1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* clk-xgene.c - AppliedMicro X-Gene Clock Interface
*
* Copyright (c) 2013, Applied Micro Circuits Corporation
* Author: Loc Ho <lho@apm.com>
*/
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/of_address.h>
/* Register SCU_PCPPLL bit fields */
#define N_DIV_RD(src) ((src) & 0x000001ff)
#define SC_N_DIV_RD(src) ((src) & 0x0000007f)
#define SC_OUTDIV2(src) (((src) & 0x00000100) >> 8)
/* Register SCU_SOCPLL bit fields */
#define CLKR_RD(src) (((src) & 0x07000000)>>24)
#define CLKOD_RD(src) (((src) & 0x00300000)>>20)
#define REGSPEC_RESET_F1_MASK 0x00010000
#define CLKF_RD(src) (((src) & 0x000001ff))
#define XGENE_CLK_DRIVER_VER "0.1"
static DEFINE_SPINLOCK(clk_lock);
static inline u32 xgene_clk_read(void __iomem *csr)
{
return readl_relaxed(csr);
}
static inline void xgene_clk_write(u32 data, void __iomem *csr)
{
writel_relaxed(data, csr);
}
/* PLL Clock */
enum xgene_pll_type {
PLL_TYPE_PCP = 0,
PLL_TYPE_SOC = 1,
};
struct xgene_clk_pll {
struct clk_hw hw;
void __iomem *reg;
spinlock_t *lock;
u32 pll_offset;
enum xgene_pll_type type;
int version;
};
#define to_xgene_clk_pll(_hw) container_of(_hw, struct xgene_clk_pll, hw)
static int xgene_clk_pll_is_enabled(struct clk_hw *hw)
{
struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
u32 data;
data = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
pr_debug("%s pll %s\n", clk_hw_get_name(hw),
data & REGSPEC_RESET_F1_MASK ? "disabled" : "enabled");
return data & REGSPEC_RESET_F1_MASK ? 0 : 1;
}
static unsigned long xgene_clk_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
unsigned long fref;
unsigned long fvco;
u32 pll;
u32 nref;
u32 nout;
u32 nfb;
pll = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
if (pllclk->version <= 1) {
if (pllclk->type == PLL_TYPE_PCP) {
/*
* PLL VCO = Reference clock * NF
* PCP PLL = PLL_VCO / 2
*/
nout = 2;
fvco = parent_rate * (N_DIV_RD(pll) + 4);
} else {
/*
* Fref = Reference Clock / NREF;
* Fvco = Fref * NFB;
* Fout = Fvco / NOUT;
*/
nref = CLKR_RD(pll) + 1;
nout = CLKOD_RD(pll) + 1;
nfb = CLKF_RD(pll);
fref = parent_rate / nref;
fvco = fref * nfb;
}
} else {
/*
* fvco = Reference clock * FBDIVC
* PLL freq = fvco / NOUT
*/
nout = SC_OUTDIV2(pll) ? 2 : 3;
fvco = parent_rate * SC_N_DIV_RD(pll);
}
pr_debug("%s pll recalc rate %ld parent %ld version %d\n",
clk_hw_get_name(hw), fvco / nout, parent_rate,
pllclk->version);
return fvco / nout;
}
static const struct clk_ops xgene_clk_pll_ops = {
.is_enabled = xgene_clk_pll_is_enabled,
.recalc_rate = xgene_clk_pll_recalc_rate,
};
static struct clk *xgene_register_clk_pll(struct device *dev,
const char *name, const char *parent_name,
unsigned long flags, void __iomem *reg, u32 pll_offset,
u32 type, spinlock_t *lock, int version)
{
struct xgene_clk_pll *apmclk;
struct clk *clk;
struct clk_init_data init;
/* allocate the APM clock structure */
apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
if (!apmclk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &xgene_clk_pll_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
apmclk->version = version;
apmclk->reg = reg;
apmclk->lock = lock;
apmclk->pll_offset = pll_offset;
apmclk->type = type;
apmclk->hw.init = &init;
/* Register the clock */
clk = clk_register(dev, &apmclk->hw);
if (IS_ERR(clk)) {
pr_err("%s: could not register clk %s\n", __func__, name);
kfree(apmclk);
return NULL;
}
return clk;
}
static int xgene_pllclk_version(struct device_node *np)
{
if (of_device_is_compatible(np, "apm,xgene-socpll-clock"))
return 1;
if (of_device_is_compatible(np, "apm,xgene-pcppll-clock"))
return 1;
return 2;
}
static void xgene_pllclk_init(struct device_node *np, enum xgene_pll_type pll_type)
{
const char *clk_name = np->full_name;
struct clk *clk;
void __iomem *reg;
int version = xgene_pllclk_version(np);
reg = of_iomap(np, 0);
if (!reg) {
pr_err("Unable to map CSR register for %pOF\n", np);
return;
}
of_property_read_string(np, "clock-output-names", &clk_name);
clk = xgene_register_clk_pll(NULL,
clk_name, of_clk_get_parent_name(np, 0),
0, reg, 0, pll_type, &clk_lock,
version);
if (!IS_ERR(clk)) {
of_clk_add_provider(np, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
pr_debug("Add %s clock PLL\n", clk_name);
}
}
static void xgene_socpllclk_init(struct device_node *np)
{
xgene_pllclk_init(np, PLL_TYPE_SOC);
}
static void xgene_pcppllclk_init(struct device_node *np)
{
xgene_pllclk_init(np, PLL_TYPE_PCP);
}
/**
* struct xgene_clk_pmd - PMD clock
*
* @hw: handle between common and hardware-specific interfaces
* @reg: register containing the fractional scale multiplier (scaler)
* @shift: shift to the unit bit field
* @denom: 1/denominator unit
* @lock: register lock
* Flags:
* XGENE_CLK_PMD_SCALE_INVERTED - By default the scaler is the value read
* from the register plus one. For example,
* 0 for (0 + 1) / denom,
* 1 for (1 + 1) / denom and etc.
* If this flag is set, it is
* 0 for (denom - 0) / denom,
* 1 for (denom - 1) / denom and etc.
*
*/
struct xgene_clk_pmd {
struct clk_hw hw;
void __iomem *reg;
u8 shift;
u32 mask;
u64 denom;
u32 flags;
spinlock_t *lock;
};
#define to_xgene_clk_pmd(_hw) container_of(_hw, struct xgene_clk_pmd, hw)
#define XGENE_CLK_PMD_SCALE_INVERTED BIT(0)
#define XGENE_CLK_PMD_SHIFT 8
#define XGENE_CLK_PMD_WIDTH 3
static unsigned long xgene_clk_pmd_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
unsigned long flags = 0;
u64 ret, scale;
u32 val;
if (fd->lock)
spin_lock_irqsave(fd->lock, flags);
else
__acquire(fd->lock);
val = readl(fd->reg);
if (fd->lock)
spin_unlock_irqrestore(fd->lock, flags);
else
__release(fd->lock);
ret = (u64)parent_rate;
scale = (val & fd->mask) >> fd->shift;
if (fd->flags & XGENE_CLK_PMD_SCALE_INVERTED)
scale = fd->denom - scale;
else
scale++;
/* freq = parent_rate * scaler / denom */
do_div(ret, fd->denom);
ret *= scale;
if (ret == 0)
ret = (u64)parent_rate;
return ret;
}
static long xgene_clk_pmd_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
u64 ret, scale;
if (!rate || rate >= *parent_rate)
return *parent_rate;
/* freq = parent_rate * scaler / denom */
ret = rate * fd->denom;
scale = DIV_ROUND_UP_ULL(ret, *parent_rate);
ret = (u64)*parent_rate * scale;
do_div(ret, fd->denom);
return ret;
}
static int xgene_clk_pmd_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
unsigned long flags = 0;
u64 scale, ret;
u32 val;
/*
* Compute the scaler:
*
* freq = parent_rate * scaler / denom, or
* scaler = freq * denom / parent_rate
*/
ret = rate * fd->denom;
scale = DIV_ROUND_UP_ULL(ret, (u64)parent_rate);
/* Check if inverted */
if (fd->flags & XGENE_CLK_PMD_SCALE_INVERTED)
scale = fd->denom - scale;
else
scale--;
if (fd->lock)
spin_lock_irqsave(fd->lock, flags);
else
__acquire(fd->lock);
val = readl(fd->reg);
val &= ~fd->mask;
val |= (scale << fd->shift);
writel(val, fd->reg);
if (fd->lock)
spin_unlock_irqrestore(fd->lock, flags);
else
__release(fd->lock);
return 0;
}
static const struct clk_ops xgene_clk_pmd_ops = {
.recalc_rate = xgene_clk_pmd_recalc_rate,
.round_rate = xgene_clk_pmd_round_rate,
.set_rate = xgene_clk_pmd_set_rate,
};
static struct clk *
xgene_register_clk_pmd(struct device *dev,
const char *name, const char *parent_name,
unsigned long flags, void __iomem *reg, u8 shift,
u8 width, u64 denom, u32 clk_flags, spinlock_t *lock)
{
struct xgene_clk_pmd *fd;
struct clk_init_data init;
struct clk *clk;
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
if (!fd)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &xgene_clk_pmd_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
fd->reg = reg;
fd->shift = shift;
fd->mask = (BIT(width) - 1) << shift;
fd->denom = denom;
fd->flags = clk_flags;
fd->lock = lock;
fd->hw.init = &init;
clk = clk_register(dev, &fd->hw);
if (IS_ERR(clk)) {
pr_err("%s: could not register clk %s\n", __func__, name);
kfree(fd);
return NULL;
}
return clk;
}
static void xgene_pmdclk_init(struct device_node *np)
{
const char *clk_name = np->full_name;
void __iomem *csr_reg;
struct resource res;
struct clk *clk;
u64 denom;
u32 flags = 0;
int rc;
/* Check if the entry is disabled */
if (!of_device_is_available(np))
return;
/* Parse the DTS register for resource */
rc = of_address_to_resource(np, 0, &res);
if (rc != 0) {
pr_err("no DTS register for %pOF\n", np);
return;
}
csr_reg = of_iomap(np, 0);
if (!csr_reg) {
pr_err("Unable to map resource for %pOF\n", np);
return;
}
of_property_read_string(np, "clock-output-names", &clk_name);
denom = BIT(XGENE_CLK_PMD_WIDTH);
flags |= XGENE_CLK_PMD_SCALE_INVERTED;
clk = xgene_register_clk_pmd(NULL, clk_name,
of_clk_get_parent_name(np, 0), 0,
csr_reg, XGENE_CLK_PMD_SHIFT,
XGENE_CLK_PMD_WIDTH, denom,
flags, &clk_lock);
if (!IS_ERR(clk)) {
of_clk_add_provider(np, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
pr_debug("Add %s clock\n", clk_name);
} else {
if (csr_reg)
iounmap(csr_reg);
}
}
/* IP Clock */
struct xgene_dev_parameters {
void __iomem *csr_reg; /* CSR for IP clock */
u32 reg_clk_offset; /* Offset to clock enable CSR */
u32 reg_clk_mask; /* Mask bit for clock enable */
u32 reg_csr_offset; /* Offset to CSR reset */
u32 reg_csr_mask; /* Mask bit for disable CSR reset */
void __iomem *divider_reg; /* CSR for divider */
u32 reg_divider_offset; /* Offset to divider register */
u32 reg_divider_shift; /* Bit shift to divider field */
u32 reg_divider_width; /* Width of the bit to divider field */
};
struct xgene_clk {
struct clk_hw hw;
spinlock_t *lock;
struct xgene_dev_parameters param;
};
#define to_xgene_clk(_hw) container_of(_hw, struct xgene_clk, hw)
static int xgene_clk_enable(struct clk_hw *hw)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
unsigned long flags = 0;
u32 data;
if (pclk->lock)
spin_lock_irqsave(pclk->lock, flags);
if (pclk->param.csr_reg) {
pr_debug("%s clock enabled\n", clk_hw_get_name(hw));
/* First enable the clock */
data = xgene_clk_read(pclk->param.csr_reg +
pclk->param.reg_clk_offset);
data |= pclk->param.reg_clk_mask;
xgene_clk_write(data, pclk->param.csr_reg +
pclk->param.reg_clk_offset);
pr_debug("%s clk offset 0x%08X mask 0x%08X value 0x%08X\n",
clk_hw_get_name(hw),
pclk->param.reg_clk_offset, pclk->param.reg_clk_mask,
data);
/* Second enable the CSR */
data = xgene_clk_read(pclk->param.csr_reg +
pclk->param.reg_csr_offset);
data &= ~pclk->param.reg_csr_mask;
xgene_clk_write(data, pclk->param.csr_reg +
pclk->param.reg_csr_offset);
pr_debug("%s csr offset 0x%08X mask 0x%08X value 0x%08X\n",
clk_hw_get_name(hw),
pclk->param.reg_csr_offset, pclk->param.reg_csr_mask,
data);
}
if (pclk->lock)
spin_unlock_irqrestore(pclk->lock, flags);
return 0;
}
static void xgene_clk_disable(struct clk_hw *hw)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
unsigned long flags = 0;
u32 data;
if (pclk->lock)
spin_lock_irqsave(pclk->lock, flags);
if (pclk->param.csr_reg) {
pr_debug("%s clock disabled\n", clk_hw_get_name(hw));
/* First put the CSR in reset */
data = xgene_clk_read(pclk->param.csr_reg +
pclk->param.reg_csr_offset);
data |= pclk->param.reg_csr_mask;
xgene_clk_write(data, pclk->param.csr_reg +
pclk->param.reg_csr_offset);
/* Second disable the clock */
data = xgene_clk_read(pclk->param.csr_reg +
pclk->param.reg_clk_offset);
data &= ~pclk->param.reg_clk_mask;
xgene_clk_write(data, pclk->param.csr_reg +
pclk->param.reg_clk_offset);
}
if (pclk->lock)
spin_unlock_irqrestore(pclk->lock, flags);
}
static int xgene_clk_is_enabled(struct clk_hw *hw)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
u32 data = 0;
if (pclk->param.csr_reg) {
pr_debug("%s clock checking\n", clk_hw_get_name(hw));
data = xgene_clk_read(pclk->param.csr_reg +
pclk->param.reg_clk_offset);
pr_debug("%s clock is %s\n", clk_hw_get_name(hw),
data & pclk->param.reg_clk_mask ? "enabled" :
"disabled");
}
if (!pclk->param.csr_reg)
return 1;
return data & pclk->param.reg_clk_mask ? 1 : 0;
}
static unsigned long xgene_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
u32 data;
if (pclk->param.divider_reg) {
data = xgene_clk_read(pclk->param.divider_reg +
pclk->param.reg_divider_offset);
data >>= pclk->param.reg_divider_shift;
data &= (1 << pclk->param.reg_divider_width) - 1;
pr_debug("%s clock recalc rate %ld parent %ld\n",
clk_hw_get_name(hw),
parent_rate / data, parent_rate);
return parent_rate / data;
} else {
pr_debug("%s clock recalc rate %ld parent %ld\n",
clk_hw_get_name(hw), parent_rate, parent_rate);
return parent_rate;
}
}
static int xgene_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
unsigned long flags = 0;
u32 data;
u32 divider;
u32 divider_save;
if (pclk->lock)
spin_lock_irqsave(pclk->lock, flags);
if (pclk->param.divider_reg) {
/* Let's compute the divider */
if (rate > parent_rate)
rate = parent_rate;
divider_save = divider = parent_rate / rate; /* Rounded down */
divider &= (1 << pclk->param.reg_divider_width) - 1;
divider <<= pclk->param.reg_divider_shift;
/* Set new divider */
data = xgene_clk_read(pclk->param.divider_reg +
pclk->param.reg_divider_offset);
data &= ~(((1 << pclk->param.reg_divider_width) - 1)
<< pclk->param.reg_divider_shift);
data |= divider;
xgene_clk_write(data, pclk->param.divider_reg +
pclk->param.reg_divider_offset);
pr_debug("%s clock set rate %ld\n", clk_hw_get_name(hw),
parent_rate / divider_save);
} else {
divider_save = 1;
}
if (pclk->lock)
spin_unlock_irqrestore(pclk->lock, flags);
return parent_rate / divider_save;
}
static long xgene_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct xgene_clk *pclk = to_xgene_clk(hw);
unsigned long parent_rate = *prate;
u32 divider;
if (pclk->param.divider_reg) {
/* Let's compute the divider */
if (rate > parent_rate)
rate = parent_rate;
divider = parent_rate / rate; /* Rounded down */
} else {
divider = 1;
}
return parent_rate / divider;
}
static const struct clk_ops xgene_clk_ops = {
.enable = xgene_clk_enable,
.disable = xgene_clk_disable,
.is_enabled = xgene_clk_is_enabled,
.recalc_rate = xgene_clk_recalc_rate,
.set_rate = xgene_clk_set_rate,
.round_rate = xgene_clk_round_rate,
};
static struct clk *xgene_register_clk(struct device *dev,
const char *name, const char *parent_name,
struct xgene_dev_parameters *parameters, spinlock_t *lock)
{
struct xgene_clk *apmclk;
struct clk *clk;
struct clk_init_data init;
int rc;
/* allocate the APM clock structure */
apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
if (!apmclk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &xgene_clk_ops;
init.flags = 0;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
apmclk->lock = lock;
apmclk->hw.init = &init;
apmclk->param = *parameters;
/* Register the clock */
clk = clk_register(dev, &apmclk->hw);
if (IS_ERR(clk)) {
pr_err("%s: could not register clk %s\n", __func__, name);
kfree(apmclk);
return clk;
}
/* Register the clock for lookup */
rc = clk_register_clkdev(clk, name, NULL);
if (rc != 0) {
pr_err("%s: could not register lookup clk %s\n",
__func__, name);
}
return clk;
}
static void __init xgene_devclk_init(struct device_node *np)
{
const char *clk_name = np->full_name;
struct clk *clk;
struct resource res;
int rc;
struct xgene_dev_parameters parameters;
int i;
/* Check if the entry is disabled */
if (!of_device_is_available(np))
return;
/* Parse the DTS register for resource */
parameters.csr_reg = NULL;
parameters.divider_reg = NULL;
for (i = 0; i < 2; i++) {
void __iomem *map_res;
rc = of_address_to_resource(np, i, &res);
if (rc != 0) {
if (i == 0) {
pr_err("no DTS register for %pOF\n", np);
return;
}
break;
}
map_res = of_iomap(np, i);
if (!map_res) {
pr_err("Unable to map resource %d for %pOF\n", i, np);
goto err;
}
if (strcmp(res.name, "div-reg") == 0)
parameters.divider_reg = map_res;
else /* if (strcmp(res->name, "csr-reg") == 0) */
parameters.csr_reg = map_res;
}
if (of_property_read_u32(np, "csr-offset", ¶meters.reg_csr_offset))
parameters.reg_csr_offset = 0;
if (of_property_read_u32(np, "csr-mask", ¶meters.reg_csr_mask))
parameters.reg_csr_mask = 0xF;
if (of_property_read_u32(np, "enable-offset",
¶meters.reg_clk_offset))
parameters.reg_clk_offset = 0x8;
if (of_property_read_u32(np, "enable-mask", ¶meters.reg_clk_mask))
parameters.reg_clk_mask = 0xF;
if (of_property_read_u32(np, "divider-offset",
¶meters.reg_divider_offset))
parameters.reg_divider_offset = 0;
if (of_property_read_u32(np, "divider-width",
¶meters.reg_divider_width))
parameters.reg_divider_width = 0;
if (of_property_read_u32(np, "divider-shift",
¶meters.reg_divider_shift))
parameters.reg_divider_shift = 0;
of_property_read_string(np, "clock-output-names", &clk_name);
clk = xgene_register_clk(NULL, clk_name,
of_clk_get_parent_name(np, 0), ¶meters, &clk_lock);
if (IS_ERR(clk))
goto err;
pr_debug("Add %s clock\n", clk_name);
rc = of_clk_add_provider(np, of_clk_src_simple_get, clk);
if (rc != 0)
pr_err("%s: could register provider clk %pOF\n", __func__, np);
return;
err:
if (parameters.csr_reg)
iounmap(parameters.csr_reg);
if (parameters.divider_reg)
iounmap(parameters.divider_reg);
}
CLK_OF_DECLARE(xgene_socpll_clock, "apm,xgene-socpll-clock", xgene_socpllclk_init);
CLK_OF_DECLARE(xgene_pcppll_clock, "apm,xgene-pcppll-clock", xgene_pcppllclk_init);
CLK_OF_DECLARE(xgene_pmd_clock, "apm,xgene-pmd-clock", xgene_pmdclk_init);
CLK_OF_DECLARE(xgene_socpll_v2_clock, "apm,xgene-socpll-v2-clock",
xgene_socpllclk_init);
CLK_OF_DECLARE(xgene_pcppll_v2_clock, "apm,xgene-pcppll-v2-clock",
xgene_pcppllclk_init);
CLK_OF_DECLARE(xgene_dev_clock, "apm,xgene-device-clock", xgene_devclk_init);
|