1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
|
/*
* mm/page-writeback.c
*
* Copyright (C) 2002, Linus Torvalds.
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* Contains functions related to writing back dirty pages at the
* address_space level.
*
* 10Apr2002 Andrew Morton
* Initial version
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blkdev.h>
#include <linux/mpage.h>
#include <linux/rmap.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/buffer_head.h>
#include <linux/pagevec.h>
/*
* After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
* will look to see if it needs to force writeback or throttling.
*/
static long ratelimit_pages = 32;
/*
* When balance_dirty_pages decides that the caller needs to perform some
* non-background writeback, this is how many pages it will attempt to write.
* It should be somewhat larger than dirtied pages to ensure that reasonably
* large amounts of I/O are submitted.
*/
static inline long sync_writeback_pages(unsigned long dirtied)
{
if (dirtied < ratelimit_pages)
dirtied = ratelimit_pages;
return dirtied + dirtied / 2;
}
/* The following parameters are exported via /proc/sys/vm */
/*
* Start background writeback (via writeback threads) at this percentage
*/
int dirty_background_ratio = 10;
/*
* dirty_background_bytes starts at 0 (disabled) so that it is a function of
* dirty_background_ratio * the amount of dirtyable memory
*/
unsigned long dirty_background_bytes;
/*
* free highmem will not be subtracted from the total free memory
* for calculating free ratios if vm_highmem_is_dirtyable is true
*/
int vm_highmem_is_dirtyable;
/*
* The generator of dirty data starts writeback at this percentage
*/
int vm_dirty_ratio = 20;
/*
* vm_dirty_bytes starts at 0 (disabled) so that it is a function of
* vm_dirty_ratio * the amount of dirtyable memory
*/
unsigned long vm_dirty_bytes;
/*
* The interval between `kupdate'-style writebacks
*/
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
/*
* The longest time for which data is allowed to remain dirty
*/
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
/*
* Flag that makes the machine dump writes/reads and block dirtyings.
*/
int block_dump;
/*
* Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
* a full sync is triggered after this time elapses without any disk activity.
*/
int laptop_mode;
EXPORT_SYMBOL(laptop_mode);
/* End of sysctl-exported parameters */
/*
* Scale the writeback cache size proportional to the relative writeout speeds.
*
* We do this by keeping a floating proportion between BDIs, based on page
* writeback completions [end_page_writeback()]. Those devices that write out
* pages fastest will get the larger share, while the slower will get a smaller
* share.
*
* We use page writeout completions because we are interested in getting rid of
* dirty pages. Having them written out is the primary goal.
*
* We introduce a concept of time, a period over which we measure these events,
* because demand can/will vary over time. The length of this period itself is
* measured in page writeback completions.
*
*/
static struct prop_descriptor vm_completions;
static struct prop_descriptor vm_dirties;
/*
* couple the period to the dirty_ratio:
*
* period/2 ~ roundup_pow_of_two(dirty limit)
*/
static int calc_period_shift(void)
{
unsigned long dirty_total;
if (vm_dirty_bytes)
dirty_total = vm_dirty_bytes / PAGE_SIZE;
else
dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
100;
return 2 + ilog2(dirty_total - 1);
}
/*
* update the period when the dirty threshold changes.
*/
static void update_completion_period(void)
{
int shift = calc_period_shift();
prop_change_shift(&vm_completions, shift);
prop_change_shift(&vm_dirties, shift);
}
int dirty_background_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
dirty_background_bytes = 0;
return ret;
}
int dirty_background_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
dirty_background_ratio = 0;
return ret;
}
int dirty_ratio_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int old_ratio = vm_dirty_ratio;
int ret;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
update_completion_period();
vm_dirty_bytes = 0;
}
return ret;
}
int dirty_bytes_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
unsigned long old_bytes = vm_dirty_bytes;
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
update_completion_period();
vm_dirty_ratio = 0;
}
return ret;
}
/*
* Increment the BDI's writeout completion count and the global writeout
* completion count. Called from test_clear_page_writeback().
*/
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
__prop_inc_percpu_max(&vm_completions, &bdi->completions,
bdi->max_prop_frac);
}
void bdi_writeout_inc(struct backing_dev_info *bdi)
{
unsigned long flags;
local_irq_save(flags);
__bdi_writeout_inc(bdi);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);
void task_dirty_inc(struct task_struct *tsk)
{
prop_inc_single(&vm_dirties, &tsk->dirties);
}
/*
* Obtain an accurate fraction of the BDI's portion.
*/
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
long *numerator, long *denominator)
{
if (bdi_cap_writeback_dirty(bdi)) {
prop_fraction_percpu(&vm_completions, &bdi->completions,
numerator, denominator);
} else {
*numerator = 0;
*denominator = 1;
}
}
/*
* Clip the earned share of dirty pages to that which is actually available.
* This avoids exceeding the total dirty_limit when the floating averages
* fluctuate too quickly.
*/
static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
unsigned long dirty, unsigned long *pbdi_dirty)
{
unsigned long avail_dirty;
avail_dirty = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_WRITEBACK) +
global_page_state(NR_UNSTABLE_NFS) +
global_page_state(NR_WRITEBACK_TEMP);
if (avail_dirty < dirty)
avail_dirty = dirty - avail_dirty;
else
avail_dirty = 0;
avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
bdi_stat(bdi, BDI_WRITEBACK);
*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
}
static inline void task_dirties_fraction(struct task_struct *tsk,
long *numerator, long *denominator)
{
prop_fraction_single(&vm_dirties, &tsk->dirties,
numerator, denominator);
}
/*
* scale the dirty limit
*
* task specific dirty limit:
*
* dirty -= (dirty/8) * p_{t}
*/
static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
{
long numerator, denominator;
unsigned long dirty = *pdirty;
u64 inv = dirty >> 3;
task_dirties_fraction(tsk, &numerator, &denominator);
inv *= numerator;
do_div(inv, denominator);
dirty -= inv;
if (dirty < *pdirty/2)
dirty = *pdirty/2;
*pdirty = dirty;
}
/*
*
*/
static unsigned int bdi_min_ratio;
int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
int ret = 0;
spin_lock_bh(&bdi_lock);
if (min_ratio > bdi->max_ratio) {
ret = -EINVAL;
} else {
min_ratio -= bdi->min_ratio;
if (bdi_min_ratio + min_ratio < 100) {
bdi_min_ratio += min_ratio;
bdi->min_ratio += min_ratio;
} else {
ret = -EINVAL;
}
}
spin_unlock_bh(&bdi_lock);
return ret;
}
int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
int ret = 0;
if (max_ratio > 100)
return -EINVAL;
spin_lock_bh(&bdi_lock);
if (bdi->min_ratio > max_ratio) {
ret = -EINVAL;
} else {
bdi->max_ratio = max_ratio;
bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
}
spin_unlock_bh(&bdi_lock);
return ret;
}
EXPORT_SYMBOL(bdi_set_max_ratio);
/*
* Work out the current dirty-memory clamping and background writeout
* thresholds.
*
* The main aim here is to lower them aggressively if there is a lot of mapped
* memory around. To avoid stressing page reclaim with lots of unreclaimable
* pages. It is better to clamp down on writers than to start swapping, and
* performing lots of scanning.
*
* We only allow 1/2 of the currently-unmapped memory to be dirtied.
*
* We don't permit the clamping level to fall below 5% - that is getting rather
* excessive.
*
* We make sure that the background writeout level is below the adjusted
* clamping level.
*/
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
int node;
unsigned long x = 0;
for_each_node_state(node, N_HIGH_MEMORY) {
struct zone *z =
&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
x += zone_page_state(z, NR_FREE_PAGES) +
zone_reclaimable_pages(z);
}
/*
* Make sure that the number of highmem pages is never larger
* than the number of the total dirtyable memory. This can only
* occur in very strange VM situations but we want to make sure
* that this does not occur.
*/
return min(x, total);
#else
return 0;
#endif
}
/**
* determine_dirtyable_memory - amount of memory that may be used
*
* Returns the numebr of pages that can currently be freed and used
* by the kernel for direct mappings.
*/
unsigned long determine_dirtyable_memory(void)
{
unsigned long x;
x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
return x + 1; /* Ensure that we never return 0 */
}
void
get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
{
unsigned long background;
unsigned long dirty;
unsigned long available_memory = determine_dirtyable_memory();
struct task_struct *tsk;
if (vm_dirty_bytes)
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
else {
int dirty_ratio;
dirty_ratio = vm_dirty_ratio;
if (dirty_ratio < 5)
dirty_ratio = 5;
dirty = (dirty_ratio * available_memory) / 100;
}
if (dirty_background_bytes)
background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
else
background = (dirty_background_ratio * available_memory) / 100;
if (background >= dirty)
background = dirty / 2;
tsk = current;
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
background += background / 4;
dirty += dirty / 4;
}
*pbackground = background;
*pdirty = dirty;
if (bdi) {
u64 bdi_dirty;
long numerator, denominator;
/*
* Calculate this BDI's share of the dirty ratio.
*/
bdi_writeout_fraction(bdi, &numerator, &denominator);
bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
bdi_dirty *= numerator;
do_div(bdi_dirty, denominator);
bdi_dirty += (dirty * bdi->min_ratio) / 100;
if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
bdi_dirty = dirty * bdi->max_ratio / 100;
*pbdi_dirty = bdi_dirty;
clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
task_dirty_limit(current, pbdi_dirty);
}
}
/*
* balance_dirty_pages() must be called by processes which are generating dirty
* data. It looks at the number of dirty pages in the machine and will force
* the caller to perform writeback if the system is over `vm_dirty_ratio'.
* If we're over `background_thresh' then the writeback threads are woken to
* perform some writeout.
*/
static void balance_dirty_pages(struct address_space *mapping,
unsigned long write_chunk)
{
long nr_reclaimable, bdi_nr_reclaimable;
long nr_writeback, bdi_nr_writeback;
unsigned long background_thresh;
unsigned long dirty_thresh;
unsigned long bdi_thresh;
unsigned long pages_written = 0;
unsigned long pause = 1;
struct backing_dev_info *bdi = mapping->backing_dev_info;
for (;;) {
struct writeback_control wbc = {
.bdi = bdi,
.sync_mode = WB_SYNC_NONE,
.older_than_this = NULL,
.nr_to_write = write_chunk,
.range_cyclic = 1,
};
get_dirty_limits(&background_thresh, &dirty_thresh,
&bdi_thresh, bdi);
nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_UNSTABLE_NFS);
nr_writeback = global_page_state(NR_WRITEBACK);
bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
break;
/*
* Throttle it only when the background writeback cannot
* catch-up. This avoids (excessively) small writeouts
* when the bdi limits are ramping up.
*/
if (nr_reclaimable + nr_writeback <
(background_thresh + dirty_thresh) / 2)
break;
if (!bdi->dirty_exceeded)
bdi->dirty_exceeded = 1;
/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
* Unstable writes are a feature of certain networked
* filesystems (i.e. NFS) in which data may have been
* written to the server's write cache, but has not yet
* been flushed to permanent storage.
* Only move pages to writeback if this bdi is over its
* threshold otherwise wait until the disk writes catch
* up.
*/
if (bdi_nr_reclaimable > bdi_thresh) {
writeback_inodes_wbc(&wbc);
pages_written += write_chunk - wbc.nr_to_write;
get_dirty_limits(&background_thresh, &dirty_thresh,
&bdi_thresh, bdi);
}
/*
* In order to avoid the stacked BDI deadlock we need
* to ensure we accurately count the 'dirty' pages when
* the threshold is low.
*
* Otherwise it would be possible to get thresh+n pages
* reported dirty, even though there are thresh-m pages
* actually dirty; with m+n sitting in the percpu
* deltas.
*/
if (bdi_thresh < 2*bdi_stat_error(bdi)) {
bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
} else if (bdi_nr_reclaimable) {
bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
}
if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
break;
if (pages_written >= write_chunk)
break; /* We've done our duty */
__set_current_state(TASK_INTERRUPTIBLE);
io_schedule_timeout(pause);
/*
* Increase the delay for each loop, up to our previous
* default of taking a 100ms nap.
*/
pause <<= 1;
if (pause > HZ / 10)
pause = HZ / 10;
}
if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
bdi->dirty_exceeded)
bdi->dirty_exceeded = 0;
if (writeback_in_progress(bdi))
return;
/*
* In laptop mode, we wait until hitting the higher threshold before
* starting background writeout, and then write out all the way down
* to the lower threshold. So slow writers cause minimal disk activity.
*
* In normal mode, we start background writeout at the lower
* background_thresh, to keep the amount of dirty memory low.
*/
if ((laptop_mode && pages_written) ||
(!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
+ global_page_state(NR_UNSTABLE_NFS))
> background_thresh)))
bdi_start_writeback(bdi, NULL, 0);
}
void set_page_dirty_balance(struct page *page, int page_mkwrite)
{
if (set_page_dirty(page) || page_mkwrite) {
struct address_space *mapping = page_mapping(page);
if (mapping)
balance_dirty_pages_ratelimited(mapping);
}
}
static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
/**
* balance_dirty_pages_ratelimited_nr - balance dirty memory state
* @mapping: address_space which was dirtied
* @nr_pages_dirtied: number of pages which the caller has just dirtied
*
* Processes which are dirtying memory should call in here once for each page
* which was newly dirtied. The function will periodically check the system's
* dirty state and will initiate writeback if needed.
*
* On really big machines, get_writeback_state is expensive, so try to avoid
* calling it too often (ratelimiting). But once we're over the dirty memory
* limit we decrease the ratelimiting by a lot, to prevent individual processes
* from overshooting the limit by (ratelimit_pages) each.
*/
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
unsigned long nr_pages_dirtied)
{
unsigned long ratelimit;
unsigned long *p;
ratelimit = ratelimit_pages;
if (mapping->backing_dev_info->dirty_exceeded)
ratelimit = 8;
/*
* Check the rate limiting. Also, we do not want to throttle real-time
* tasks in balance_dirty_pages(). Period.
*/
preempt_disable();
p = &__get_cpu_var(bdp_ratelimits);
*p += nr_pages_dirtied;
if (unlikely(*p >= ratelimit)) {
ratelimit = sync_writeback_pages(*p);
*p = 0;
preempt_enable();
balance_dirty_pages(mapping, ratelimit);
return;
}
preempt_enable();
}
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
void throttle_vm_writeout(gfp_t gfp_mask)
{
unsigned long background_thresh;
unsigned long dirty_thresh;
for ( ; ; ) {
get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
/*
* Boost the allowable dirty threshold a bit for page
* allocators so they don't get DoS'ed by heavy writers
*/
dirty_thresh += dirty_thresh / 10; /* wheeee... */
if (global_page_state(NR_UNSTABLE_NFS) +
global_page_state(NR_WRITEBACK) <= dirty_thresh)
break;
congestion_wait(BLK_RW_ASYNC, HZ/10);
/*
* The caller might hold locks which can prevent IO completion
* or progress in the filesystem. So we cannot just sit here
* waiting for IO to complete.
*/
if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
break;
}
}
/*
* sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
*/
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, buffer, length, ppos);
return 0;
}
void laptop_mode_timer_fn(unsigned long data)
{
struct request_queue *q = (struct request_queue *)data;
int nr_pages = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_UNSTABLE_NFS);
/*
* We want to write everything out, not just down to the dirty
* threshold
*/
if (bdi_has_dirty_io(&q->backing_dev_info))
bdi_start_writeback(&q->backing_dev_info, NULL, nr_pages);
}
/*
* We've spun up the disk and we're in laptop mode: schedule writeback
* of all dirty data a few seconds from now. If the flush is already scheduled
* then push it back - the user is still using the disk.
*/
void laptop_io_completion(struct backing_dev_info *info)
{
mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
}
/*
* We're in laptop mode and we've just synced. The sync's writes will have
* caused another writeback to be scheduled by laptop_io_completion.
* Nothing needs to be written back anymore, so we unschedule the writeback.
*/
void laptop_sync_completion(void)
{
struct backing_dev_info *bdi;
rcu_read_lock();
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
del_timer(&bdi->laptop_mode_wb_timer);
rcu_read_unlock();
}
/*
* If ratelimit_pages is too high then we can get into dirty-data overload
* if a large number of processes all perform writes at the same time.
* If it is too low then SMP machines will call the (expensive)
* get_writeback_state too often.
*
* Here we set ratelimit_pages to a level which ensures that when all CPUs are
* dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
* thresholds before writeback cuts in.
*
* But the limit should not be set too high. Because it also controls the
* amount of memory which the balance_dirty_pages() caller has to write back.
* If this is too large then the caller will block on the IO queue all the
* time. So limit it to four megabytes - the balance_dirty_pages() caller
* will write six megabyte chunks, max.
*/
void writeback_set_ratelimit(void)
{
ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
if (ratelimit_pages < 16)
ratelimit_pages = 16;
if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
}
static int __cpuinit
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
writeback_set_ratelimit();
return NOTIFY_DONE;
}
static struct notifier_block __cpuinitdata ratelimit_nb = {
.notifier_call = ratelimit_handler,
.next = NULL,
};
/*
* Called early on to tune the page writeback dirty limits.
*
* We used to scale dirty pages according to how total memory
* related to pages that could be allocated for buffers (by
* comparing nr_free_buffer_pages() to vm_total_pages.
*
* However, that was when we used "dirty_ratio" to scale with
* all memory, and we don't do that any more. "dirty_ratio"
* is now applied to total non-HIGHPAGE memory (by subtracting
* totalhigh_pages from vm_total_pages), and as such we can't
* get into the old insane situation any more where we had
* large amounts of dirty pages compared to a small amount of
* non-HIGHMEM memory.
*
* But we might still want to scale the dirty_ratio by how
* much memory the box has..
*/
void __init page_writeback_init(void)
{
int shift;
writeback_set_ratelimit();
register_cpu_notifier(&ratelimit_nb);
shift = calc_period_shift();
prop_descriptor_init(&vm_completions, shift);
prop_descriptor_init(&vm_dirties, shift);
}
/**
* write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
* @mapping: address space structure to write
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
* @writepage: function called for each page
* @data: data passed to writepage function
*
* If a page is already under I/O, write_cache_pages() skips it, even
* if it's dirty. This is desirable behaviour for memory-cleaning writeback,
* but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
* and msync() need to guarantee that all the data which was dirty at the time
* the call was made get new I/O started against them. If wbc->sync_mode is
* WB_SYNC_ALL then we were called for data integrity and we must wait for
* existing IO to complete.
*/
int write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage,
void *data)
{
int ret = 0;
int done = 0;
struct pagevec pvec;
int nr_pages;
pgoff_t uninitialized_var(writeback_index);
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int cycled;
int range_whole = 0;
long nr_to_write = wbc->nr_to_write;
pagevec_init(&pvec, 0);
if (wbc->range_cyclic) {
writeback_index = mapping->writeback_index; /* prev offset */
index = writeback_index;
if (index == 0)
cycled = 1;
else
cycled = 0;
end = -1;
} else {
index = wbc->range_start >> PAGE_CACHE_SHIFT;
end = wbc->range_end >> PAGE_CACHE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
}
retry:
done_index = index;
while (!done && (index <= end)) {
int i;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/*
* At this point, the page may be truncated or
* invalidated (changing page->mapping to NULL), or
* even swizzled back from swapper_space to tmpfs file
* mapping. However, page->index will not change
* because we have a reference on the page.
*/
if (page->index > end) {
/*
* can't be range_cyclic (1st pass) because
* end == -1 in that case.
*/
done = 1;
break;
}
done_index = page->index + 1;
lock_page(page);
/*
* Page truncated or invalidated. We can freely skip it
* then, even for data integrity operations: the page
* has disappeared concurrently, so there could be no
* real expectation of this data interity operation
* even if there is now a new, dirty page at the same
* pagecache address.
*/
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (PageWriteback(page)) {
if (wbc->sync_mode != WB_SYNC_NONE)
wait_on_page_writeback(page);
else
goto continue_unlock;
}
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
ret = (*writepage)(page, wbc, data);
if (unlikely(ret)) {
if (ret == AOP_WRITEPAGE_ACTIVATE) {
unlock_page(page);
ret = 0;
} else {
/*
* done_index is set past this page,
* so media errors will not choke
* background writeout for the entire
* file. This has consequences for
* range_cyclic semantics (ie. it may
* not be suitable for data integrity
* writeout).
*/
done = 1;
break;
}
}
if (nr_to_write > 0) {
nr_to_write--;
if (nr_to_write == 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
/*
* We stop writing back only if we are
* not doing integrity sync. In case of
* integrity sync we have to keep going
* because someone may be concurrently
* dirtying pages, and we might have
* synced a lot of newly appeared dirty
* pages, but have not synced all of the
* old dirty pages.
*/
done = 1;
break;
}
}
}
pagevec_release(&pvec);
cond_resched();
}
if (!cycled && !done) {
/*
* range_cyclic:
* We hit the last page and there is more work to be done: wrap
* back to the start of the file
*/
cycled = 1;
index = 0;
end = writeback_index - 1;
goto retry;
}
if (!wbc->no_nrwrite_index_update) {
if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
mapping->writeback_index = done_index;
wbc->nr_to_write = nr_to_write;
}
return ret;
}
EXPORT_SYMBOL(write_cache_pages);
/*
* Function used by generic_writepages to call the real writepage
* function and set the mapping flags on error
*/
static int __writepage(struct page *page, struct writeback_control *wbc,
void *data)
{
struct address_space *mapping = data;
int ret = mapping->a_ops->writepage(page, wbc);
mapping_set_error(mapping, ret);
return ret;
}
/**
* generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
* @mapping: address space structure to write
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
*
* This is a library function, which implements the writepages()
* address_space_operation.
*/
int generic_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
return write_cache_pages(mapping, wbc, __writepage, mapping);
}
EXPORT_SYMBOL(generic_writepages);
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
int ret;
if (wbc->nr_to_write <= 0)
return 0;
if (mapping->a_ops->writepages)
ret = mapping->a_ops->writepages(mapping, wbc);
else
ret = generic_writepages(mapping, wbc);
return ret;
}
/**
* write_one_page - write out a single page and optionally wait on I/O
* @page: the page to write
* @wait: if true, wait on writeout
*
* The page must be locked by the caller and will be unlocked upon return.
*
* write_one_page() returns a negative error code if I/O failed.
*/
int write_one_page(struct page *page, int wait)
{
struct address_space *mapping = page->mapping;
int ret = 0;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = 1,
};
BUG_ON(!PageLocked(page));
if (wait)
wait_on_page_writeback(page);
if (clear_page_dirty_for_io(page)) {
page_cache_get(page);
ret = mapping->a_ops->writepage(page, &wbc);
if (ret == 0 && wait) {
wait_on_page_writeback(page);
if (PageError(page))
ret = -EIO;
}
page_cache_release(page);
} else {
unlock_page(page);
}
return ret;
}
EXPORT_SYMBOL(write_one_page);
/*
* For address_spaces which do not use buffers nor write back.
*/
int __set_page_dirty_no_writeback(struct page *page)
{
if (!PageDirty(page))
SetPageDirty(page);
return 0;
}
/*
* Helper function for set_page_dirty family.
* NOTE: This relies on being atomic wrt interrupts.
*/
void account_page_dirtied(struct page *page, struct address_space *mapping)
{
if (mapping_cap_account_dirty(mapping)) {
__inc_zone_page_state(page, NR_FILE_DIRTY);
__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
task_dirty_inc(current);
task_io_account_write(PAGE_CACHE_SIZE);
}
}
/*
* For address_spaces which do not use buffers. Just tag the page as dirty in
* its radix tree.
*
* This is also used when a single buffer is being dirtied: we want to set the
* page dirty in that case, but not all the buffers. This is a "bottom-up"
* dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
*
* Most callers have locked the page, which pins the address_space in memory.
* But zap_pte_range() does not lock the page, however in that case the
* mapping is pinned by the vma's ->vm_file reference.
*
* We take care to handle the case where the page was truncated from the
* mapping by re-checking page_mapping() inside tree_lock.
*/
int __set_page_dirty_nobuffers(struct page *page)
{
if (!TestSetPageDirty(page)) {
struct address_space *mapping = page_mapping(page);
struct address_space *mapping2;
if (!mapping)
return 1;
spin_lock_irq(&mapping->tree_lock);
mapping2 = page_mapping(page);
if (mapping2) { /* Race with truncate? */
BUG_ON(mapping2 != mapping);
WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
account_page_dirtied(page, mapping);
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
spin_unlock_irq(&mapping->tree_lock);
if (mapping->host) {
/* !PageAnon && !swapper_space */
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
}
return 1;
}
return 0;
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);
/*
* When a writepage implementation decides that it doesn't want to write this
* page for some reason, it should redirty the locked page via
* redirty_page_for_writepage() and it should then unlock the page and return 0
*/
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
wbc->pages_skipped++;
return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);
/*
* Dirty a page.
*
* For pages with a mapping this should be done under the page lock
* for the benefit of asynchronous memory errors who prefer a consistent
* dirty state. This rule can be broken in some special cases,
* but should be better not to.
*
* If the mapping doesn't provide a set_page_dirty a_op, then
* just fall through and assume that it wants buffer_heads.
*/
int set_page_dirty(struct page *page)
{
struct address_space *mapping = page_mapping(page);
if (likely(mapping)) {
int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
#ifdef CONFIG_BLOCK
if (!spd)
spd = __set_page_dirty_buffers;
#endif
return (*spd)(page);
}
if (!PageDirty(page)) {
if (!TestSetPageDirty(page))
return 1;
}
return 0;
}
EXPORT_SYMBOL(set_page_dirty);
/*
* set_page_dirty() is racy if the caller has no reference against
* page->mapping->host, and if the page is unlocked. This is because another
* CPU could truncate the page off the mapping and then free the mapping.
*
* Usually, the page _is_ locked, or the caller is a user-space process which
* holds a reference on the inode by having an open file.
*
* In other cases, the page should be locked before running set_page_dirty().
*/
int set_page_dirty_lock(struct page *page)
{
int ret;
lock_page_nosync(page);
ret = set_page_dirty(page);
unlock_page(page);
return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);
/*
* Clear a page's dirty flag, while caring for dirty memory accounting.
* Returns true if the page was previously dirty.
*
* This is for preparing to put the page under writeout. We leave the page
* tagged as dirty in the radix tree so that a concurrent write-for-sync
* can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
* implementation will run either set_page_writeback() or set_page_dirty(),
* at which stage we bring the page's dirty flag and radix-tree dirty tag
* back into sync.
*
* This incoherency between the page's dirty flag and radix-tree tag is
* unfortunate, but it only exists while the page is locked.
*/
int clear_page_dirty_for_io(struct page *page)
{
struct address_space *mapping = page_mapping(page);
BUG_ON(!PageLocked(page));
ClearPageReclaim(page);
if (mapping && mapping_cap_account_dirty(mapping)) {
/*
* Yes, Virginia, this is indeed insane.
*
* We use this sequence to make sure that
* (a) we account for dirty stats properly
* (b) we tell the low-level filesystem to
* mark the whole page dirty if it was
* dirty in a pagetable. Only to then
* (c) clean the page again and return 1 to
* cause the writeback.
*
* This way we avoid all nasty races with the
* dirty bit in multiple places and clearing
* them concurrently from different threads.
*
* Note! Normally the "set_page_dirty(page)"
* has no effect on the actual dirty bit - since
* that will already usually be set. But we
* need the side effects, and it can help us
* avoid races.
*
* We basically use the page "master dirty bit"
* as a serialization point for all the different
* threads doing their things.
*/
if (page_mkclean(page))
set_page_dirty(page);
/*
* We carefully synchronise fault handlers against
* installing a dirty pte and marking the page dirty
* at this point. We do this by having them hold the
* page lock at some point after installing their
* pte, but before marking the page dirty.
* Pages are always locked coming in here, so we get
* the desired exclusion. See mm/memory.c:do_wp_page()
* for more comments.
*/
if (TestClearPageDirty(page)) {
dec_zone_page_state(page, NR_FILE_DIRTY);
dec_bdi_stat(mapping->backing_dev_info,
BDI_RECLAIMABLE);
return 1;
}
return 0;
}
return TestClearPageDirty(page);
}
EXPORT_SYMBOL(clear_page_dirty_for_io);
int test_clear_page_writeback(struct page *page)
{
struct address_space *mapping = page_mapping(page);
int ret;
if (mapping) {
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
spin_lock_irqsave(&mapping->tree_lock, flags);
ret = TestClearPageWriteback(page);
if (ret) {
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_WRITEBACK);
if (bdi_cap_account_writeback(bdi)) {
__dec_bdi_stat(bdi, BDI_WRITEBACK);
__bdi_writeout_inc(bdi);
}
}
spin_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestClearPageWriteback(page);
}
if (ret)
dec_zone_page_state(page, NR_WRITEBACK);
return ret;
}
int test_set_page_writeback(struct page *page)
{
struct address_space *mapping = page_mapping(page);
int ret;
if (mapping) {
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
spin_lock_irqsave(&mapping->tree_lock, flags);
ret = TestSetPageWriteback(page);
if (!ret) {
radix_tree_tag_set(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_WRITEBACK);
if (bdi_cap_account_writeback(bdi))
__inc_bdi_stat(bdi, BDI_WRITEBACK);
}
if (!PageDirty(page))
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_DIRTY);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestSetPageWriteback(page);
}
if (!ret)
inc_zone_page_state(page, NR_WRITEBACK);
return ret;
}
EXPORT_SYMBOL(test_set_page_writeback);
/*
* Return true if any of the pages in the mapping are marked with the
* passed tag.
*/
int mapping_tagged(struct address_space *mapping, int tag)
{
int ret;
rcu_read_lock();
ret = radix_tree_tagged(&mapping->page_tree, tag);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(mapping_tagged);
|