1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_gpu_trace.h"
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
#include <linux/devfreq.h>
#define GPU_PAS_ID 13
static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Check that the GMU is idle */
if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
return false;
/* Check tha the CX master is idle */
if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
return false;
return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
}
bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
/* wait for CP to drain ringbuffer: */
if (!adreno_idle(gpu, ring))
return false;
if (spin_until(_a6xx_check_idle(gpu))) {
DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
gpu->name, __builtin_return_address(0),
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
return false;
}
return true;
}
static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
uint32_t wptr;
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
spin_unlock_irqrestore(&ring->lock, flags);
/* Make sure everything is posted before making a decision */
mb();
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
}
static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
u64 iova)
{
OUT_PKT7(ring, CP_REG_TO_MEM, 3);
OUT_RING(ring, counter | (1 << 30) | (2 << 18));
OUT_RING(ring, lower_32_bits(iova));
OUT_RING(ring, upper_32_bits(iova));
}
static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
struct msm_drm_private *priv = gpu->dev->dev_private;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = submit->ring;
unsigned int i;
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
rbmemptr_stats(ring, index, cpcycles_start));
/*
* For PM4 the GMU register offsets are calculated from the base of the
* GPU registers so we need to add 0x1a800 to the register value on A630
* to get the right value from PM4.
*/
get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
rbmemptr_stats(ring, index, alwayson_start));
/* Invalidate CCU depth and color */
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, PC_CCU_INVALIDATE_DEPTH);
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, PC_CCU_INVALIDATE_COLOR);
/* Submit the commands */
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (priv->lastctx == ctx)
break;
case MSM_SUBMIT_CMD_BUF:
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
break;
}
}
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
rbmemptr_stats(ring, index, cpcycles_end));
get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
rbmemptr_stats(ring, index, alwayson_end));
/* Write the fence to the scratch register */
OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
OUT_RING(ring, submit->seqno);
/*
* Execute a CACHE_FLUSH_TS event. This will ensure that the
* timestamp is written to the memory and then triggers the interrupt
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31));
OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, submit->seqno);
trace_msm_gpu_submit_flush(submit,
gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L,
REG_A6XX_GMU_ALWAYS_ON_COUNTER_H));
a6xx_flush(gpu, ring);
}
static const struct {
u32 offset;
u32 value;
} a6xx_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}
};
static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
unsigned int i;
u32 val;
val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
/* Don't re-program the registers if they are already correct */
if ((!state && !val) || (state && (val == 0x8aa8aa02)))
return;
/* Disable SP clock before programming HWCG registers */
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
for (i = 0; i < ARRAY_SIZE(a6xx_hwcg); i++)
gpu_write(gpu, a6xx_hwcg[i].offset,
state ? a6xx_hwcg[i].value : 0);
/* Enable SP clock */
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? 0x8aa8aa02 : 0);
}
static int a6xx_cp_init(struct msm_gpu *gpu)
{
struct msm_ringbuffer *ring = gpu->rb[0];
OUT_PKT7(ring, CP_ME_INIT, 8);
OUT_RING(ring, 0x0000002f);
/* Enable multiple hardware contexts */
OUT_RING(ring, 0x00000003);
/* Enable error detection */
OUT_RING(ring, 0x20000000);
/* Don't enable header dump */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
/* No workarounds enabled */
OUT_RING(ring, 0x00000000);
/* Pad rest of the cmds with 0's */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
a6xx_flush(gpu, ring);
return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static int a6xx_ucode_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (!a6xx_gpu->sqe_bo) {
a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
if (IS_ERR(a6xx_gpu->sqe_bo)) {
int ret = PTR_ERR(a6xx_gpu->sqe_bo);
a6xx_gpu->sqe_bo = NULL;
DRM_DEV_ERROR(&gpu->pdev->dev,
"Could not allocate SQE ucode: %d\n", ret);
return ret;
}
msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
}
gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO,
REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova);
return 0;
}
static int a6xx_zap_shader_init(struct msm_gpu *gpu)
{
static bool loaded;
int ret;
if (loaded)
return 0;
ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
loaded = !ret;
return ret;
}
#define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
A6XX_RBBM_INT_0_MASK_CP_IB2 | \
A6XX_RBBM_INT_0_MASK_CP_IB1 | \
A6XX_RBBM_INT_0_MASK_CP_RB | \
A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
static int a6xx_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
/* Make sure the GMU keeps the GPU on while we set it up */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
/*
* Disable the trusted memory range - we don't actually supported secure
* memory rendering at this point in time and we don't want to block off
* part of the virtual memory space.
*/
gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
/* Turn on 64 bit addressing for all blocks */
gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
/* enable hardware clockgating */
a6xx_set_hwcg(gpu, true);
/* VBIF start */
gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
/* Make all blocks contribute to the GPU BUSY perf counter */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
/* Disable L2 bypass in the UCHE */
gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
0x00100000 + adreno_gpu->gmem - 1);
gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
/* Setting the mem pool size */
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
/* Setting the primFifo thresholds default values */
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11));
/* Set the AHB default slave response to "ERROR" */
gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
/* Turn on performance counters */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
/* Select CP0 to always count cycles */
gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 2 << 21);
/* Enable fault detection */
gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
(1 << 30) | 0x1fffff);
gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
/* Protect registers from the CP */
gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003);
gpu_write(gpu, REG_A6XX_CP_PROTECT(0),
A6XX_PROTECT_RDONLY(0x600, 0x51));
gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
gpu_write(gpu, REG_A6XX_CP_PROTECT(7),
A6XX_PROTECT_RDONLY(0xfc00, 0x3));
gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(11),
A6XX_PROTECT_RDONLY(0x0, 0x4f9));
gpu_write(gpu, REG_A6XX_CP_PROTECT(12),
A6XX_PROTECT_RDONLY(0x501, 0xa));
gpu_write(gpu, REG_A6XX_CP_PROTECT(13),
A6XX_PROTECT_RDONLY(0x511, 0x44));
gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(18),
A6XX_PROTECT_RW(0xbe20, 0x11f3));
gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
gpu_write(gpu, REG_A6XX_CP_PROTECT(24),
A6XX_PROTECT_RDONLY(0x980, 0x4));
gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
/* Enable interrupts */
gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
ret = adreno_hw_init(gpu);
if (ret)
goto out;
ret = a6xx_ucode_init(gpu);
if (ret)
goto out;
/* Always come up on rb 0 */
a6xx_gpu->cur_ring = gpu->rb[0];
/* Enable the SQE_to start the CP engine */
gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
ret = a6xx_cp_init(gpu);
if (ret)
goto out;
/*
* Try to load a zap shader into the secure world. If successful
* we can use the CP to switch out of secure mode. If not then we
* have no resource but to try to switch ourselves out manually. If we
* guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
* be blocked and a permissions violation will soon follow.
*/
ret = a6xx_zap_shader_init(gpu);
if (!ret) {
OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
OUT_RING(gpu->rb[0], 0x00000000);
a6xx_flush(gpu, gpu->rb[0]);
if (!a6xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
} else {
/* Print a warning so if we die, we know why */
dev_warn_once(gpu->dev->dev,
"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
ret = 0;
}
out:
/*
* Tell the GMU that we are done touching the GPU and it can start power
* management
*/
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
/* Take the GMU out of its special boot mode */
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
return ret;
}
static void a6xx_dump(struct msm_gpu *gpu)
{
DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
gpu_read(gpu, REG_A6XX_RBBM_STATUS));
adreno_dump(gpu);
}
#define VBIF_RESET_ACK_TIMEOUT 100
#define VBIF_RESET_ACK_MASK 0x00f0
static void a6xx_recover(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i;
adreno_dump_info(gpu);
for (i = 0; i < 8; i++)
DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
if (hang_debug)
a6xx_dump(gpu);
/*
* Turn off keep alive that might have been enabled by the hang
* interrupt
*/
gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
gpu->funcs->pm_suspend(gpu);
gpu->funcs->pm_resume(gpu);
msm_gpu_hw_init(gpu);
}
static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
{
struct msm_gpu *gpu = arg;
pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
iova, flags,
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
return -EFAULT;
}
static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
u32 val;
gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | opcode error | possible opcode=0x%8.8X\n",
val);
}
if (status & A6XX_CP_INT_CP_UCODE_ERROR)
dev_err_ratelimited(&gpu->pdev->dev,
"CP ucode error interrupt\n");
if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
val & (1 << 20) ? "READ" : "WRITE",
(val & 0x3ffff), val);
}
if (status & A6XX_CP_INT_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
}
static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
/*
* Force the GPU to stay on until after we finish
* collecting information
*/
gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
DRM_DEV_ERROR(&gpu->pdev->dev,
"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
ring ? ring->id : -1, ring ? ring->seqno : 0,
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
/* Turn off the hangcheck timer to keep it from bothering us */
del_timer(&gpu->hangcheck_timer);
queue_work(priv->wq, &gpu->recover_work);
}
static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
a6xx_fault_detect_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
a6xx_cp_hw_err_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
msm_gpu_retire(gpu);
return IRQ_HANDLED;
}
static const u32 a6xx_register_offsets[REG_ADRENO_REGISTER_MAX] = {
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A6XX_CP_RB_BASE),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A6XX_CP_RB_BASE_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR,
REG_A6XX_CP_RB_RPTR_ADDR_LO),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI,
REG_A6XX_CP_RB_RPTR_ADDR_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A6XX_CP_RB_RPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A6XX_CP_RB_WPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A6XX_CP_RB_CNTL),
};
static int a6xx_pm_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
gpu->needs_hw_init = true;
ret = a6xx_gmu_resume(a6xx_gpu);
if (ret)
return ret;
msm_gpu_resume_devfreq(gpu);
return 0;
}
static int a6xx_pm_suspend(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
devfreq_suspend_device(gpu->devfreq.devfreq);
return a6xx_gmu_stop(a6xx_gpu);
}
static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Force the GPU power on so we can read this register */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
*value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
REG_A6XX_RBBM_PERFCTR_CP_0_HI);
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
return 0;
}
static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
return a6xx_gpu->cur_ring;
}
static void a6xx_destroy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (a6xx_gpu->sqe_bo) {
msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
drm_gem_object_put_unlocked(a6xx_gpu->sqe_bo);
}
a6xx_gmu_remove(a6xx_gpu);
adreno_gpu_cleanup(adreno_gpu);
kfree(a6xx_gpu);
}
static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
u64 busy_cycles, busy_time;
busy_cycles = gmu_read64(&a6xx_gpu->gmu,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
do_div(busy_time, 192);
gpu->devfreq.busy_cycles = busy_cycles;
if (WARN_ON(busy_time > ~0LU))
return ~0LU;
return (unsigned long)busy_time;
}
static const struct adreno_gpu_funcs funcs = {
.base = {
.get_param = adreno_get_param,
.hw_init = a6xx_hw_init,
.pm_suspend = a6xx_pm_suspend,
.pm_resume = a6xx_pm_resume,
.recover = a6xx_recover,
.submit = a6xx_submit,
.flush = a6xx_flush,
.active_ring = a6xx_active_ring,
.irq = a6xx_irq,
.destroy = a6xx_destroy,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.show = a6xx_show,
#endif
.gpu_busy = a6xx_gpu_busy,
.gpu_get_freq = a6xx_gmu_get_freq,
.gpu_set_freq = a6xx_gmu_set_freq,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.gpu_state_get = a6xx_gpu_state_get,
.gpu_state_put = a6xx_gpu_state_put,
#endif
},
.get_timestamp = a6xx_get_timestamp,
};
struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct device_node *node;
struct a6xx_gpu *a6xx_gpu;
struct adreno_gpu *adreno_gpu;
struct msm_gpu *gpu;
int ret;
a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
if (!a6xx_gpu)
return ERR_PTR(-ENOMEM);
adreno_gpu = &a6xx_gpu->base;
gpu = &adreno_gpu->base;
adreno_gpu->registers = NULL;
adreno_gpu->reg_offsets = a6xx_register_offsets;
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
/* Check if there is a GMU phandle and set it up */
node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
/* FIXME: How do we gracefully handle this? */
BUG_ON(!node);
ret = a6xx_gmu_init(a6xx_gpu, node);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
if (gpu->aspace)
msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
a6xx_fault_handler);
return gpu;
}
|