summaryrefslogtreecommitdiffstats
path: root/drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_buffer.c
blob: e95982590373fb82a7d18e79c45f8c23740faa96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
 * STMicroelectronics st_lsm6dsx FIFO buffer library driver
 *
 * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM: The FIFO buffer can be configured
 * to store data from gyroscope and accelerometer. Samples are queued
 * without any tag according to a specific pattern based on 'FIFO data sets'
 * (6 bytes each):
 *  - 1st data set is reserved for gyroscope data
 *  - 2nd data set is reserved for accelerometer data
 * The FIFO pattern changes depending on the ODRs and decimation factors
 * assigned to the FIFO data sets. The first sequence of data stored in FIFO
 * buffer contains the data of all the enabled FIFO data sets
 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
 * value of the decimation factor and ODR set for each FIFO data set.
 * FIFO supported modes:
 *  - BYPASS: FIFO disabled
 *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
 *    restarts from the beginning and the oldest sample is overwritten
 *
 * Copyright 2016 STMicroelectronics Inc.
 *
 * Lorenzo Bianconi <lorenzo.bianconi@st.com>
 * Denis Ciocca <denis.ciocca@st.com>
 *
 * Licensed under the GPL-2.
 */
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>

#include "st_lsm6dsx.h"

#define ST_LSM6DSX_REG_FIFO_THL_ADDR		0x06
#define ST_LSM6DSX_REG_FIFO_THH_ADDR		0x07
#define ST_LSM6DSX_FIFO_TH_MASK			GENMASK(11, 0)
#define ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR	0x08
#define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
#define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
#define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
#define ST_LSM6DSX_REG_FIFO_DIFFL_ADDR		0x3a
#define ST_LSM6DSX_FIFO_DIFF_MASK		GENMASK(11, 0)
#define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
#define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e

#define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08

struct st_lsm6dsx_decimator_entry {
	u8 decimator;
	u8 val;
};

static const
struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
	{  0, 0x0 },
	{  1, 0x1 },
	{  2, 0x2 },
	{  3, 0x3 },
	{  4, 0x4 },
	{  8, 0x5 },
	{ 16, 0x6 },
	{ 32, 0x7 },
};

static int st_lsm6dsx_get_decimator_val(u8 val)
{
	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
	int i;

	for (i = 0; i < max_size; i++)
		if (st_lsm6dsx_decimator_table[i].decimator == val)
			break;

	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
}

static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
				       u16 *max_odr, u16 *min_odr)
{
	struct st_lsm6dsx_sensor *sensor;
	int i;

	*max_odr = 0, *min_odr = ~0;
	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
		sensor = iio_priv(hw->iio_devs[i]);

		if (!(hw->enable_mask & BIT(sensor->id)))
			continue;

		*max_odr = max_t(u16, *max_odr, sensor->odr);
		*min_odr = min_t(u16, *min_odr, sensor->odr);
	}
}

static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
{
	struct st_lsm6dsx_sensor *sensor;
	u16 max_odr, min_odr, sip = 0;
	int err, i;
	u8 data;

	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);

	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
		sensor = iio_priv(hw->iio_devs[i]);

		/* update fifo decimators and sample in pattern */
		if (hw->enable_mask & BIT(sensor->id)) {
			sensor->sip = sensor->odr / min_odr;
			sensor->decimator = max_odr / sensor->odr;
			data = st_lsm6dsx_get_decimator_val(sensor->decimator);
		} else {
			sensor->sip = 0;
			sensor->decimator = 0;
			data = 0;
		}

		err = st_lsm6dsx_write_with_mask(hw,
					ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR,
					sensor->decimator_mask, data);
		if (err < 0)
			return err;

		sip += sensor->sip;
	}
	hw->sip = sip;

	return 0;
}

static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
				    enum st_lsm6dsx_fifo_mode fifo_mode)
{
	u8 data;
	int err;

	switch (fifo_mode) {
	case ST_LSM6DSX_FIFO_BYPASS:
		data = fifo_mode;
		break;
	case ST_LSM6DSX_FIFO_CONT:
		data = (ST_LSM6DSX_MAX_FIFO_ODR_VAL <<
			__ffs(ST_LSM6DSX_FIFO_ODR_MASK)) | fifo_mode;
		break;
	default:
		return -EINVAL;
	}

	err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
			    sizeof(data), &data);
	if (err < 0)
		return err;

	hw->fifo_mode = fifo_mode;

	return 0;
}

int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
{
	u16 fifo_watermark = ~0, cur_watermark, sip = 0;
	struct st_lsm6dsx_hw *hw = sensor->hw;
	struct st_lsm6dsx_sensor *cur_sensor;
	__le16 wdata;
	int i, err;
	u8 data;

	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
		cur_sensor = iio_priv(hw->iio_devs[i]);

		if (!(hw->enable_mask & BIT(cur_sensor->id)))
			continue;

		cur_watermark = (cur_sensor == sensor) ? watermark
						       : cur_sensor->watermark;

		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
		sip += cur_sensor->sip;
	}

	if (!sip)
		return 0;

	fifo_watermark = max_t(u16, fifo_watermark, sip);
	fifo_watermark = (fifo_watermark / sip) * sip;
	fifo_watermark = fifo_watermark * ST_LSM6DSX_SAMPLE_DEPTH;

	mutex_lock(&hw->lock);

	err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_THH_ADDR,
			   sizeof(data), &data);
	if (err < 0)
		goto out;

	fifo_watermark = ((data << 8) & ~ST_LSM6DSX_FIFO_TH_MASK) |
			 (fifo_watermark & ST_LSM6DSX_FIFO_TH_MASK);

	wdata = cpu_to_le16(fifo_watermark);
	err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_THL_ADDR,
			    sizeof(wdata), (u8 *)&wdata);
out:
	mutex_unlock(&hw->lock);

	return err < 0 ? err : 0;
}

/**
 * st_lsm6dsx_read_fifo() - LSM6DS3-LSM6DS3H-LSM6DSL-LSM6DSM read FIFO routine
 * @hw: Pointer to instance of struct st_lsm6dsx_hw.
 *
 * Read samples from the hw FIFO and push them to IIO buffers.
 *
 * Return: Number of bytes read from the FIFO
 */
static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
{
	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
	int err, acc_sip, gyro_sip, read_len, samples, offset;
	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
	s64 acc_ts, acc_delta_ts, gyro_ts, gyro_delta_ts;
	u8 iio_buff[ALIGN(ST_LSM6DSX_SAMPLE_SIZE, sizeof(s64)) + sizeof(s64)];
	u8 buff[pattern_len];
	__le16 fifo_status;

	err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_DIFFL_ADDR,
			   sizeof(fifo_status), (u8 *)&fifo_status);
	if (err < 0)
		return err;

	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
		return 0;

	fifo_len = (le16_to_cpu(fifo_status) & ST_LSM6DSX_FIFO_DIFF_MASK) *
		   ST_LSM6DSX_CHAN_SIZE;
	samples = fifo_len / ST_LSM6DSX_SAMPLE_SIZE;
	fifo_len = (fifo_len / pattern_len) * pattern_len;

	/*
	 * compute delta timestamp between two consecutive samples
	 * in order to estimate queueing time of data generated
	 * by the sensor
	 */
	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
	acc_ts = acc_sensor->ts - acc_sensor->delta_ts;
	acc_delta_ts = div_s64(acc_sensor->delta_ts * acc_sensor->decimator,
			       samples);

	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
	gyro_ts = gyro_sensor->ts - gyro_sensor->delta_ts;
	gyro_delta_ts = div_s64(gyro_sensor->delta_ts * gyro_sensor->decimator,
				samples);

	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
		err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
				   sizeof(buff), buff);
		if (err < 0)
			return err;

		/*
		 * Data are written to the FIFO with a specific pattern
		 * depending on the configured ODRs. The first sequence of data
		 * stored in FIFO contains the data of all enabled sensors
		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated
		 * depending on the value of the decimation factor set for each
		 * sensor.
		 *
		 * Supposing the FIFO is storing data from gyroscope and
		 * accelerometer at different ODRs:
		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
		 * Since the gyroscope ODR is twice the accelerometer one, the
		 * following pattern is repeated every 9 samples:
		 *   - Gx, Gy, Gz, Ax, Ay, Az, Gx, Gy, Gz
		 */
		gyro_sip = gyro_sensor->sip;
		acc_sip = acc_sensor->sip;
		offset = 0;

		while (acc_sip > 0 || gyro_sip > 0) {
			if (gyro_sip-- > 0) {
				memcpy(iio_buff, &buff[offset],
				       ST_LSM6DSX_SAMPLE_SIZE);
				iio_push_to_buffers_with_timestamp(
					hw->iio_devs[ST_LSM6DSX_ID_GYRO],
					iio_buff, gyro_ts);
				offset += ST_LSM6DSX_SAMPLE_SIZE;
				gyro_ts += gyro_delta_ts;
			}

			if (acc_sip-- > 0) {
				memcpy(iio_buff, &buff[offset],
				       ST_LSM6DSX_SAMPLE_SIZE);
				iio_push_to_buffers_with_timestamp(
					hw->iio_devs[ST_LSM6DSX_ID_ACC],
					iio_buff, acc_ts);
				offset += ST_LSM6DSX_SAMPLE_SIZE;
				acc_ts += acc_delta_ts;
			}
		}
	}

	return read_len;
}

static int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
{
	int err;

	mutex_lock(&hw->fifo_lock);

	st_lsm6dsx_read_fifo(hw);
	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);

	mutex_unlock(&hw->fifo_lock);

	return err;
}

static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable)
{
	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
	struct st_lsm6dsx_hw *hw = sensor->hw;
	int err;

	if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) {
		err = st_lsm6dsx_flush_fifo(hw);
		if (err < 0)
			return err;
	}

	if (enable) {
		err = st_lsm6dsx_sensor_enable(sensor);
		if (err < 0)
			return err;
	} else {
		err = st_lsm6dsx_sensor_disable(sensor);
		if (err < 0)
			return err;
	}

	err = st_lsm6dsx_update_decimators(hw);
	if (err < 0)
		return err;

	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
	if (err < 0)
		return err;

	if (hw->enable_mask) {
		err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
		if (err < 0)
			return err;

		/*
		 * store enable buffer timestamp as reference to compute
		 * first delta timestamp
		 */
		sensor->ts = iio_get_time_ns(iio_dev);
	}

	return 0;
}

static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private)
{
	struct st_lsm6dsx_hw *hw = (struct st_lsm6dsx_hw *)private;
	struct st_lsm6dsx_sensor *sensor;
	int i;

	if (!hw->sip)
		return IRQ_NONE;

	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
		sensor = iio_priv(hw->iio_devs[i]);

		if (sensor->sip > 0) {
			s64 timestamp;

			timestamp = iio_get_time_ns(hw->iio_devs[i]);
			sensor->delta_ts = timestamp - sensor->ts;
			sensor->ts = timestamp;
		}
	}

	return IRQ_WAKE_THREAD;
}

static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
{
	struct st_lsm6dsx_hw *hw = (struct st_lsm6dsx_hw *)private;
	int count;

	mutex_lock(&hw->fifo_lock);
	count = st_lsm6dsx_read_fifo(hw);
	mutex_unlock(&hw->fifo_lock);

	return !count ? IRQ_NONE : IRQ_HANDLED;
}

static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
{
	return st_lsm6dsx_update_fifo(iio_dev, true);
}

static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
{
	return st_lsm6dsx_update_fifo(iio_dev, false);
}

static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
	.preenable = st_lsm6dsx_buffer_preenable,
	.postdisable = st_lsm6dsx_buffer_postdisable,
};

int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
{
	struct iio_buffer *buffer;
	unsigned long irq_type;
	int i, err;

	irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));

	switch (irq_type) {
	case IRQF_TRIGGER_HIGH:
	case IRQF_TRIGGER_RISING:
		break;
	default:
		dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
		return -EINVAL;
	}

	err = devm_request_threaded_irq(hw->dev, hw->irq,
					st_lsm6dsx_handler_irq,
					st_lsm6dsx_handler_thread,
					irq_type | IRQF_ONESHOT,
					"lsm6dsx", hw);
	if (err) {
		dev_err(hw->dev, "failed to request trigger irq %d\n",
			hw->irq);
		return err;
	}

	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
		buffer = devm_iio_kfifo_allocate(hw->dev);
		if (!buffer)
			return -ENOMEM;

		iio_device_attach_buffer(hw->iio_devs[i], buffer);
		hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
		hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
	}

	return 0;
}