1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/*
* In-kernel FPU support functions
*
*
* Consider these guidelines before using in-kernel FPU functions:
*
* 1. Use kernel_fpu_begin() and kernel_fpu_end() to enclose all in-kernel
* use of floating-point or vector registers and instructions.
*
* 2. For kernel_fpu_begin(), specify the vector register range you want to
* use with the KERNEL_VXR_* constants. Consider these usage guidelines:
*
* a) If your function typically runs in process-context, use the lower
* half of the vector registers, for example, specify KERNEL_VXR_LOW.
* b) If your function typically runs in soft-irq or hard-irq context,
* prefer using the upper half of the vector registers, for example,
* specify KERNEL_VXR_HIGH.
*
* If you adhere to these guidelines, an interrupted process context
* does not require to save and restore vector registers because of
* disjoint register ranges.
*
* Also note that the __kernel_fpu_begin()/__kernel_fpu_end() functions
* includes logic to save and restore up to 16 vector registers at once.
*
* 3. You can nest kernel_fpu_begin()/kernel_fpu_end() by using different
* struct kernel_fpu states. Vector registers that are in use by outer
* levels are saved and restored. You can minimize the save and restore
* effort by choosing disjoint vector register ranges.
*
* 5. To use vector floating-point instructions, specify the KERNEL_FPC
* flag to save and restore floating-point controls in addition to any
* vector register range.
*
* 6. To use floating-point registers and instructions only, specify the
* KERNEL_FPR flag. This flag triggers a save and restore of vector
* registers V0 to V15 and floating-point controls.
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#ifndef _ASM_S390_FPU_API_H
#define _ASM_S390_FPU_API_H
#include <linux/preempt.h>
void save_fpu_regs(void);
static inline int test_fp_ctl(u32 fpc)
{
u32 orig_fpc;
int rc;
asm volatile(
" efpc %1\n"
" sfpc %2\n"
"0: sfpc %1\n"
" la %0,0\n"
"1:\n"
EX_TABLE(0b,1b)
: "=d" (rc), "=&d" (orig_fpc)
: "d" (fpc), "0" (-EINVAL));
return rc;
}
#define KERNEL_VXR_V0V7 1
#define KERNEL_VXR_V8V15 2
#define KERNEL_VXR_V16V23 4
#define KERNEL_VXR_V24V31 8
#define KERNEL_FPR 16
#define KERNEL_FPC 256
#define KERNEL_VXR_LOW (KERNEL_VXR_V0V7|KERNEL_VXR_V8V15)
#define KERNEL_VXR_MID (KERNEL_VXR_V8V15|KERNEL_VXR_V16V23)
#define KERNEL_VXR_HIGH (KERNEL_VXR_V16V23|KERNEL_VXR_V24V31)
#define KERNEL_FPU_MASK (KERNEL_VXR_LOW|KERNEL_VXR_HIGH|KERNEL_FPR)
struct kernel_fpu;
/*
* Note the functions below must be called with preemption disabled.
* Do not enable preemption before calling __kernel_fpu_end() to prevent
* an corruption of an existing kernel FPU state.
*
* Prefer using the kernel_fpu_begin()/kernel_fpu_end() pair of functions.
*/
void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags);
void __kernel_fpu_end(struct kernel_fpu *state);
static inline void kernel_fpu_begin(struct kernel_fpu *state, u32 flags)
{
preempt_disable();
__kernel_fpu_begin(state, flags);
}
static inline void kernel_fpu_end(struct kernel_fpu *state)
{
__kernel_fpu_end(state);
preempt_enable();
}
#endif /* _ASM_S390_FPU_API_H */
|