/* * ptgen - partition table generator * Copyright (C) 2006 by Felix Fietkau * * uses parts of afdisk * Copyright (C) 2002 by David Roetzel * * UUID/GUID definition stolen from kernel/include/uapi/linux/uuid.h * Copyright (C) 2010, Intel Corp. Huang Ying * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include "cyg_crc.h" #if __BYTE_ORDER == __BIG_ENDIAN #define cpu_to_le16(x) bswap_16(x) #define cpu_to_le32(x) bswap_32(x) #define cpu_to_le64(x) bswap_64(x) #elif __BYTE_ORDER == __LITTLE_ENDIAN #define cpu_to_le16(x) (x) #define cpu_to_le32(x) (x) #define cpu_to_le64(x) (x) #else #error unknown endianness! #endif #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) #define BIT(_x) (1UL << (_x)) typedef struct { uint8_t b[16]; } guid_t; #define GUID_INIT(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ ((guid_t) \ {{ (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \ (b) & 0xff, ((b) >> 8) & 0xff, \ (c) & 0xff, ((c) >> 8) & 0xff, \ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}) #define GUID_STRING_LENGTH 36 #define GPT_SIGNATURE 0x5452415020494645ULL #define GPT_REVISION 0x00010000 #define GUID_PARTITION_SYSTEM \ GUID_INIT( 0xC12A7328, 0xF81F, 0x11d2, \ 0xBA, 0x4B, 0x00, 0xA0, 0xC9, 0x3E, 0xC9, 0x3B) #define GUID_PARTITION_BASIC_DATA \ GUID_INIT( 0xEBD0A0A2, 0xB9E5, 0x4433, \ 0x87, 0xC0, 0x68, 0xB6, 0xB7, 0x26, 0x99, 0xC7) #define GUID_PARTITION_BIOS_BOOT \ GUID_INIT( 0x21686148, 0x6449, 0x6E6F, \ 0x74, 0x4E, 0x65, 0x65, 0x64, 0x45, 0x46, 0x49) #define GUID_PARTITION_LINUX_FIT_GUID \ GUID_INIT( 0xcae9be83, 0xb15f, 0x49cc, \ 0x86, 0x3f, 0x08, 0x1b, 0x74, 0x4a, 0x2d, 0x93) #define GUID_PARTITION_LINUX_FS_GUID \ GUID_INIT( 0x0fc63daf, 0x8483, 0x4772, \ 0x8e, 0x79, 0x3d, 0x69, 0xd8, 0x47, 0x7d, 0xe4) #define GPT_HEADER_SIZE 92 #define GPT_ENTRY_SIZE 128 #define GPT_ENTRY_MAX 128 #define GPT_ENTRY_NAME_SIZE 72 #define GPT_ATTR_PLAT_REQUIRED BIT(0) #define GPT_ATTR_EFI_IGNORE BIT(1) #define GPT_ATTR_LEGACY_BOOT BIT(2) #define GPT_HEADER_SECTOR 1 #define GPT_FIRST_ENTRY_SECTOR 2 #define MBR_ENTRY_MAX 4 #define MBR_DISK_SIGNATURE_OFFSET 440 #define MBR_PARTITION_ENTRY_OFFSET 446 #define MBR_BOOT_SIGNATURE_OFFSET 510 #define DISK_SECTOR_SIZE 512 /* Partition table entry */ struct pte { uint8_t active; uint8_t chs_start[3]; uint8_t type; uint8_t chs_end[3]; uint32_t start; uint32_t length; }; struct partinfo { unsigned long start; unsigned long size; int type; int hybrid; char *name; short int required; guid_t guid; }; /* GPT Partition table header */ struct gpth { uint64_t signature; uint32_t revision; uint32_t size; uint32_t crc32; uint32_t reserved; uint64_t self; uint64_t alternate; uint64_t first_usable; uint64_t last_usable; guid_t disk_guid; uint64_t first_entry; uint32_t entry_num; uint32_t entry_size; uint32_t entry_crc32; } __attribute__((packed)); /* GPT Partition table entry */ struct gpte { guid_t type; guid_t guid; uint64_t start; uint64_t end; uint64_t attr; char name[GPT_ENTRY_NAME_SIZE]; } __attribute__((packed)); int verbose = 0; int active = 1; int heads = -1; int sectors = -1; int kb_align = 0; bool ignore_null_sized_partition = false; bool use_guid_partition_table = false; struct partinfo parts[GPT_ENTRY_MAX]; char *filename = NULL; /* * parse the size argument, which is either * a simple number (K assumed) or * K, M or G * * returns the size in KByte */ static long to_kbytes(const char *string) { int exp = 0; long result; char *end; result = strtoul(string, &end, 0); switch (tolower(*end)) { case 'k' : case '\0' : exp = 0; break; case 'm' : exp = 1; break; case 'g' : exp = 2; break; default: return 0; } if (*end) end++; if (*end) { fputs("garbage after end of number\n", stderr); return 0; } /* result: number + 1024^(exp) */ if (exp == 0) return result; return result * (2 << ((10 * exp) - 1)); } /* convert the sector number into a CHS value for the partition table */ static void to_chs(long sect, unsigned char chs[3]) { int c,h,s; s = (sect % sectors) + 1; sect = sect / sectors; h = sect % heads; sect = sect / heads; c = sect; chs[0] = h; chs[1] = s | ((c >> 2) & 0xC0); chs[2] = c & 0xFF; return; } /* round the sector number up to the next cylinder */ static inline unsigned long round_to_cyl(long sect) { int cyl_size = heads * sectors; return sect + cyl_size - (sect % cyl_size); } /* round the sector number up to the kb_align boundary */ static inline unsigned long round_to_kb(long sect) { return ((sect - 1) / kb_align + 1) * kb_align; } /* Compute a CRC for guid partition table */ static inline unsigned long gpt_crc32(void *buf, unsigned long len) { return cyg_crc32_accumulate(~0L, buf, len) ^ ~0L; } /* Parse a guid string to guid_t struct */ static inline int guid_parse(char *buf, guid_t *guid) { char b[4] = {0}; char *p = buf; unsigned i = 0; if (strnlen(buf, GUID_STRING_LENGTH) != GUID_STRING_LENGTH) return -1; for (i = 0; i < sizeof(guid_t); i++) { if (*p == '-') p++; if (*p == '\0') return -1; memcpy(b, p, 2); guid->b[i] = strtol(b, 0, 16); p += 2; } swap(guid->b[0], guid->b[3]); swap(guid->b[1], guid->b[2]); swap(guid->b[4], guid->b[5]); swap(guid->b[6], guid->b[7]); return 0; } /* init an utf-16 string from utf-8 string */ static inline void init_utf16(char *str, uint16_t *buf, unsigned bufsize) { unsigned i, n = 0; for (i = 0; i < bufsize; i++) { if (str[n] == 0x00) { buf[i] = 0x00; return ; } else if ((str[n] & 0x80) == 0x00) {//0xxxxxxx buf[i] = cpu_to_le16(str[n++]); } else if ((str[n] & 0xE0) == 0xC0) {//110xxxxx buf[i] = cpu_to_le16((str[n] & 0x1F) << 6 | (str[n + 1] & 0x3F)); n += 2; } else if ((str[n] & 0xF0) == 0xE0) {//1110xxxx buf[i] = cpu_to_le16((str[n] & 0x0F) << 12 | (str[n + 1] & 0x3F) << 6 | (str[n + 2] & 0x3F)); n += 3; } else { buf[i] = cpu_to_le16('?'); n++; } } } /* check the partition sizes and write the partition table */ static int gen_ptable(uint32_t signature, int nr) { struct pte pte[MBR_ENTRY_MAX]; unsigned long start, len, sect = 0; int i, fd, ret = -1; memset(pte, 0, sizeof(struct pte) * MBR_ENTRY_MAX); for (i = 0; i < nr; i++) { if (!parts[i].size) { if (ignore_null_sized_partition) continue; fprintf(stderr, "Invalid size in partition %d!\n", i); return ret; } pte[i].active = ((i + 1) == active) ? 0x80 : 0; pte[i].type = parts[i].type; start = sect + sectors; if (parts[i].start != 0) { if (parts[i].start * 2 < start) { fprintf(stderr, "Invalid start %ld for partition %d!\n", parts[i].start, i); return ret; } start = parts[i].start * 2; } else if (kb_align != 0) { start = round_to_kb(start); } pte[i].start = cpu_to_le32(start); sect = start + parts[i].size * 2; if (kb_align == 0) sect = round_to_cyl(sect); pte[i].length = cpu_to_le32(len = sect - start); to_chs(start, pte[i].chs_start); to_chs(start + len - 1, pte[i].chs_end); if (verbose) fprintf(stderr, "Partition %d: start=%ld, end=%ld, size=%ld\n", i, (long)start * DISK_SECTOR_SIZE, (long)(start + len) * DISK_SECTOR_SIZE, (long)len * DISK_SECTOR_SIZE); printf("%ld\n", (long)start * DISK_SECTOR_SIZE); printf("%ld\n", (long)len * DISK_SECTOR_SIZE); } if ((fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC, 0644)) < 0) { fprintf(stderr, "Can't open output file '%s'\n",filename); return ret; } lseek(fd, MBR_DISK_SIGNATURE_OFFSET, SEEK_SET); if (write(fd, &signature, sizeof(signature)) != sizeof(signature)) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, MBR_PARTITION_ENTRY_OFFSET, SEEK_SET); if (write(fd, pte, sizeof(struct pte) * MBR_ENTRY_MAX) != sizeof(struct pte) * MBR_ENTRY_MAX) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, MBR_BOOT_SIGNATURE_OFFSET, SEEK_SET); if (write(fd, "\x55\xaa", 2) != 2) { fputs("write failed.\n", stderr); goto fail; } ret = 0; fail: close(fd); return ret; } /* check the partition sizes and write the guid partition table */ static int gen_gptable(uint32_t signature, guid_t guid, unsigned nr) { struct pte pte[MBR_ENTRY_MAX]; struct gpth gpth = { .signature = cpu_to_le64(GPT_SIGNATURE), .revision = cpu_to_le32(GPT_REVISION), .size = cpu_to_le32(GPT_HEADER_SIZE), .self = cpu_to_le64(GPT_HEADER_SECTOR), .first_usable = cpu_to_le64(GPT_FIRST_ENTRY_SECTOR + GPT_ENTRY_SIZE * GPT_ENTRY_MAX / DISK_SECTOR_SIZE), .first_entry = cpu_to_le64(GPT_FIRST_ENTRY_SECTOR), .disk_guid = guid, .entry_num = cpu_to_le32(GPT_ENTRY_MAX), .entry_size = cpu_to_le32(GPT_ENTRY_SIZE), }; struct gpte gpte[GPT_ENTRY_MAX]; uint64_t start, end, sect = 0; int fd, ret = -1; unsigned i, pmbr = 1; memset(pte, 0, sizeof(struct pte) * MBR_ENTRY_MAX); memset(gpte, 0, GPT_ENTRY_SIZE * GPT_ENTRY_MAX); for (i = 0; i < nr; i++) { if (!parts[i].size) { if (ignore_null_sized_partition) continue; fprintf(stderr, "Invalid size in partition %d!\n", i); return ret; } start = sect + sectors; if (parts[i].start != 0) { if (parts[i].start * 2 < start) { fprintf(stderr, "Invalid start %ld for partition %d!\n", parts[i].start, i); return ret; } start = parts[i].start * 2; } else if (kb_align != 0) { start = round_to_kb(start); } gpte[i].start = cpu_to_le64(start); sect = start + parts[i].size * 2; if (kb_align == 0) sect = round_to_cyl(sect); gpte[i].end = cpu_to_le64(sect -1); gpte[i].guid = guid; gpte[i].guid.b[sizeof(guid_t) -1] += i + 1; gpte[i].type = parts[i].guid; if (parts[i].hybrid && pmbr < MBR_ENTRY_MAX) { pte[pmbr].active = ((i + 1) == active) ? 0x80 : 0; pte[pmbr].type = parts[i].type; pte[pmbr].start = cpu_to_le32(start); pte[pmbr].length = cpu_to_le32(sect - start); to_chs(start, pte[1].chs_start); to_chs(sect - 1, pte[1].chs_end); pmbr++; } if (parts[i].name) init_utf16(parts[i].name, (uint16_t *)gpte[i].name, GPT_ENTRY_NAME_SIZE / sizeof(uint16_t)); if ((i + 1) == (unsigned)active) gpte[i].attr |= GPT_ATTR_LEGACY_BOOT; if (parts[i].required) gpte[i].attr |= GPT_ATTR_PLAT_REQUIRED; if (verbose) fprintf(stderr, "Partition %d: start=%" PRIu64 ", end=%" PRIu64 ", size=%" PRIu64 "\n", i, start * DISK_SECTOR_SIZE, sect * DISK_SECTOR_SIZE, (sect - start) * DISK_SECTOR_SIZE); printf("%" PRIu64 "\n", start * DISK_SECTOR_SIZE); printf("%" PRIu64 "\n", (sect - start) * DISK_SECTOR_SIZE); } gpte[GPT_ENTRY_MAX - 1].start = cpu_to_le64(GPT_FIRST_ENTRY_SECTOR + GPT_ENTRY_SIZE * GPT_ENTRY_MAX / DISK_SECTOR_SIZE); gpte[GPT_ENTRY_MAX - 1].end = cpu_to_le64((kb_align ? round_to_kb(sectors) : (unsigned long)sectors) - 1); gpte[GPT_ENTRY_MAX - 1].type = GUID_PARTITION_BIOS_BOOT; gpte[GPT_ENTRY_MAX - 1].guid = guid; gpte[GPT_ENTRY_MAX - 1].guid.b[sizeof(guid_t) -1] += GPT_ENTRY_MAX; end = sect + sectors - 1; pte[0].type = 0xEE; pte[0].start = cpu_to_le32(GPT_HEADER_SECTOR); pte[0].length = cpu_to_le32(end - GPT_HEADER_SECTOR); to_chs(GPT_HEADER_SECTOR, pte[0].chs_start); to_chs(end, pte[0].chs_end); gpth.last_usable = cpu_to_le64(end - GPT_ENTRY_SIZE * GPT_ENTRY_MAX / DISK_SECTOR_SIZE - 1); gpth.alternate = cpu_to_le64(end); gpth.entry_crc32 = cpu_to_le32(gpt_crc32(gpte, GPT_ENTRY_SIZE * GPT_ENTRY_MAX)); gpth.crc32 = cpu_to_le32(gpt_crc32((char *)&gpth, GPT_HEADER_SIZE)); if ((fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC, 0644)) < 0) { fprintf(stderr, "Can't open output file '%s'\n",filename); return ret; } lseek(fd, MBR_DISK_SIGNATURE_OFFSET, SEEK_SET); if (write(fd, &signature, sizeof(signature)) != sizeof(signature)) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, MBR_PARTITION_ENTRY_OFFSET, SEEK_SET); if (write(fd, pte, sizeof(struct pte) * MBR_ENTRY_MAX) != sizeof(struct pte) * MBR_ENTRY_MAX) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, MBR_BOOT_SIGNATURE_OFFSET, SEEK_SET); if (write(fd, "\x55\xaa", 2) != 2) { fputs("write failed.\n", stderr); goto fail; } if (write(fd, &gpth, GPT_HEADER_SIZE) != GPT_HEADER_SIZE) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, GPT_FIRST_ENTRY_SECTOR * DISK_SECTOR_SIZE, SEEK_SET); if (write(fd, &gpte, GPT_ENTRY_SIZE * GPT_ENTRY_MAX) != GPT_ENTRY_SIZE * GPT_ENTRY_MAX) { fputs("write failed.\n", stderr); goto fail; } #ifdef WANT_ALTERNATE_PTABLE /* The alternate partition table (We omit it by default) */ swap(gpth.self, gpth.alternate); gpth.first_entry = cpu_to_le64(end - GPT_ENTRY_SIZE * GPT_ENTRY_MAX / DISK_SECTOR_SIZE), gpth.crc32 = 0; gpth.crc32 = cpu_to_le32(gpt_crc32(&gpth, GPT_HEADER_SIZE)); lseek(fd, end * DISK_SECTOR_SIZE - GPT_ENTRY_SIZE * GPT_ENTRY_MAX, SEEK_SET); if (write(fd, &gpte, GPT_ENTRY_SIZE * GPT_ENTRY_MAX) != GPT_ENTRY_SIZE * GPT_ENTRY_MAX) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, end * DISK_SECTOR_SIZE, SEEK_SET); if (write(fd, &gpth, GPT_HEADER_SIZE) != GPT_HEADER_SIZE) { fputs("write failed.\n", stderr); goto fail; } lseek(fd, (end + 1) * DISK_SECTOR_SIZE -1, SEEK_SET); if (write(fd, "\x00", 1) != 1) { fputs("write failed.\n", stderr); goto fail; } #endif ret = 0; fail: close(fd); return ret; } static void usage(char *prog) { fprintf(stderr, "Usage: %s [-v] [-n] [-g] -h -s -o [-a 0..4] [-l ] [-G ] [[-t ] [-r] [-N ] -p [@]...] \n", prog); exit(EXIT_FAILURE); } static guid_t type_to_guid_and_name(unsigned char type, char **name) { guid_t guid = GUID_PARTITION_BASIC_DATA; switch (type) { case 0xef: if(*name == NULL) *name = "EFI System Partition"; guid = GUID_PARTITION_SYSTEM; break; case 0x83: guid = GUID_PARTITION_LINUX_FS_GUID; break; case 0x2e: guid = GUID_PARTITION_LINUX_FIT_GUID; break; } return guid; } int main (int argc, char **argv) { unsigned char type = 0x83; char *p; int ch; int part = 0; char *name = NULL; unsigned short int hybrid = 0, required = 0; uint32_t signature = 0x5452574F; /* 'OWRT' */ guid_t guid = GUID_INIT( signature, 0x2211, 0x4433, \ 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0x00); guid_t part_guid = GUID_PARTITION_BASIC_DATA; while ((ch = getopt(argc, argv, "h:s:p:a:t:o:vnHN:gl:rS:G:")) != -1) { switch (ch) { case 'o': filename = optarg; break; case 'v': verbose++; break; case 'n': ignore_null_sized_partition = true; break; case 'g': use_guid_partition_table = 1; break; case 'H': hybrid = 1; break; case 'h': heads = (int)strtoul(optarg, NULL, 0); break; case 's': sectors = (int)strtoul(optarg, NULL, 0); break; case 'p': if (part > GPT_ENTRY_MAX - 1 || (!use_guid_partition_table && part > 3)) { fputs("Too many partitions\n", stderr); exit(EXIT_FAILURE); } p = strchr(optarg, '@'); if (p) { *(p++) = 0; parts[part].start = to_kbytes(p); } part_guid = type_to_guid_and_name(type, &name); parts[part].size = to_kbytes(optarg); parts[part].required = required; parts[part].name = name; parts[part].hybrid = hybrid; parts[part].guid = part_guid; fprintf(stderr, "part %ld %ld\n", parts[part].start, parts[part].size); parts[part++].type = type; /* * reset 'name','required' and 'hybrid' * 'type' is deliberately inherited from the previous delcaration */ name = NULL; required = 0; hybrid = 0; break; case 'N': name = optarg; break; case 'r': required = 1; break; case 't': type = (char)strtoul(optarg, NULL, 16); part_guid = type_to_guid_and_name(type, &name); break; case 'a': active = (int)strtoul(optarg, NULL, 0); if ((active < 0) || (active > 4)) active = 0; break; case 'l': kb_align = (int)strtoul(optarg, NULL, 0) * 2; break; case 'S': signature = strtoul(optarg, NULL, 0); break; case 'G': if (guid_parse(optarg, &guid)) { fputs("Invalid guid string\n", stderr); exit(EXIT_FAILURE); } break; case '?': default: usage(argv[0]); } } argc -= optind; if (argc || (heads <= 0) || (sectors <= 0) || !filename) usage(argv[0]); if (use_guid_partition_table) return gen_gptable(signature, guid, part) ? EXIT_FAILURE : EXIT_SUCCESS; return gen_ptable(signature, part) ? EXIT_FAILURE : EXIT_SUCCESS; }