1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
/*
* include/linux/ktime.h
*
* ktime_t - nanosecond-resolution time format.
*
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
*
* data type definitions, declarations, prototypes and macros.
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* Credits:
*
* Roman Zippel provided the ideas and primary code snippets of
* the ktime_t union and further simplifications of the original
* code.
*
* For licencing details see kernel-base/COPYING
*/
#ifndef _LINUX_KTIME_H
#define _LINUX_KTIME_H
#include <linux/time.h>
#include <linux/jiffies.h>
/* Nanosecond scalar representation for kernel time values */
typedef s64 ktime_t;
/**
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
* @secs: seconds to set
* @nsecs: nanoseconds to set
*
* Return: The ktime_t representation of the value.
*/
static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
{
if (unlikely(secs >= KTIME_SEC_MAX))
return KTIME_MAX;
return secs * NSEC_PER_SEC + (s64)nsecs;
}
/* Subtract two ktime_t variables. rem = lhs -rhs: */
#define ktime_sub(lhs, rhs) ((lhs) - (rhs))
/* Add two ktime_t variables. res = lhs + rhs: */
#define ktime_add(lhs, rhs) ((lhs) + (rhs))
/*
* Same as ktime_add(), but avoids undefined behaviour on overflow; however,
* this means that you must check the result for overflow yourself.
*/
#define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs))
/*
* Add a ktime_t variable and a scalar nanosecond value.
* res = kt + nsval:
*/
#define ktime_add_ns(kt, nsval) ((kt) + (nsval))
/*
* Subtract a scalar nanosecod from a ktime_t variable
* res = kt - nsval:
*/
#define ktime_sub_ns(kt, nsval) ((kt) - (nsval))
/* convert a timespec to ktime_t format: */
static inline ktime_t timespec_to_ktime(struct timespec ts)
{
return ktime_set(ts.tv_sec, ts.tv_nsec);
}
/* convert a timespec64 to ktime_t format: */
static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
{
return ktime_set(ts.tv_sec, ts.tv_nsec);
}
/* convert a timeval to ktime_t format: */
static inline ktime_t timeval_to_ktime(struct timeval tv)
{
return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
}
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
#define ktime_to_timespec(kt) ns_to_timespec((kt))
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
#define ktime_to_timespec64(kt) ns_to_timespec64((kt))
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
#define ktime_to_timeval(kt) ns_to_timeval((kt))
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
#define ktime_to_ns(kt) (kt)
/**
* ktime_equal - Compares two ktime_t variables to see if they are equal
* @cmp1: comparable1
* @cmp2: comparable2
*
* Compare two ktime_t variables.
*
* Return: 1 if equal.
*/
static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
{
return cmp1 == cmp2;
}
/**
* ktime_compare - Compares two ktime_t variables for less, greater or equal
* @cmp1: comparable1
* @cmp2: comparable2
*
* Return: ...
* cmp1 < cmp2: return <0
* cmp1 == cmp2: return 0
* cmp1 > cmp2: return >0
*/
static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
{
if (cmp1 < cmp2)
return -1;
if (cmp1 > cmp2)
return 1;
return 0;
}
/**
* ktime_after - Compare if a ktime_t value is bigger than another one.
* @cmp1: comparable1
* @cmp2: comparable2
*
* Return: true if cmp1 happened after cmp2.
*/
static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
{
return ktime_compare(cmp1, cmp2) > 0;
}
/**
* ktime_before - Compare if a ktime_t value is smaller than another one.
* @cmp1: comparable1
* @cmp2: comparable2
*
* Return: true if cmp1 happened before cmp2.
*/
static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
{
return ktime_compare(cmp1, cmp2) < 0;
}
#if BITS_PER_LONG < 64
extern s64 __ktime_divns(const ktime_t kt, s64 div);
static inline s64 ktime_divns(const ktime_t kt, s64 div)
{
/*
* Negative divisors could cause an inf loop,
* so bug out here.
*/
BUG_ON(div < 0);
if (__builtin_constant_p(div) && !(div >> 32)) {
s64 ns = kt;
u64 tmp = ns < 0 ? -ns : ns;
do_div(tmp, div);
return ns < 0 ? -tmp : tmp;
} else {
return __ktime_divns(kt, div);
}
}
#else /* BITS_PER_LONG < 64 */
static inline s64 ktime_divns(const ktime_t kt, s64 div)
{
/*
* 32-bit implementation cannot handle negative divisors,
* so catch them on 64bit as well.
*/
WARN_ON(div < 0);
return kt / div;
}
#endif
static inline s64 ktime_to_us(const ktime_t kt)
{
return ktime_divns(kt, NSEC_PER_USEC);
}
static inline s64 ktime_to_ms(const ktime_t kt)
{
return ktime_divns(kt, NSEC_PER_MSEC);
}
static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
{
return ktime_to_us(ktime_sub(later, earlier));
}
static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
{
return ktime_to_ms(ktime_sub(later, earlier));
}
static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
{
return ktime_add_ns(kt, usec * NSEC_PER_USEC);
}
static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
{
return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
}
static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
{
return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
}
static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
{
return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
}
extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
/**
* ktime_to_timespec_cond - convert a ktime_t variable to timespec
* format only if the variable contains data
* @kt: the ktime_t variable to convert
* @ts: the timespec variable to store the result in
*
* Return: %true if there was a successful conversion, %false if kt was 0.
*/
static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
struct timespec *ts)
{
if (kt) {
*ts = ktime_to_timespec(kt);
return true;
} else {
return false;
}
}
/**
* ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
* format only if the variable contains data
* @kt: the ktime_t variable to convert
* @ts: the timespec variable to store the result in
*
* Return: %true if there was a successful conversion, %false if kt was 0.
*/
static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
struct timespec64 *ts)
{
if (kt) {
*ts = ktime_to_timespec64(kt);
return true;
} else {
return false;
}
}
/*
* The resolution of the clocks. The resolution value is returned in
* the clock_getres() system call to give application programmers an
* idea of the (in)accuracy of timers. Timer values are rounded up to
* this resolution values.
*/
#define LOW_RES_NSEC TICK_NSEC
#define KTIME_LOW_RES (LOW_RES_NSEC)
static inline ktime_t ns_to_ktime(u64 ns)
{
return ns;
}
static inline ktime_t ms_to_ktime(u64 ms)
{
return ms * NSEC_PER_MSEC;
}
# include <linux/timekeeping.h>
#endif
|