summaryrefslogtreecommitdiffstats
path: root/mm/kasan/generic.c
blob: df6627f62402c01dab04e6955bf80e7fb4b4b2ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// SPDX-License-Identifier: GPL-2.0
/*
 * This file contains core generic KASAN code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 */

#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>

#include "kasan.h"
#include "../slab.h"

/*
 * All functions below always inlined so compiler could
 * perform better optimizations in each of __asan_loadX/__assn_storeX
 * depending on memory access size X.
 */

static __always_inline bool memory_is_poisoned_1(const void *addr)
{
	s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);

	if (unlikely(shadow_value)) {
		s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
		return unlikely(last_accessible_byte >= shadow_value);
	}

	return false;
}

static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
						unsigned long size)
{
	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);

	/*
	 * Access crosses 8(shadow size)-byte boundary. Such access maps
	 * into 2 shadow bytes, so we need to check them both.
	 */
	if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);

	return memory_is_poisoned_1(addr + size - 1);
}

static __always_inline bool memory_is_poisoned_16(const void *addr)
{
	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);

	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
	if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
		return *shadow_addr || memory_is_poisoned_1(addr + 15);

	return *shadow_addr;
}

static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
					size_t size)
{
	while (size) {
		if (unlikely(*start))
			return (unsigned long)start;
		start++;
		size--;
	}

	return 0;
}

static __always_inline unsigned long memory_is_nonzero(const void *start,
						const void *end)
{
	unsigned int words;
	unsigned long ret;
	unsigned int prefix = (unsigned long)start % 8;

	if (end - start <= 16)
		return bytes_is_nonzero(start, end - start);

	if (prefix) {
		prefix = 8 - prefix;
		ret = bytes_is_nonzero(start, prefix);
		if (unlikely(ret))
			return ret;
		start += prefix;
	}

	words = (end - start) / 8;
	while (words) {
		if (unlikely(*(u64 *)start))
			return bytes_is_nonzero(start, 8);
		start += 8;
		words--;
	}

	return bytes_is_nonzero(start, (end - start) % 8);
}

static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
{
	unsigned long ret;

	ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
			kasan_mem_to_shadow(addr + size - 1) + 1);

	if (unlikely(ret)) {
		const void *last_byte = addr + size - 1;
		s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
		s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;

		if (unlikely(ret != (unsigned long)last_shadow ||
			     last_accessible_byte >= *last_shadow))
			return true;
	}
	return false;
}

static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
{
	if (__builtin_constant_p(size)) {
		switch (size) {
		case 1:
			return memory_is_poisoned_1(addr);
		case 2:
		case 4:
		case 8:
			return memory_is_poisoned_2_4_8(addr, size);
		case 16:
			return memory_is_poisoned_16(addr);
		default:
			BUILD_BUG();
		}
	}

	return memory_is_poisoned_n(addr, size);
}

static __always_inline bool check_region_inline(const void *addr,
						size_t size, bool write,
						unsigned long ret_ip)
{
	if (!kasan_arch_is_ready())
		return true;

	if (unlikely(size == 0))
		return true;

	if (unlikely(addr + size < addr))
		return !kasan_report(addr, size, write, ret_ip);

	if (unlikely(!addr_has_metadata(addr)))
		return !kasan_report(addr, size, write, ret_ip);

	if (likely(!memory_is_poisoned(addr, size)))
		return true;

	return !kasan_report(addr, size, write, ret_ip);
}

bool kasan_check_range(const void *addr, size_t size, bool write,
					unsigned long ret_ip)
{
	return check_region_inline(addr, size, write, ret_ip);
}

bool kasan_byte_accessible(const void *addr)
{
	s8 shadow_byte;

	if (!kasan_arch_is_ready())
		return true;

	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));

	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
}

void kasan_cache_shrink(struct kmem_cache *cache)
{
	kasan_quarantine_remove_cache(cache);
}

void kasan_cache_shutdown(struct kmem_cache *cache)
{
	if (!__kmem_cache_empty(cache))
		kasan_quarantine_remove_cache(cache);
}

static void register_global(struct kasan_global *global)
{
	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);

	kasan_unpoison(global->beg, global->size, false);

	kasan_poison(global->beg + aligned_size,
		     global->size_with_redzone - aligned_size,
		     KASAN_GLOBAL_REDZONE, false);
}

void __asan_register_globals(void *ptr, ssize_t size)
{
	int i;
	struct kasan_global *globals = ptr;

	for (i = 0; i < size; i++)
		register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);

void __asan_unregister_globals(void *ptr, ssize_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);

#define DEFINE_ASAN_LOAD_STORE(size)					\
	void __asan_load##size(void *addr)				\
	{								\
		check_region_inline(addr, size, false, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_load##size);				\
	__alias(__asan_load##size)					\
	void __asan_load##size##_noabort(void *);			\
	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
	void __asan_store##size(void *addr)				\
	{								\
		check_region_inline(addr, size, true, _RET_IP_);	\
	}								\
	EXPORT_SYMBOL(__asan_store##size);				\
	__alias(__asan_store##size)					\
	void __asan_store##size##_noabort(void *);			\
	EXPORT_SYMBOL(__asan_store##size##_noabort)

DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);

void __asan_loadN(void *addr, ssize_t size)
{
	kasan_check_range(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__asan_loadN);

__alias(__asan_loadN)
void __asan_loadN_noabort(void *, ssize_t);
EXPORT_SYMBOL(__asan_loadN_noabort);

void __asan_storeN(void *addr, ssize_t size)
{
	kasan_check_range(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__asan_storeN);

__alias(__asan_storeN)
void __asan_storeN_noabort(void *, ssize_t);
EXPORT_SYMBOL(__asan_storeN_noabort);

/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);

/* Emitted by compiler to poison alloca()ed objects. */
void __asan_alloca_poison(void *addr, ssize_t size)
{
	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
			rounded_up_size;
	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);

	const void *left_redzone = (const void *)(addr -
			KASAN_ALLOCA_REDZONE_SIZE);
	const void *right_redzone = (const void *)(addr + rounded_up_size);

	WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));

	kasan_unpoison((const void *)(addr + rounded_down_size),
			size - rounded_down_size, false);
	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
		     KASAN_ALLOCA_LEFT, false);
	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
		     KASAN_ALLOCA_RIGHT, false);
}
EXPORT_SYMBOL(__asan_alloca_poison);

/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
{
	if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
		return;

	kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
}
EXPORT_SYMBOL(__asan_allocas_unpoison);

/* Emitted by the compiler to [un]poison local variables. */
#define DEFINE_ASAN_SET_SHADOW(byte) \
	void __asan_set_shadow_##byte(const void *addr, ssize_t size)	\
	{								\
		__memset((void *)addr, 0x##byte, size);			\
	}								\
	EXPORT_SYMBOL(__asan_set_shadow_##byte)

DEFINE_ASAN_SET_SHADOW(00);
DEFINE_ASAN_SET_SHADOW(f1);
DEFINE_ASAN_SET_SHADOW(f2);
DEFINE_ASAN_SET_SHADOW(f3);
DEFINE_ASAN_SET_SHADOW(f5);
DEFINE_ASAN_SET_SHADOW(f8);

/* Only allow cache merging when no per-object metadata is present. */
slab_flags_t kasan_never_merge(void)
{
	if (!kasan_requires_meta())
		return 0;
	return SLAB_KASAN;
}

/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static inline unsigned int optimal_redzone(unsigned int object_size)
{
	return
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}

void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
			  slab_flags_t *flags)
{
	unsigned int ok_size;
	unsigned int optimal_size;
	unsigned int rem_free_meta_size;
	unsigned int orig_alloc_meta_offset;

	if (!kasan_requires_meta())
		return;

	/*
	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
	 * and that thus have per-object metadata.
	 * Currently this flag is used in two places:
	 * 1. In slab_ksize() to account for per-object metadata when
	 *    calculating the size of the accessible memory within the object.
	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
	 *    caches with per-object metadata.
	 */
	*flags |= SLAB_KASAN;

	ok_size = *size;

	/* Add alloc meta into the redzone. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* If alloc meta doesn't fit, don't add it. */
	if (*size > KMALLOC_MAX_SIZE) {
		cache->kasan_info.alloc_meta_offset = 0;
		*size = ok_size;
		/* Continue, since free meta might still fit. */
	}

	ok_size = *size;
	orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;

	/*
	 * Store free meta in the redzone when it's not possible to store
	 * it in the object. This is the case when:
	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
	 *    be touched after it was freed, or
	 * 2. Object has a constructor, which means it's expected to
	 *    retain its content until the next allocation.
	 */
	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor) {
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
		goto free_meta_added;
	}

	/*
	 * Otherwise, if the object is large enough to contain free meta,
	 * store it within the object.
	 */
	if (sizeof(struct kasan_free_meta) <= cache->object_size) {
		/* cache->kasan_info.free_meta_offset = 0 is implied. */
		goto free_meta_added;
	}

	/*
	 * For smaller objects, store the beginning of free meta within the
	 * object and the end in the redzone. And thus shift the location of
	 * alloc meta to free up space for free meta.
	 * This is only possible when slub_debug is disabled, as otherwise
	 * the end of free meta will overlap with slub_debug metadata.
	 */
	if (!__slub_debug_enabled()) {
		rem_free_meta_size = sizeof(struct kasan_free_meta) -
							cache->object_size;
		*size += rem_free_meta_size;
		if (cache->kasan_info.alloc_meta_offset != 0)
			cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
		goto free_meta_added;
	}

	/*
	 * If the object is small and slub_debug is enabled, store free meta
	 * in the redzone after alloc meta.
	 */
	cache->kasan_info.free_meta_offset = *size;
	*size += sizeof(struct kasan_free_meta);

free_meta_added:
	/* If free meta doesn't fit, don't add it. */
	if (*size > KMALLOC_MAX_SIZE) {
		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
		cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
		*size = ok_size;
	}

	/* Calculate size with optimal redzone. */
	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
	/* Limit it with KMALLOC_MAX_SIZE. */
	if (optimal_size > KMALLOC_MAX_SIZE)
		optimal_size = KMALLOC_MAX_SIZE;
	/* Use optimal size if the size with added metas is not large enough. */
	if (*size < optimal_size)
		*size = optimal_size;
}

struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
					      const void *object)
{
	if (!cache->kasan_info.alloc_meta_offset)
		return NULL;
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
					    const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
		return NULL;
	return (void *)object + cache->kasan_info.free_meta_offset;
}

void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
{
	struct kasan_alloc_meta *alloc_meta;

	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (alloc_meta) {
		/* Zero out alloc meta to mark it as invalid. */
		__memset(alloc_meta, 0, sizeof(*alloc_meta));

		/*
		 * Prepare the lock for saving auxiliary stack traces.
		 * Temporarily disable KASAN bug reporting to allow instrumented
		 * raw_spin_lock_init to access aux_lock, which resides inside
		 * of a redzone.
		 */
		kasan_disable_current();
		raw_spin_lock_init(&alloc_meta->aux_lock);
		kasan_enable_current();
	}

	/*
	 * Explicitly marking free meta as invalid is not required: the shadow
	 * value for the first 8 bytes of a newly allocated object is not
	 * KASAN_SLAB_FREE_META.
	 */
}

static void release_alloc_meta(struct kasan_alloc_meta *meta)
{
	/* Evict the stack traces from stack depot. */
	stack_depot_put(meta->alloc_track.stack);
	stack_depot_put(meta->aux_stack[0]);
	stack_depot_put(meta->aux_stack[1]);

	/*
	 * Zero out alloc meta to mark it as invalid but keep aux_lock
	 * initialized to avoid having to reinitialize it when another object
	 * is allocated in the same slot.
	 */
	__memset(&meta->alloc_track, 0, sizeof(meta->alloc_track));
	__memset(meta->aux_stack, 0, sizeof(meta->aux_stack));
}

static void release_free_meta(const void *object, struct kasan_free_meta *meta)
{
	/* Check if free meta is valid. */
	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
		return;

	/* Evict the stack trace from the stack depot. */
	stack_depot_put(meta->free_track.stack);

	/* Mark free meta as invalid. */
	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
}

void kasan_release_object_meta(struct kmem_cache *cache, const void *object)
{
	struct kasan_alloc_meta *alloc_meta;
	struct kasan_free_meta *free_meta;

	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (alloc_meta)
		release_alloc_meta(alloc_meta);

	free_meta = kasan_get_free_meta(cache, object);
	if (free_meta)
		release_free_meta(object, free_meta);
}

size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
{
	struct kasan_cache *info = &cache->kasan_info;

	if (!kasan_requires_meta())
		return 0;

	if (in_object)
		return (info->free_meta_offset ?
			0 : sizeof(struct kasan_free_meta));
	else
		return (info->alloc_meta_offset ?
			sizeof(struct kasan_alloc_meta) : 0) +
			((info->free_meta_offset &&
			info->free_meta_offset != KASAN_NO_FREE_META) ?
			sizeof(struct kasan_free_meta) : 0);
}

static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags)
{
	struct slab *slab = kasan_addr_to_slab(addr);
	struct kmem_cache *cache;
	struct kasan_alloc_meta *alloc_meta;
	void *object;
	depot_stack_handle_t new_handle, old_handle;
	unsigned long flags;

	if (is_kfence_address(addr) || !slab)
		return;

	cache = slab->slab_cache;
	object = nearest_obj(cache, slab, addr);
	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (!alloc_meta)
		return;

	new_handle = kasan_save_stack(0, depot_flags);

	/*
	 * Temporarily disable KASAN bug reporting to allow instrumented
	 * spinlock functions to access aux_lock, which resides inside of a
	 * redzone.
	 */
	kasan_disable_current();
	raw_spin_lock_irqsave(&alloc_meta->aux_lock, flags);
	old_handle = alloc_meta->aux_stack[1];
	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
	alloc_meta->aux_stack[0] = new_handle;
	raw_spin_unlock_irqrestore(&alloc_meta->aux_lock, flags);
	kasan_enable_current();

	stack_depot_put(old_handle);
}

void kasan_record_aux_stack(void *addr)
{
	return __kasan_record_aux_stack(addr,
			STACK_DEPOT_FLAG_CAN_ALLOC | STACK_DEPOT_FLAG_GET);
}

void kasan_record_aux_stack_noalloc(void *addr)
{
	return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_GET);
}

void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
{
	struct kasan_alloc_meta *alloc_meta;

	alloc_meta = kasan_get_alloc_meta(cache, object);
	if (!alloc_meta)
		return;

	/* Evict previous stack traces (might exist for krealloc or mempool). */
	release_alloc_meta(alloc_meta);

	kasan_save_track(&alloc_meta->alloc_track, flags);
}

void kasan_save_free_info(struct kmem_cache *cache, void *object)
{
	struct kasan_free_meta *free_meta;

	free_meta = kasan_get_free_meta(cache, object);
	if (!free_meta)
		return;

	/* Evict previous stack trace (might exist for mempool). */
	release_free_meta(object, free_meta);

	kasan_save_track(&free_meta->free_track, 0);

	/* Mark free meta as valid. */
	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
}