summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/scrub.c
blob: 60f0e28db31eea09b96ac8c40f30573ccba59a69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
#include <linux/ratelimit.h>
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
#include "transaction.h"
#include "backref.h"
#include "extent_io.h"
#include "check-integrity.h"

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

struct scrub_block;
struct scrub_dev;

#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */

struct scrub_page {
	struct scrub_block	*sblock;
	struct page		*page;
	struct block_device	*bdev;
	u64			flags;  /* extent flags */
	u64			generation;
	u64			logical;
	u64			physical;
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
	struct scrub_dev	*sdev;
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
	int			page_count;
	int			next_free;
	struct btrfs_work	work;
};

struct scrub_block {
	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
	struct scrub_dev	*sdev;
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
	};
};

struct scrub_dev {
	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
	struct btrfs_device	*dev;
	int			first_free;
	int			curr;
	atomic_t		in_flight;
	atomic_t		fixup_cnt;
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
	int			readonly;
	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
	u32			sectorsize;
	u32			nodesize;
	u32			leafsize;
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

struct scrub_fixup_nodatasum {
	struct scrub_dev	*sdev;
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};


static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
static int scrub_setup_recheck_block(struct scrub_dev *sdev,
				     struct btrfs_mapping_tree *map_tree,
				     u64 length, u64 logical,
				     struct scrub_block *sblock);
static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
			       struct scrub_block *sblock, int is_metadata,
			       int have_csum, u8 *csum, u64 generation,
			       u16 csum_size);
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static void scrub_complete_bio_end_io(struct bio *bio, int err);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
static int scrub_add_page_to_bio(struct scrub_dev *sdev,
				 struct scrub_page *spage);
static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
		       u64 physical, u64 flags, u64 gen, int mirror_num,
		       u8 *csum, int force);
static void scrub_bio_end_io(struct bio *bio, int err);
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);


static void scrub_free_csums(struct scrub_dev *sdev)
{
	while (!list_empty(&sdev->csum_list)) {
		struct btrfs_ordered_sum *sum;
		sum = list_first_entry(&sdev->csum_list,
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
{
	int i;

	if (!sdev)
		return;

	/* this can happen when scrub is cancelled */
	if (sdev->curr != -1) {
		struct scrub_bio *sbio = sdev->bios[sdev->curr];

		for (i = 0; i < sbio->page_count; i++) {
			BUG_ON(!sbio->pagev[i]);
			BUG_ON(!sbio->pagev[i]->page);
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
		struct scrub_bio *sbio = sdev->bios[i];

		if (!sbio)
			break;
		kfree(sbio);
	}

	scrub_free_csums(sdev);
	kfree(sdev);
}

static noinline_for_stack
struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
{
	struct scrub_dev *sdev;
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
	int pages_per_bio;

	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
			      bio_get_nr_vecs(dev->bdev));
	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
	if (!sdev)
		goto nomem;
	sdev->dev = dev;
	sdev->pages_per_bio = pages_per_bio;
	sdev->curr = -1;
	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
		sdev->bios[i] = sbio;

		sbio->index = i;
		sbio->sdev = sdev;
		sbio->page_count = 0;
		sbio->work.func = scrub_bio_end_io_worker;

		if (i != SCRUB_BIOS_PER_DEV-1)
			sdev->bios[i]->next_free = i + 1;
		else
			sdev->bios[i]->next_free = -1;
	}
	sdev->first_free = 0;
	sdev->nodesize = dev->dev_root->nodesize;
	sdev->leafsize = dev->dev_root->leafsize;
	sdev->sectorsize = dev->dev_root->sectorsize;
	atomic_set(&sdev->in_flight, 0);
	atomic_set(&sdev->fixup_cnt, 0);
	atomic_set(&sdev->cancel_req, 0);
	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sdev->csum_list);

	spin_lock_init(&sdev->list_lock);
	spin_lock_init(&sdev->stat_lock);
	init_waitqueue_head(&sdev->list_wait);
	return sdev;

nomem:
	scrub_free_dev(sdev);
	return ERR_PTR(-ENOMEM);
}

static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
	struct scrub_warning *swarn = ctx;
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
			swarn->logical, swarn->dev->name,
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
			(char *)(unsigned long)ipath->fspath->val[i]);

	free_ipath(ipath);
	return 0;

err:
	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
		swarn->logical, swarn->dev->name,
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
{
	struct btrfs_device *dev = sblock->sdev->dev;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
	u32 item_size;
	int ret;
	u64 ref_root;
	u8 ref_level;
	unsigned long ptr = 0;
	const int bufsize = 4096;
	u64 extent_item_pos;

	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
	BUG_ON(sblock->page_count < 1);
	swarn.sector = (sblock->pagev[0].physical) >> 9;
	swarn.logical = sblock->pagev[0].logical;
	swarn.errstr = errstr;
	swarn.dev = dev;
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
	if (ret < 0)
		goto out;

	extent_item_pos = swarn.logical - found_key.objectid;
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	btrfs_release_path(path);

	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		do {
			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
							&ref_root, &ref_level);
			printk(KERN_WARNING
				"btrfs: %s at logical %llu on dev %s, "
				"sector %llu: metadata %s (level %d) in tree "
				"%llu\n", errstr, swarn.logical, dev->name,
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
	} else {
		swarn.path = path;
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct page *page = NULL;
	unsigned long index;
	struct scrub_fixup_nodatasum *fixup = ctx;
	int ret;
	int corrected = 0;
	struct btrfs_key key;
	struct inode *inode = NULL;
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
	if (IS_ERR(local_root))
		return PTR_ERR(local_root);

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		struct btrfs_mapping_tree *map_tree;
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
					fixup->logical, page,
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
	if (inode)
		iput(inode);

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
	struct scrub_dev *sdev;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
	sdev = fixup->sdev;
	fs_info = fixup->root->fs_info;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sdev->stat_lock);
		++sdev->stat.malloc_errors;
		spin_unlock(&sdev->stat_lock);
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

	spin_lock(&sdev->stat_lock);
	++sdev->stat.corrected_errors;
	spin_unlock(&sdev->stat_lock);

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
		spin_lock(&sdev->stat_lock);
		++sdev->stat.uncorrectable_errors;
		spin_unlock(&sdev->stat_lock);
		printk_ratelimited(KERN_ERR
			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
			(unsigned long long)fixup->logical, sdev->dev->name);
	}

	btrfs_free_path(path);
	kfree(fixup);

	/* see caller why we're pretending to be paused in the scrub counters */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sdev->fixup_cnt);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sdev->list_wait);
}

/*
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
 */
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
{
	struct scrub_dev *sdev = sblock_to_check->sdev;
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
	fs_info = sdev->dev->dev_root->fs_info;
	length = sblock_to_check->page_count * PAGE_SIZE;
	logical = sblock_to_check->pagev[0].logical;
	generation = sblock_to_check->pagev[0].generation;
	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0].flags &
			BTRFS_EXTENT_FLAG_DATA);
	have_csum = sblock_to_check->pagev[0].have_csum;
	csum = sblock_to_check->pagev[0].csum;

	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.malloc_errors++;
		sdev->stat.read_errors++;
		sdev->stat.uncorrectable_errors++;
		spin_unlock(&sdev->stat_lock);
		goto out;
	}

	/* setup the context, map the logical blocks and alloc the pages */
	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
					logical, sblocks_for_recheck);
	if (ret) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.read_errors++;
		sdev->stat.uncorrectable_errors++;
		spin_unlock(&sdev->stat_lock);
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;

	/* build and submit the bios for the failed mirror, check checksums */
	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
				  csum, generation, sdev->csum_size);
	if (ret) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.read_errors++;
		sdev->stat.uncorrectable_errors++;
		spin_unlock(&sdev->stat_lock);
		goto out;
	}

	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
		spin_lock(&sdev->stat_lock);
		sdev->stat.unverified_errors++;
		spin_unlock(&sdev->stat_lock);

		goto out;
	}

	if (!sblock_bad->no_io_error_seen) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.read_errors++;
		spin_unlock(&sdev->stat_lock);
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
	} else if (sblock_bad->checksum_error) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.csum_errors++;
		spin_unlock(&sdev->stat_lock);
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
	} else if (sblock_bad->header_error) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.verify_errors++;
		spin_unlock(&sdev->stat_lock);
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
	}

	if (sdev->readonly)
		goto did_not_correct_error;

	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;

		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
		fixup_nodatasum->sdev = sdev;
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
		/*
		 * increment scrubs_running to prevent cancel requests from
		 * completing as long as a fixup worker is running. we must also
		 * increment scrubs_paused to prevent deadlocking on pause
		 * requests used for transactions commits (as the worker uses a
		 * transaction context). it is safe to regard the fixup worker
		 * as paused for all matters practical. effectively, we only
		 * avoid cancellation requests from completing.
		 */
		mutex_lock(&fs_info->scrub_lock);
		atomic_inc(&fs_info->scrubs_running);
		atomic_inc(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		atomic_inc(&sdev->fixup_cnt);
		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
		btrfs_queue_worker(&fs_info->scrub_workers,
				   &fixup_nodatasum->work);
		goto out;
	}

	/*
	 * now build and submit the bios for the other mirrors, check
	 * checksums
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
		if (mirror_index == failed_mirror_index)
			continue;

		/* build and submit the bios, check checksums */
		ret = scrub_recheck_block(fs_info,
					  sblocks_for_recheck + mirror_index,
					  is_metadata, have_csum, csum,
					  generation, sdev->csum_size);
		if (ret)
			goto did_not_correct_error;
	}

	/*
	 * first try to pick the mirror which is completely without I/O
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
		struct scrub_block *sblock_other = sblocks_for_recheck +
						   mirror_index;

		if (!sblock_other->header_error &&
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
			int force_write = is_metadata || have_csum;

			ret = scrub_repair_block_from_good_copy(sblock_bad,
								sblock_other,
								force_write);
			if (0 == ret)
				goto corrected_error;
		}
	}

	/*
	 * in case of I/O errors in the area that is supposed to be
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
	 */

	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		struct scrub_page *page_bad = sblock_bad->pagev + page_num;

		if (!page_bad->io_error)
			continue;

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
			struct scrub_page *page_other = sblock_other->pagev +
							page_num;

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
		}

		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
	}

	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
			ret = scrub_recheck_block(fs_info, sblock_bad,
						  is_metadata, have_csum, csum,
						  generation, sdev->csum_size);
			if (!ret && !sblock_bad->header_error &&
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
			spin_lock(&sdev->stat_lock);
			sdev->stat.corrected_errors++;
			spin_unlock(&sdev->stat_lock);
			printk_ratelimited(KERN_ERR
				"btrfs: fixed up error at logical %llu on dev %s\n",
				(unsigned long long)logical, sdev->dev->name);
		}
	} else {
did_not_correct_error:
		spin_lock(&sdev->stat_lock);
		sdev->stat.uncorrectable_errors++;
		spin_unlock(&sdev->stat_lock);
		printk_ratelimited(KERN_ERR
			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
			(unsigned long long)logical, sdev->dev->name);
	}

out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
			     page_index++)
				if (sblock->pagev[page_index].page)
					__free_page(
						sblock->pagev[page_index].page);
		}
		kfree(sblocks_for_recheck);
	}

	return 0;
}

static int scrub_setup_recheck_block(struct scrub_dev *sdev,
				     struct btrfs_mapping_tree *map_tree,
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
	 * note: the three members sdev, ref_count and outstanding_pages
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;

		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
				      &bbio, 0);
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}

		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
			page = sblock->pagev + page_index;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
			page->bdev = bbio->stripes[mirror_index].dev->bdev;
			page->mirror_num = mirror_index + 1;
			page->page = alloc_page(GFP_NOFS);
			if (!page->page) {
				spin_lock(&sdev->stat_lock);
				sdev->stat.malloc_errors++;
				spin_unlock(&sdev->stat_lock);
				return -ENOMEM;
			}
			sblock->page_count++;
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
}

/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
			       struct scrub_block *sblock, int is_metadata,
			       int have_csum, u8 *csum, u64 generation,
			       u16 csum_size)
{
	int page_num;

	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
		int ret;
		struct scrub_page *page = sblock->pagev + page_num;
		DECLARE_COMPLETION_ONSTACK(complete);

		BUG_ON(!page->page);
		bio = bio_alloc(GFP_NOFS, 1);
		if (!bio)
			return -EIO;
		bio->bi_bdev = page->bdev;
		bio->bi_sector = page->physical >> 9;
		bio->bi_end_io = scrub_complete_bio_end_io;
		bio->bi_private = &complete;

		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
		}
		btrfsic_submit_bio(READ, bio);

		/* this will also unplug the queue */
		wait_for_completion(&complete);

		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			sblock->no_io_error_seen = 0;
		bio_put(bio);
	}

	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

	return 0;
}

static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
{
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	struct btrfs_root *root = fs_info->extent_root;
	void *mapped_buffer;

	BUG_ON(!sblock->pagev[0].page);
	if (is_metadata) {
		struct btrfs_header *h;

		mapped_buffer = kmap_atomic(sblock->pagev[0].page, KM_USER0);
		h = (struct btrfs_header *)mapped_buffer;

		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
		    generation != le64_to_cpu(h->generation) ||
		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
			   BTRFS_UUID_SIZE))
			sblock->header_error = 1;
		csum = h->csum;
	} else {
		if (!have_csum)
			return;

		mapped_buffer = kmap_atomic(sblock->pagev[0].page, KM_USER0);
	}

	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
			crc = btrfs_csum_data(root,
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
			crc = btrfs_csum_data(root, mapped_buffer, crc,
					      PAGE_SIZE);

		kunmap_atomic(mapped_buffer, KM_USER0);
		page_num++;
		if (page_num >= sblock->page_count)
			break;
		BUG_ON(!sblock->pagev[page_num].page);

		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page,
					    KM_USER0);
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
}

static void scrub_complete_bio_end_io(struct bio *bio, int err)
{
	complete((struct completion *)bio->bi_private);
}

static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;

	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;

		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
	}

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
	struct scrub_page *page_good = sblock_good->pagev + page_num;

	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
	BUG_ON(sblock_good->pagev[page_num].page == NULL);
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;
		DECLARE_COMPLETION_ONSTACK(complete);

		bio = bio_alloc(GFP_NOFS, 1);
		if (!bio)
			return -EIO;
		bio->bi_bdev = page_bad->bdev;
		bio->bi_sector = page_bad->physical >> 9;
		bio->bi_end_io = scrub_complete_bio_end_io;
		bio->bi_private = &complete;

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
		}
		btrfsic_submit_bio(WRITE, bio);

		/* this will also unplug the queue */
		wait_for_completion(&complete);
		bio_put(bio);
	}

	return 0;
}

static void scrub_checksum(struct scrub_block *sblock)
{
	u64 flags;
	int ret;

	BUG_ON(sblock->page_count < 1);
	flags = sblock->pagev[0].flags;
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
}

static int scrub_checksum_data(struct scrub_block *sblock)
{
	struct scrub_dev *sdev = sblock->sdev;
	u8 csum[BTRFS_CSUM_SIZE];
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u32 crc = ~(u32)0;
	int fail = 0;
	struct btrfs_root *root = sdev->dev->dev_root;
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
	if (!sblock->pagev[0].have_csum)
		return 0;

	on_disk_csum = sblock->pagev[0].csum;
	page = sblock->pagev[0].page;
	buffer = kmap_atomic(page, KM_USER0);

	len = sdev->sectorsize;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

		crc = btrfs_csum_data(root, buffer, crc, l);
		kunmap_atomic(buffer, KM_USER0);
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
		BUG_ON(!sblock->pagev[index].page);
		page = sblock->pagev[index].page;
		buffer = kmap_atomic(page, KM_USER0);
	}

	btrfs_csum_final(crc, csum);
	if (memcmp(csum, on_disk_csum, sdev->csum_size))
		fail = 1;

	if (fail) {
		spin_lock(&sdev->stat_lock);
		++sdev->stat.csum_errors;
		spin_unlock(&sdev->stat_lock);
	}

	return fail;
}

static int scrub_checksum_tree_block(struct scrub_block *sblock)
{
	struct scrub_dev *sdev = sblock->sdev;
	struct btrfs_header *h;
	struct btrfs_root *root = sdev->dev->dev_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
	page = sblock->pagev[0].page;
	mapped_buffer = kmap_atomic(page, KM_USER0);
	h = (struct btrfs_header *)mapped_buffer;
	memcpy(on_disk_csum, h->csum, sdev->csum_size);

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
		++fail;

	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
		++fail;

	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

	BUG_ON(sdev->nodesize != sdev->leafsize);
	len = sdev->nodesize - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

		crc = btrfs_csum_data(root, p, crc, l);
		kunmap_atomic(mapped_buffer, KM_USER0);
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
		BUG_ON(!sblock->pagev[index].page);
		page = sblock->pagev[index].page;
		mapped_buffer = kmap_atomic(page, KM_USER0);
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
		++crc_fail;

	if (crc_fail || fail) {
		spin_lock(&sdev->stat_lock);
		if (crc_fail)
			++sdev->stat.csum_errors;
		if (fail)
			++sdev->stat.verify_errors;
		spin_unlock(&sdev->stat_lock);
	}

	return fail || crc_fail;
}

static int scrub_checksum_super(struct scrub_block *sblock)
{
	struct btrfs_super_block *s;
	struct scrub_dev *sdev = sblock->sdev;
	struct btrfs_root *root = sdev->dev->dev_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u32 crc = ~(u32)0;
	int fail = 0;
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
	page = sblock->pagev[0].page;
	mapped_buffer = kmap_atomic(page, KM_USER0);
	s = (struct btrfs_super_block *)mapped_buffer;
	memcpy(on_disk_csum, s->csum, sdev->csum_size);

	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
		++fail;

	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
		++fail;

	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

		crc = btrfs_csum_data(root, p, crc, l);
		kunmap_atomic(mapped_buffer, KM_USER0);
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
		BUG_ON(!sblock->pagev[index].page);
		page = sblock->pagev[index].page;
		mapped_buffer = kmap_atomic(page, KM_USER0);
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
		++fail;

	if (fail) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sdev->stat_lock);
		++sdev->stat.super_errors;
		spin_unlock(&sdev->stat_lock);
	}

	return fail;
}

static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
			if (sblock->pagev[i].page)
				__free_page(sblock->pagev[i].page);
		kfree(sblock);
	}
}

static void scrub_submit(struct scrub_dev *sdev)
{
	struct scrub_bio *sbio;

	if (sdev->curr == -1)
		return;

	sbio = sdev->bios[sdev->curr];
	sdev->curr = -1;
	atomic_inc(&sdev->in_flight);

	btrfsic_submit_bio(READ, sbio->bio);
}

static int scrub_add_page_to_bio(struct scrub_dev *sdev,
				 struct scrub_page *spage)
{
	struct scrub_block *sblock = spage->sblock;
	struct scrub_bio *sbio;
	int ret;

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
	while (sdev->curr == -1) {
		spin_lock(&sdev->list_lock);
		sdev->curr = sdev->first_free;
		if (sdev->curr != -1) {
			sdev->first_free = sdev->bios[sdev->curr]->next_free;
			sdev->bios[sdev->curr]->next_free = -1;
			sdev->bios[sdev->curr]->page_count = 0;
			spin_unlock(&sdev->list_lock);
		} else {
			spin_unlock(&sdev->list_lock);
			wait_event(sdev->list_wait, sdev->first_free != -1);
		}
	}
	sbio = sdev->bios[sdev->curr];
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
		bio = sbio->bio;
		if (!bio) {
			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
		bio->bi_bdev = sdev->dev->bdev;
		bio->bi_sector = spage->physical >> 9;
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_submit(sdev);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
		scrub_submit(sdev);
		goto again;
	}

	scrub_block_get(sblock); /* one for the added page */
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
	if (sbio->page_count == sdev->pages_per_bio)
		scrub_submit(sdev);

	return 0;
}

static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
		       u64 physical, u64 flags, u64 gen, int mirror_num,
		       u8 *csum, int force)
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sdev->stat_lock);
		sdev->stat.malloc_errors++;
		spin_unlock(&sdev->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sdev = sdev;
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage = sblock->pagev + index;
		u64 l = min_t(u64, len, PAGE_SIZE);

		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page) {
			spin_lock(&sdev->stat_lock);
			sdev->stat.malloc_errors++;
			spin_unlock(&sdev->stat_lock);
			while (index > 0) {
				index--;
				__free_page(sblock->pagev[index].page);
			}
			kfree(sblock);
			return -ENOMEM;
		}
		spage->sblock = sblock;
		spage->bdev = sdev->dev->bdev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sdev->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		len -= l;
		logical += l;
		physical += l;
	}

	BUG_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev + index;
		int ret;

		ret = scrub_add_page_to_bio(sdev, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	if (force)
		scrub_submit(sdev);

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct scrub_dev *sdev = sbio->sdev;
	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_dev *sdev = sbio->sdev;
	int i;

	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	if (sbio->err) {
		/* what is this good for??? */
		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
		sbio->bio->bi_phys_segments = 0;
		sbio->bio->bi_idx = 0;

		for (i = 0; i < sbio->page_count; i++) {
			struct bio_vec *bi;
			bi = &sbio->bio->bi_io_vec[i];
			bi->bv_offset = 0;
			bi->bv_len = PAGE_SIZE;
		}
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
	spin_lock(&sdev->list_lock);
	sbio->next_free = sdev->first_free;
	sdev->first_free = sbio->index;
	spin_unlock(&sdev->list_lock);
	atomic_dec(&sdev->in_flight);
	wake_up(&sdev->list_wait);
}

static void scrub_block_complete(struct scrub_block *sblock)
{
	if (!sblock->no_io_error_seen)
		scrub_handle_errored_block(sblock);
	else
		scrub_checksum(sblock);
}

static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
	int ret = 0;
	unsigned long i;
	unsigned long num_sectors;

	while (!list_empty(&sdev->csum_list)) {
		sum = list_first_entry(&sdev->csum_list,
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

		++sdev->stat.csum_discards;
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

	num_sectors = sum->len / sdev->sectorsize;
	for (i = 0; i < num_sectors; ++i) {
		if (sum->sums[i].bytenr == logical) {
			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
			ret = 1;
			break;
		}
	}
	if (ret && i == num_sectors - 1) {
		list_del(&sum->list);
		kfree(sum);
	}
	return ret;
}

/* scrub extent tries to collect up to 64 kB for each bio */
static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
			u64 physical, u64 flags, u64 gen, int mirror_num)
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sdev->sectorsize;
		spin_lock(&sdev->stat_lock);
		sdev->stat.data_extents_scrubbed++;
		sdev->stat.data_bytes_scrubbed += len;
		spin_unlock(&sdev->stat_lock);
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		BUG_ON(sdev->nodesize != sdev->leafsize);
		blocksize = sdev->nodesize;
		spin_lock(&sdev->stat_lock);
		sdev->stat.tree_extents_scrubbed++;
		sdev->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sdev->stat_lock);
	} else {
		blocksize = sdev->sectorsize;
		BUG_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sdev, logical, l, csum);
			if (have_csum == 0)
				++sdev->stat.no_csum;
		}
		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
				  mirror_num, have_csum ? csum : NULL, 0);
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
	struct map_lookup *map, int num, u64 base, u64 length)
{
	struct btrfs_path *path;
	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	struct blk_plug plug;
	u64 flags;
	int ret;
	int slot;
	int i;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
	u64 generation;
	int mirror_num;
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;

	u64 increment = map->stripe_len;
	u64 offset;

	nstripes = length;
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
		mirror_num = 1;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
		mirror_num = num % map->sub_stripes + 1;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
		mirror_num = num % map->num_stripes + 1;
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
		mirror_num = num % map->num_stripes + 1;
	} else {
		increment = map->stripe_len;
		mirror_num = 1;
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
	 */
	logical = base + offset;

	wait_event(sdev->list_wait,
		   atomic_read(&sdev->in_flight) == 0);
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
	key_end.objectid = base + offset + nstripes * increment;
	key_end.type = BTRFS_EXTENT_ITEM_KEY;
	key_end.offset = (u64)0;
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
	key_end.offset = base + offset + nstripes * increment;
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

	mutex_lock(&fs_info->scrub_lock);
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	wake_up(&fs_info->scrub_pause_wait);

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
	blk_start_plug(&plug);

	/*
	 * now find all extents for each stripe and scrub them
	 */
	logical = base + offset;
	physical = map->stripes[num].physical;
	ret = 0;
	for (i = 0; i < nstripes; ++i) {
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sdev->cancel_req)) {
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
			scrub_submit(sdev);
			wait_event(sdev->list_wait,
				   atomic_read(&sdev->in_flight) == 0);
			atomic_inc(&fs_info->scrubs_paused);
			wake_up(&fs_info->scrub_pause_wait);
			mutex_lock(&fs_info->scrub_lock);
			while (atomic_read(&fs_info->scrub_pause_req)) {
				mutex_unlock(&fs_info->scrub_lock);
				wait_event(fs_info->scrub_pause_wait,
				   atomic_read(&fs_info->scrub_pause_req) == 0);
				mutex_lock(&fs_info->scrub_lock);
			}
			atomic_dec(&fs_info->scrubs_paused);
			mutex_unlock(&fs_info->scrub_lock);
			wake_up(&fs_info->scrub_pause_wait);
		}

		ret = btrfs_lookup_csums_range(csum_root, logical,
					       logical + map->stripe_len - 1,
					       &sdev->csum_list, 1);
		if (ret)
			goto out;

		key.objectid = logical;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = (u64)0;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = btrfs_previous_item(root, path, 0,
						  BTRFS_EXTENT_ITEM_KEY);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		while (1) {
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.objectid + key.offset <= logical)
				goto next;

			if (key.objectid >= logical + map->stripe_len)
				break;

			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
				goto next;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				printk(KERN_ERR
				       "btrfs scrub: tree block %llu spanning "
				       "stripes, ignored. logical=%llu\n",
				       (unsigned long long)key.objectid,
				       (unsigned long long)logical);
				goto next;
			}

			/*
			 * trim extent to this stripe
			 */
			if (key.objectid < logical) {
				key.offset -= logical - key.objectid;
				key.objectid = logical;
			}
			if (key.objectid + key.offset >
			    logical + map->stripe_len) {
				key.offset = logical + map->stripe_len -
					     key.objectid;
			}

			ret = scrub_extent(sdev, key.objectid, key.offset,
					   key.objectid - logical + physical,
					   flags, generation, mirror_num);
			if (ret)
				goto out;

next:
			path->slots[0]++;
		}
		btrfs_release_path(path);
		logical += increment;
		physical += map->stripe_len;
		spin_lock(&sdev->stat_lock);
		sdev->stat.last_physical = physical;
		spin_unlock(&sdev->stat_lock);
	}
	/* push queued extents */
	scrub_submit(sdev);

out:
	blk_finish_plug(&plug);
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
	u64 dev_offset)
{
	struct btrfs_mapping_tree *map_tree =
		&sdev->dev->dev_root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	int i;
	int ret = -EINVAL;

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
		if (map->stripes[i].dev == sdev->dev &&
		    map->stripes[i].physical == dev_offset) {
			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	struct btrfs_root *root = sdev->dev->dev_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

	key.objectid = sdev->dev->devid;
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;


	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

		if (found_key.objectid != sdev->dev->devid)
			break;

		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (found_key.offset + length <= start) {
			key.offset = found_key.offset + length;
			btrfs_release_path(path);
			continue;
		}

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
		if (!cache) {
			ret = -ENOENT;
			break;
		}
		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
				  chunk_offset, length, found_key.offset);
		btrfs_put_block_group(cache);
		if (ret)
			break;

		key.offset = found_key.offset + length;
		btrfs_release_path(path);
	}

	btrfs_free_path(path);

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
}

static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
	struct btrfs_device *device = sdev->dev;
	struct btrfs_root *root = device->dev_root;

	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
		return -EIO;

	gen = root->fs_info->last_trans_committed;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
			break;

		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
		if (ret)
			return ret;
	}
	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret = 0;

	mutex_lock(&fs_info->scrub_lock);
	if (fs_info->scrub_workers_refcnt == 0) {
		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
			   fs_info->thread_pool_size, &fs_info->generic_worker);
		fs_info->scrub_workers.idle_thresh = 4;
		ret = btrfs_start_workers(&fs_info->scrub_workers);
		if (ret)
			goto out;
	}
	++fs_info->scrub_workers_refcnt;
out:
	mutex_unlock(&fs_info->scrub_lock);

	return ret;
}

static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	if (--fs_info->scrub_workers_refcnt == 0)
		btrfs_stop_workers(&fs_info->scrub_workers);
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
	mutex_unlock(&fs_info->scrub_lock);
}


int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
		    struct btrfs_scrub_progress *progress, int readonly)
{
	struct scrub_dev *sdev;
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret;
	struct btrfs_device *dev;

	if (btrfs_fs_closing(root->fs_info))
		return -EINVAL;

	/*
	 * check some assumptions
	 */
	if (root->nodesize != root->leafsize) {
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
		       root->nodesize, root->leafsize);
		return -EINVAL;
	}

	if (root->nodesize > BTRFS_STRIPE_LEN) {
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
		       root->nodesize, BTRFS_STRIPE_LEN);
		return -EINVAL;
	}

	if (root->sectorsize != PAGE_SIZE) {
		/* not supported for data w/o checksums */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
		       root->sectorsize, (unsigned long long)PAGE_SIZE);
		return -EINVAL;
	}

	ret = scrub_workers_get(root);
	if (ret)
		return ret;

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(root, devid, NULL, NULL);
	if (!dev || dev->missing) {
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(root);
		return -ENODEV;
	}
	mutex_lock(&fs_info->scrub_lock);

	if (!dev->in_fs_metadata) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(root);
		return -ENODEV;
	}

	if (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(root);
		return -EINPROGRESS;
	}
	sdev = scrub_setup_dev(dev);
	if (IS_ERR(sdev)) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(root);
		return PTR_ERR(sdev);
	}
	sdev->readonly = readonly;
	dev->scrub_device = sdev;

	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

	down_read(&fs_info->scrub_super_lock);
	ret = scrub_supers(sdev);
	up_read(&fs_info->scrub_super_lock);

	if (!ret)
		ret = scrub_enumerate_chunks(sdev, start, end);

	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);

	if (progress)
		memcpy(progress, &sdev->stat, sizeof(*progress));

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
	mutex_unlock(&fs_info->scrub_lock);

	scrub_free_dev(sdev);
	scrub_workers_put(root);

	return ret;
}

void btrfs_scrub_pause(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

void btrfs_scrub_continue(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

void btrfs_scrub_pause_super(struct btrfs_root *root)
{
	down_write(&root->fs_info->scrub_super_lock);
}

void btrfs_scrub_continue_super(struct btrfs_root *root)
{
	up_write(&root->fs_info->scrub_super_lock);
}

int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
{

	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

int btrfs_scrub_cancel(struct btrfs_root *root)
{
	return __btrfs_scrub_cancel(root->fs_info);
}

int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct scrub_dev *sdev;

	mutex_lock(&fs_info->scrub_lock);
	sdev = dev->scrub_device;
	if (!sdev) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
	atomic_inc(&sdev->cancel_req);
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_device *dev;
	int ret;

	/*
	 * we have to hold the device_list_mutex here so the device
	 * does not go away in cancel_dev. FIXME: find a better solution
	 */
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(root, devid, NULL, NULL);
	if (!dev) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -ENODEV;
	}
	ret = btrfs_scrub_cancel_dev(root, dev);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);

	return ret;
}

int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
	struct scrub_dev *sdev = NULL;

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(root, devid, NULL, NULL);
	if (dev)
		sdev = dev->scrub_device;
	if (sdev)
		memcpy(progress, &sdev->stat, sizeof(*progress));
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
}