1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/*
* SGI RTC clock/timer routines.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) Dimitri Sivanich
*/
#include <linux/clockchips.h>
#include <linux/slab.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/bios.h>
#include <asm/uv/uv.h>
#include <asm/apic.h>
#include <asm/cpu.h>
#define RTC_NAME "sgi_rtc"
static u64 uv_read_rtc(struct clocksource *cs);
static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
static int uv_rtc_shutdown(struct clock_event_device *evt);
static struct clocksource clocksource_uv = {
.name = RTC_NAME,
.rating = 299,
.read = uv_read_rtc,
.mask = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct clock_event_device clock_event_device_uv = {
.name = RTC_NAME,
.features = CLOCK_EVT_FEAT_ONESHOT,
.shift = 20,
.rating = 400,
.irq = -1,
.set_next_event = uv_rtc_next_event,
.set_state_shutdown = uv_rtc_shutdown,
.event_handler = NULL,
};
static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
/* There is one of these allocated per node */
struct uv_rtc_timer_head {
spinlock_t lock;
/* next cpu waiting for timer, local node relative: */
int next_cpu;
/* number of cpus on this node: */
int ncpus;
struct {
int lcpu; /* systemwide logical cpu number */
u64 expires; /* next timer expiration for this cpu */
} cpu[1];
};
/*
* Access to uv_rtc_timer_head via blade id.
*/
static struct uv_rtc_timer_head **blade_info __read_mostly;
static int uv_rtc_evt_enable;
/*
* Hardware interface routines
*/
/* Send IPIs to another node */
static void uv_rtc_send_IPI(int cpu)
{
unsigned long apicid, val;
int pnode;
apicid = cpu_physical_id(cpu);
pnode = uv_apicid_to_pnode(apicid);
apicid |= uv_apicid_hibits;
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
(X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}
/* Check for an RTC interrupt pending */
static int uv_intr_pending(int pnode)
{
if (is_uv1_hub())
return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
UV1H_EVENT_OCCURRED0_RTC1_MASK;
else if (is_uvx_hub())
return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
UVXH_EVENT_OCCURRED2_RTC_1_MASK;
return 0;
}
/* Setup interrupt and return non-zero if early expiration occurred. */
static int uv_setup_intr(int cpu, u64 expires)
{
u64 val;
unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
int pnode = uv_cpu_to_pnode(cpu);
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
UVH_RTC1_INT_CONFIG_M_MASK);
uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
if (is_uv1_hub())
uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
UV1H_EVENT_OCCURRED0_RTC1_MASK);
else
uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
UVXH_EVENT_OCCURRED2_RTC_1_MASK);
val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
/* Set configuration */
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
/* Initialize comparator value */
uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
if (uv_read_rtc(NULL) <= expires)
return 0;
return !uv_intr_pending(pnode);
}
/*
* Per-cpu timer tracking routines
*/
static __init void uv_rtc_deallocate_timers(void)
{
int bid;
for_each_possible_blade(bid) {
kfree(blade_info[bid]);
}
kfree(blade_info);
}
/* Allocate per-node list of cpu timer expiration times. */
static __init int uv_rtc_allocate_timers(void)
{
int cpu;
blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
if (!blade_info)
return -ENOMEM;
for_each_present_cpu(cpu) {
int nid = cpu_to_node(cpu);
int bid = uv_cpu_to_blade_id(cpu);
int bcpu = uv_cpu_blade_processor_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid];
if (!head) {
head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
(uv_blade_nr_possible_cpus(bid) *
2 * sizeof(u64)),
GFP_KERNEL, nid);
if (!head) {
uv_rtc_deallocate_timers();
return -ENOMEM;
}
spin_lock_init(&head->lock);
head->ncpus = uv_blade_nr_possible_cpus(bid);
head->next_cpu = -1;
blade_info[bid] = head;
}
head->cpu[bcpu].lcpu = cpu;
head->cpu[bcpu].expires = ULLONG_MAX;
}
return 0;
}
/* Find and set the next expiring timer. */
static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
{
u64 lowest = ULLONG_MAX;
int c, bcpu = -1;
head->next_cpu = -1;
for (c = 0; c < head->ncpus; c++) {
u64 exp = head->cpu[c].expires;
if (exp < lowest) {
bcpu = c;
lowest = exp;
}
}
if (bcpu >= 0) {
head->next_cpu = bcpu;
c = head->cpu[bcpu].lcpu;
if (uv_setup_intr(c, lowest))
/* If we didn't set it up in time, trigger */
uv_rtc_send_IPI(c);
} else {
uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
UVH_RTC1_INT_CONFIG_M_MASK);
}
}
/*
* Set expiration time for current cpu.
*
* Returns 1 if we missed the expiration time.
*/
static int uv_rtc_set_timer(int cpu, u64 expires)
{
int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires;
unsigned long flags;
int next_cpu;
spin_lock_irqsave(&head->lock, flags);
next_cpu = head->next_cpu;
*t = expires;
/* Will this one be next to go off? */
if (next_cpu < 0 || bcpu == next_cpu ||
expires < head->cpu[next_cpu].expires) {
head->next_cpu = bcpu;
if (uv_setup_intr(cpu, expires)) {
*t = ULLONG_MAX;
uv_rtc_find_next_timer(head, pnode);
spin_unlock_irqrestore(&head->lock, flags);
return -ETIME;
}
}
spin_unlock_irqrestore(&head->lock, flags);
return 0;
}
/*
* Unset expiration time for current cpu.
*
* Returns 1 if this timer was pending.
*/
static int uv_rtc_unset_timer(int cpu, int force)
{
int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&head->lock, flags);
if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
rc = 1;
if (rc) {
*t = ULLONG_MAX;
/* Was the hardware setup for this timer? */
if (head->next_cpu == bcpu)
uv_rtc_find_next_timer(head, pnode);
}
spin_unlock_irqrestore(&head->lock, flags);
return rc;
}
/*
* Kernel interface routines.
*/
/*
* Read the RTC.
*
* Starting with HUB rev 2.0, the UV RTC register is replicated across all
* cachelines of it's own page. This allows faster simultaneous reads
* from a given socket.
*/
static u64 uv_read_rtc(struct clocksource *cs)
{
unsigned long offset;
if (uv_get_min_hub_revision_id() == 1)
offset = 0;
else
offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
return (u64)uv_read_local_mmr(UVH_RTC | offset);
}
/*
* Program the next event, relative to now
*/
static int uv_rtc_next_event(unsigned long delta,
struct clock_event_device *ced)
{
int ced_cpu = cpumask_first(ced->cpumask);
return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
}
/*
* Shutdown the RTC timer
*/
static int uv_rtc_shutdown(struct clock_event_device *evt)
{
int ced_cpu = cpumask_first(evt->cpumask);
uv_rtc_unset_timer(ced_cpu, 1);
return 0;
}
static void uv_rtc_interrupt(void)
{
int cpu = smp_processor_id();
struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
if (!ced || !ced->event_handler)
return;
if (uv_rtc_unset_timer(cpu, 0) != 1)
return;
ced->event_handler(ced);
}
static int __init uv_enable_evt_rtc(char *str)
{
uv_rtc_evt_enable = 1;
return 1;
}
__setup("uvrtcevt", uv_enable_evt_rtc);
static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
{
struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
*ced = clock_event_device_uv;
ced->cpumask = cpumask_of(smp_processor_id());
clockevents_register_device(ced);
}
static __init int uv_rtc_setup_clock(void)
{
int rc;
if (!is_uv_system())
return -ENODEV;
rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
if (rc)
printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
else
printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
sn_rtc_cycles_per_second/(unsigned long)1E6);
if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
return rc;
/* Setup and register clockevents */
rc = uv_rtc_allocate_timers();
if (rc)
goto error;
x86_platform_ipi_callback = uv_rtc_interrupt;
clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
NSEC_PER_SEC, clock_event_device_uv.shift);
clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
sn_rtc_cycles_per_second;
clock_event_device_uv.min_delta_ticks = 1;
clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
(NSEC_PER_SEC / sn_rtc_cycles_per_second);
clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
if (rc) {
x86_platform_ipi_callback = NULL;
uv_rtc_deallocate_timers();
goto error;
}
printk(KERN_INFO "UV RTC clockevents registered\n");
return 0;
error:
clocksource_unregister(&clocksource_uv);
printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
return rc;
}
arch_initcall(uv_rtc_setup_clock);
|