVM_REG_PPC_MMUCFG: {
		u32 reg = set_reg_val(id, *val);
		if (reg != vcpu->arch.mmucfg)
			r = -EINVAL;
		break;
	}
	case KVM_REG_PPC_EPTCFG: {
		u32 reg = set_reg_val(id, *val);
		if (reg != vcpu->arch.eptcfg)
			r = -EINVAL;
		break;
	}
	case KVM_REG_PPC_TLB0CFG:
	case KVM_REG_PPC_TLB1CFG:
	case KVM_REG_PPC_TLB2CFG:
	case KVM_REG_PPC_TLB3CFG: {
		/* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */
		u32 reg = set_reg_val(id, *val);
		i = id - KVM_REG_PPC_TLB0CFG;
		if (reg != vcpu->arch.tlbcfg[i])
			r = -EINVAL;
		break;
	}
	case KVM_REG_PPC_TLB0PS:
	case KVM_REG_PPC_TLB1PS:
	case KVM_REG_PPC_TLB2PS:
	case KVM_REG_PPC_TLB3PS: {
		u32 reg = set_reg_val(id, *val);
		i = id - KVM_REG_PPC_TLB0PS;
		if (reg != vcpu->arch.tlbps[i])
			r = -EINVAL;
		break;
	}
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu,
		struct kvm_book3e_206_tlb_params *params)
{
	vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
	if (params->tlb_sizes[0] <= 2048)
		vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0];
	vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;

	vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
	vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1];
	vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
	return 0;
}

int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
			      struct kvm_config_tlb *cfg)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	struct kvm_book3e_206_tlb_params params;
	char *virt;
	struct page **pages;
	struct tlbe_priv *privs[2] = {};
	u64 *g2h_bitmap = NULL;
	size_t array_len;
	u32 sets;
	int num_pages, ret, i;

	if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
		return -EINVAL;

	if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
			   sizeof(params)))
		return -EFAULT;

	if (params.tlb_sizes[1] > 64)
		return -EINVAL;
	if (params.tlb_ways[1] != params.tlb_sizes[1])
		return -EINVAL;
	if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
		return -EINVAL;
	if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
		return -EINVAL;

	if (!is_power_of_2(params.tlb_ways[0]))
		return -EINVAL;

	sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
	if (!is_power_of_2(sets))
		return -EINVAL;

	array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
	array_len *= sizeof(struct kvm_book3e_206_tlb_entry);

	if (cfg->array_len < array_len)
		return -EINVAL;

	num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
		    cfg->array / PAGE_SIZE;
	pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
	if (!pages)
		return -ENOMEM;

	ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
	if (ret < 0)
		goto err_pages;

	if (ret != num_pages) {
		num_pages = ret;
		ret = -EFAULT;
		goto err_put_page;
	}

	virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
	if (!virt) {
		ret = -ENOMEM;
		goto err_put_page;
	}

	privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
			   GFP_KERNEL);
	privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
			   GFP_KERNEL);

	if (!privs[0] || !privs[1]) {
		ret = -ENOMEM;
		goto err_privs;
	}

	g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
	                     GFP_KERNEL);
	if (!g2h_bitmap) {
		ret = -ENOMEM;
		goto err_privs;
	}

	free_gtlb(vcpu_e500);

	vcpu_e500->gtlb_priv[0] = privs[0];
	vcpu_e500->gtlb_priv[1] = privs[1];
	vcpu_e500->g2h_tlb1_map = g2h_bitmap;

	vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
		(virt + (cfg->array & (PAGE_SIZE - 1)));

	vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
	vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];

	vcpu_e500->gtlb_offset[0] = 0;
	vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];

	/* Update vcpu's MMU geometry based on SW_TLB input */
	vcpu_mmu_geometry_update(vcpu, &params);

	vcpu_e500->shared_tlb_pages = pages;
	vcpu_e500->num_shared_tlb_pages = num_pages;

	vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
	vcpu_e500->gtlb_params[0].sets = sets;

	vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
	vcpu_e500->gtlb_params[1].sets = 1;

	kvmppc_recalc_tlb1map_range(vcpu_e500);
	return 0;

err_privs:
	kfree(privs[0]);
	kfree(privs[1]);

err_put_page:
	for (i = 0; i < num_pages; i++)
		put_page(pages[i]);

err_pages:
	kfree(pages);
	return ret;
}

int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
			     struct kvm_dirty_tlb *dirty)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	kvmppc_recalc_tlb1map_range(vcpu_e500);
	kvmppc_core_flush_tlb(vcpu);
	return 0;
}

/* Vcpu's MMU default configuration */
static int vcpu_mmu_init(struct kvm_vcpu *vcpu,
		       struct kvmppc_e500_tlb_params *params)
{
	/* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/
	vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;

	/* Initialize TLBnCFG fields with host values and SW_TLB geometry*/
	vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
			     ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
	vcpu->arch.tlbcfg[0] |= params[0].entries;
	vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT;

	vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
			     ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
	vcpu->arch.tlbcfg[1] |= params[1].entries;
	vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT;

	if (has_feature(vcpu, VCPU_FTR_MMU_V2)) {
		vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS);
		vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS);

		vcpu->arch.mmucfg &= ~MMUCFG_LRAT;

		/* Guest mmu emulation currently doesn't handle E.PT */
		vcpu->arch.eptcfg = 0;
		vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT;
		vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND;
	}

	return 0;
}

int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
	int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
	int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;

	if (e500_mmu_host_init(vcpu_e500))
		goto err;

	vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
	vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;

	vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
	vcpu_e500->gtlb_params[0].sets =
		KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;

	vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
	vcpu_e500->gtlb_params[1].sets = 1;

	vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
	if (!vcpu_e500->gtlb_arch)
		return -ENOMEM;

	vcpu_e500->gtlb_offset[0] = 0;
	vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;

	vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
					  vcpu_e500->gtlb_params[0].entries,
					  GFP_KERNEL);
	if (!vcpu_e500->gtlb_priv[0])
		goto err;

	vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
					  vcpu_e500->gtlb_params[1].entries,
					  GFP_KERNEL);
	if (!vcpu_e500->gtlb_priv[1])
		goto err;

	vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(u64) *
					  vcpu_e500->gtlb_params[1].entries,
					  GFP_KERNEL);
	if (!vcpu_e500->g2h_tlb1_map)
		goto err;

	vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params);

	kvmppc_recalc_tlb1map_range(vcpu_e500);
	return 0;

err:
	free_gtlb(vcpu_e500);
	return -1;
}

void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	free_gtlb(vcpu_e500);
	e500_mmu_host_uninit(vcpu_e500);
}