summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
blob: 42f2423cddea8a114e7583d8a9b21fcfbb0c405e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <asm/div64.h>

#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */

#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */

#define SHIFTED_2 (2 << SHIFT_AMOUNT)
#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */

/* -------------------------------------------------------------------------------
 * NEW TYPE - fINT
 * -------------------------------------------------------------------------------
 * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
 * fInt A;
 * A.full => The full number as it is. Generally not easy to read
 * A.partial.real => Only the integer portion
 * A.partial.decimal => Only the fractional portion
 */
typedef union _fInt {
    int full;
    struct _partial {
        unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
        int real: 32 - SHIFT_AMOUNT;
    } partial;
} fInt;

/* -------------------------------------------------------------------------------
 * Function Declarations
 *  -------------------------------------------------------------------------------
 */
fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
fInt Convert_ULONG_ToFraction(uint32_t);              /* Use this to convert an uint32_t to a FINT */
fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */

fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */

int uAbs(int);                                     /* Returns the Absolute value of the Int */
fInt fAbs(fInt);                                   /* Returns the Absolute value of the fInt */
int uPow(int base, int exponent);                  /* Returns base^exponent an INT */

void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
bool Equal(fInt, fInt);                         /* Returns true if two fInts are equal to each other */
bool GreaterThan(fInt A, fInt B);               /* Returns true if A > B */

fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */

/* Fuse decoding functions
 * -------------------------------------------------------------------------------------
 */
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);

/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
 * -------------------------------------------------------------------------------------
 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
 */
fInt Add (int, int);                               /* Add two INTs and return Sum as FINT */
fInt Multiply (int, int);                          /* Multiply two INTs and return Product as FINT */
fInt Divide (int, int);                            /* You get the idea... */
fInt fNegate(fInt);

int uGetScaledDecimal (fInt);                      /* Internal function */
int GetReal (fInt A);                              /* Internal function */

/* Future Additions and Incomplete Functions
 * -------------------------------------------------------------------------------------
 */
int GetRoundedValue(fInt);                         /* Incomplete function - Useful only when Precision is lacking */
                                                   /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
                                                   /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */

/* -------------------------------------------------------------------------------------
 * TROUBLESHOOTING INFORMATION
 * -------------------------------------------------------------------------------------
 * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
 * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
 * 3) fMultiply - OutputOutOfRangeException:
 * 4) fGetSquare - OutputOutOfRangeException:
 * 5) fDivide - DivideByZeroException
 * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
 */

/* -------------------------------------------------------------------------------------
 * START OF CODE
 * -------------------------------------------------------------------------------------
 */
fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
{
    uint32_t i;
    bool bNegated = false;

    fInt fPositiveOne = ConvertToFraction(1);
    fInt fZERO = ConvertToFraction(0);

    fInt lower_bound = Divide(78, 10000);
    fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
    fInt error_term;

    uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
    uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};

    if (GreaterThan(fZERO, exponent)) {
        exponent = fNegate(exponent);
        bNegated = true;
    }

    while (GreaterThan(exponent, lower_bound)) {
        for (i = 0; i < 11; i++) {
            if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
                exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
                solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
            }
        }
    }

    error_term = fAdd(fPositiveOne, exponent);

    solution = fMultiply(solution, error_term);

    if (bNegated)
        solution = fDivide(fPositiveOne, solution);

    return solution;
}

fInt fNaturalLog(fInt value)
{
    uint32_t i;
    fInt upper_bound = Divide(8, 1000);
    fInt fNegativeOne = ConvertToFraction(-1);
    fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
    fInt error_term;

    uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
    uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};

    while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
        for (i = 0; i < 10; i++) {
            if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
                value = fDivide(value, GetScaledFraction(k_array[i], 10000));
                solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
            }
        }
    }

    error_term = fAdd(fNegativeOne, value);

    return (fAdd(solution, error_term));
}

fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
{
    fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
    fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);

    fInt f_decoded_value;

    f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
    f_decoded_value = fMultiply(f_decoded_value, f_range);
    f_decoded_value = fAdd(f_decoded_value, f_min);

    return f_decoded_value;
}


fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
{
    fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
    fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);

    fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
    fInt f_CONSTANT1 = ConvertToFraction(1);

    fInt f_decoded_value;

    f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
    f_decoded_value = fNaturalLog(f_decoded_value);
    f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
    f_decoded_value = fAdd(f_decoded_value, f_average);

    return f_decoded_value;
}

fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
{
    fInt fLeakage;
    fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);

    fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
    fLeakage = fDivide(fLeakage, f_bit_max_value);
    fLeakage = fExponential(fLeakage);
    fLeakage = fMultiply(fLeakage, f_min);

    return fLeakage;
}

fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
{
    fInt temp;

    if (X <= MAX)
        temp.full = (X << SHIFT_AMOUNT);
    else
        temp.full = 0;

    return temp;
}

fInt fNegate(fInt X)
{
    fInt CONSTANT_NEGONE = ConvertToFraction(-1);
    return (fMultiply(X, CONSTANT_NEGONE));
}

fInt Convert_ULONG_ToFraction(uint32_t X)
{
    fInt temp;

    if (X <= MAX)
        temp.full = (X << SHIFT_AMOUNT);
    else
        temp.full = 0;

    return temp;
}

fInt GetScaledFraction(int X, int factor)
{
    int times_shifted, factor_shifted;
    bool bNEGATED;
    fInt fValue;

    times_shifted = 0;
    factor_shifted = 0;
    bNEGATED = false;

    if (X < 0) {
        X = -1*X;
        bNEGATED = true;
    }

    if (factor < 0) {
        factor = -1*factor;

        bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
    }

    if ((X > MAX) || factor > MAX) {
        if ((X/factor) <= MAX) {
            while (X > MAX) {
                X = X >> 1;
                times_shifted++;
            }

            while (factor > MAX) {
                factor = factor >> 1;
                factor_shifted++;
            }
        } else {
            fValue.full = 0;
            return fValue;
        }
    }

    if (factor == 1)
        return (ConvertToFraction(X));

    fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));

    fValue.full = fValue.full << times_shifted;
    fValue.full = fValue.full >> factor_shifted;

    return fValue;
}

/* Addition using two fInts */
fInt fAdd (fInt X, fInt Y)
{
    fInt Sum;

    Sum.full = X.full + Y.full;

    return Sum;
}

/* Addition using two fInts */
fInt fSubtract (fInt X, fInt Y)
{
    fInt Difference;

    Difference.full = X.full - Y.full;

    return Difference;
}

bool Equal(fInt A, fInt B)
{
    if (A.full == B.full)
        return true;
    else
        return false;
}

bool GreaterThan(fInt A, fInt B)
{
    if (A.full > B.full)
        return true;
    else
        return false;
}

fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
{
    fInt Product;
    int64_t tempProduct;
    bool X_LessThanOne, Y_LessThanOne;

    X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
    Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);

    /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
    /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION

    if (X_LessThanOne && Y_LessThanOne) {
        Product.full = X.full * Y.full;
        return Product
    }*/

    tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
    tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
    Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */

    return Product;
}

fInt fDivide (fInt X, fInt Y)
{
    fInt fZERO, fQuotient;
    int64_t longlongX, longlongY;

    fZERO = ConvertToFraction(0);

    if (Equal(Y, fZERO))
        return fZERO;

    longlongX = (int64_t)X.full;
    longlongY = (int64_t)Y.full;

    longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */

    do_div(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */

    fQuotient.full = (int)longlongX;
    return fQuotient;
}

int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
{
    fInt fullNumber, scaledDecimal, scaledReal;

    scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */

    scaledDecimal.full = uGetScaledDecimal(A);

    fullNumber = fAdd(scaledDecimal,scaledReal);

    return fullNumber.full;
}

fInt fGetSquare(fInt A)
{
    return fMultiply(A,A);
}

/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
fInt fSqrt(fInt num)
{
    fInt F_divide_Fprime, Fprime;
    fInt test;
    fInt twoShifted;
    int seed, counter, error;
    fInt x_new, x_old, C, y;

    fInt fZERO = ConvertToFraction(0);
    /* (0 > num) is the same as (num < 0), i.e., num is negative */
    if (GreaterThan(fZERO, num) || Equal(fZERO, num))
        return fZERO;

    C = num;

    if (num.partial.real > 3000)
        seed = 60;
    else if (num.partial.real > 1000)
        seed = 30;
    else if (num.partial.real > 100)
        seed = 10;
    else
        seed = 2;

    counter = 0;

    if (Equal(num, fZERO)) /*Square Root of Zero is zero */
        return fZERO;

    twoShifted = ConvertToFraction(2);
    x_new = ConvertToFraction(seed);

    do {
        counter++;

        x_old.full = x_new.full;

        test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
        y = fSubtract(test, C); /*y = f(x) = x^2 - C; */

        Fprime = fMultiply(twoShifted, x_old);
        F_divide_Fprime = fDivide(y, Fprime);

        x_new = fSubtract(x_old, F_divide_Fprime);

        error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);

        if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
            return x_new;

    } while (uAbs(error) > 0);

    return (x_new);
}

void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
{
    fInt* pRoots = &Roots[0];
    fInt temp, root_first, root_second;
    fInt f_CONSTANT10, f_CONSTANT100;

    f_CONSTANT100 = ConvertToFraction(100);
    f_CONSTANT10 = ConvertToFraction(10);

    while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
        A = fDivide(A, f_CONSTANT10);
        B = fDivide(B, f_CONSTANT10);
        C = fDivide(C, f_CONSTANT10);
    }

    temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
    temp = fMultiply(temp, C); /* root = 4*A*C */
    temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
    temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */

    root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
    root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */

    root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
    root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */

    root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
    root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */

    *(pRoots + 0) = root_first;
    *(pRoots + 1) = root_second;
}

/* -----------------------------------------------------------------------------
 * SUPPORT FUNCTIONS
 * -----------------------------------------------------------------------------
 */

/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
fInt Add (int X, int Y)
{
    fInt A, B, Sum;

    A.full = (X << SHIFT_AMOUNT);
    B.full = (Y << SHIFT_AMOUNT);

    Sum.full = A.full + B.full;

    return Sum;
}

/* Conversion Functions */
int GetReal (fInt A)
{
    return (A.full >> SHIFT_AMOUNT);
}

/* Temporarily Disabled */
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
{
    /* ROUNDING TEMPORARLY DISABLED
    int temp = A.full;

    int decimal_cutoff, decimal_mask = 0x000001FF;

    decimal_cutoff = temp & decimal_mask;


    if (decimal_cutoff > 0x147) {
        temp += 673;
    }*/

    return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
}

fInt Multiply (int X, int Y)
{
    fInt A, B, Product;

    A.full = X << SHIFT_AMOUNT;
    B.full = Y << SHIFT_AMOUNT;

    Product = fMultiply(A, B);

    return Product;
}
fInt Divide (int X, int Y)
{
    fInt A, B, Quotient;

    A.full = X << SHIFT_AMOUNT;
    B.full = Y << SHIFT_AMOUNT;

    Quotient = fDivide(A, B);

    return Quotient;
}

int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
{
	int dec[PRECISION];
	int i, scaledDecimal = 0, tmp = A.partial.decimal;

	for (i = 0; i < PRECISION; i++) {
        dec[i] = tmp / (1 << SHIFT_AMOUNT);

        tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);

        tmp *= 10;

        scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
    }

    return scaledDecimal;
}

int uPow(int base, int power)
{
	if (power == 0)
		return 1;
	else
		return (base)*uPow(base, power - 1);
}

fInt fAbs(fInt A)
{
	if (A.partial.real < 0)
		return (fMultiply(A, ConvertToFraction(-1)));
	else
		return A;
}

int uAbs(int X)
{
	if (X < 0)
		return (X * -1);
	else
		return X;
}

fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
{
    fInt solution;

    solution = fDivide(A, fStepSize);
    solution.partial.decimal = 0; /*All fractional digits changes to 0 */

    if (error_term)
        solution.partial.real += 1; /*Error term of 1 added */

    solution = fMultiply(solution, fStepSize);
    solution = fAdd(solution, fStepSize);

    return solution;
}