summaryrefslogtreecommitdiffstats
path: root/Documentation/getting_started/devicetree.md
blob: 41f590199944730b6e50026c281ebfb67f157ea5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Adding new devices to a device tree

## Introduction

ACPI exposes a platform-independent interface for operating systems to perform
power management and other platform-level functions.  Some operating systems
also use ACPI to enumerate devices that are not immediately discoverable, such
as those behind I2C or SPI buses (in contrast to PCI).  This document discusses
the way that coreboot uses the concept of a "device tree" to generate ACPI
tables for usage by the operating system.

## Devicetree and overridetree (if applicable)

For mainboards that are organized around a "reference board" or "baseboard"
model (see ``src/mainboard/google/octopus`` or ``hatch`` for examples), there is
typically a devicetree.cb file that all boards share, and any differences for a
specific board ("variant") are captured in the overridetree.cb file.  Any
settings changed in the overridetree take precedence over those in the main
devicetree.  Note, not all mainboards will have the devicetree/overridetree
distinction, and may only have a devicetree.cb file.  Or you can always just
write the ASL (ACPI Source Language) code yourself.

### Naming and referencing devices

When declaring a device, it can optionally be given an alias that can be
referred to elsewhere. This is particularly useful to declare a device in one
device tree while allowing its configuration to be more easily changed in an
overlay. For instance, the AMD Picasso SoC definition
(`soc/amd/picasso/chipset.cb`) declares an IOMMU on a PCI bus that is disabled
by default:

```
chip soc/amd/picasso
	device domain 0 on
		...
		device pci 00.2 alias iommu off end
		...
	end
end
```

A device based on this SoC can override the configuration for the IOMMU without
duplicating addresses, as in
`mainboard/google/zork/variants/baseboard/devicetree_trembyle.cb`:

```
chip soc/amd/picasso
	device domain 0
		...
		device ref iommu on end
		...
	end
end
```

In this example the override simply enables the IOMMU, but it could also
set additional properties (or even add child devices) inside the IOMMU `device`
block.

---

It is important to note that devices that use `device ref` syntax to override
previous definitions of a device by alias must be placed at **exactly the same
location in the device tree** as the original declaration. If not, this will
actually create another device rather than overriding the properties of the
existing one. For instance, if the above snippet from `devicetree_trembyle.cb`
were written as follows:

```
chip soc/amd/picasso
	# NOTE: not inside domain 0!
	device ref iommu on end
end
```

Then this would leave the SoC's IOMMU disabled, and instead create a new device
with no properties as a direct child of the SoC.

## Device drivers

Let's take a look at an example entry from
``src/mainboard/google/hatch/variants/hatch/overridetree.cb``:

```
device pci 15.0 on
	chip drivers/i2c/generic
		register "hid" = ""ELAN0000""
		register "desc" = ""ELAN Touchpad""
		register "irq" = "ACPI_IRQ_WAKE_LEVEL_LOW(GPP_A21_IRQ)"
		register "wake" = "GPE0_DW0_21"
		device i2c 15 on end
	end
end # I2C #0
```

When this entry is processed during ramstage, it will create a device in the
ACPI SSDT table (all devices in devicetrees end up in the SSDT table).  The ACPI
generation routines in coreboot actually generate the raw bytecode that
represents the device's structure, but looking at ASL code is easier to
understand; see below for what the disassembled bytecode looks like:

```
Scope (\_SB.PCI0.I2C0)
{
    Device (D015)
    {
        Name (_HID, "ELAN0000")  // _HID: Hardware ID
        Name (_UID, Zero)  // _UID: Unique ID
        Name (_DDN, "ELAN Touchpad")  // _DDN: DOS Device Name
        Method (_STA, 0, NotSerialized)  // _STA: Status
        {
            Return (0x0F)
        }
        Name (_CRS, ResourceTemplate ()  // _CRS: Current Resource Settings
        {
            I2cSerialBusV2 (0x0015, ControllerInitiated, 400000,
                AddressingMode7Bit, "\\_SB.PCI0.I2C0",
                0x00, ResourceConsumer, , Exclusive, )
            Interrupt (ResourceConsumer, Level, ActiveLow, ExclusiveAndWake, ,, )
            {
                0x0000002D,
            }
        })
        Name (_S0W, ACPI_DEVICE_SLEEP_D3_HOT)  // _S0W: S0 Device Wake State
        Name (_PRW, Package (0x02)  // _PRW: Power Resources for Wake
        {
            0x15, // GPE #21
            0x03  // Sleep state S3
        })
    }
}
```

You can see it generates _HID, _UID, _DDN, _STA, _CRS, _S0W, and _PRW
names/methods in the Device's scope.

## Utilizing a device driver

The device driver must be enabled for your build.  There will be a CONFIG option
in the Kconfig file in the directory that the driver is in (e.g.,
``src/drivers/i2c/generic`` contains a Kconfig file; the option here is named
CONFIG_DRIVERS_I2C_GENERIC).  The config option will need to be added to your
mainboard's Kconfig file (e.g., ``src/mainboard/google/hatch/Kconfig``) in order
to be compiled into your build.

## Diving into the above example:

Let's take a look at how the devicetree language corresponds to the generated
ASL.

First, note this:

```
    chip drivers/i2c/generic
```

This means that the device driver we're using has a corresponding structure,
located at ``src/drivers/i2c/generic/chip.h``, named **struct
drivers_i2c_generic_config** and it contains many properties you can specify to
be included in the ACPI table.

### hid

```
    register "hid" = ""ELAN0000""
```

This corresponds to **const char *hid** in the struct.  In the ACPI ASL, it
translates to:

```
    Name (_HID, "ELAN0000") // _HID: Hardware ID
```

under the device.  **This property is used to match the device to its driver
during enumeration in the OS.**

### desc

```
    register "desc" = ""ELAN Touchpad""
```

corresponds to **const char *desc** and in ASL:

```
    Name (_DDN, "ELAN Touchpad") // _DDN: DOS Device Name
```

### irq

It also adds the interrupt,

```
    Interrupt (ResourceConsumer, Level, ActiveLow, ExclusiveAndWake, ,, )
    {
        0x0000002D,
    }
```

which comes from:

```
    register "irq" = "ACPI_IRQ_WAKE_LEVEL_LOW(GPP_A21_IRQ)"
```

The GPIO pin IRQ settings control the "Level", "ActiveLow", and
"ExclusiveAndWake" settings seen above (level means it is a level-triggered
interrupt as opposed to edge-triggered; active low means the interrupt is
triggered when the signal is low).

Note that the ACPI_IRQ_WAKE_LEVEL_LOW macro informs the platform that the GPIO
will be routed through SCI (ACPI's System Control Interrupt) for use as a wake
source.  Also note that the IRQ names are SoC-specific, and you will need to
find the names in your SoC's header file.  The ACPI_* macros are defined in
``src/arch/x86/include/acpi/acpi_device.h``.

Using a GPIO as an IRQ requires that it is configured in coreboot correctly.
This is often done in a mainboard-specific file named ``gpio.c``.

### wake

The last register is:

```
    register "wake" = "GPE0_DW0_21"
```

which indicates that the method of waking the system using the touchpad will be
through a GPE, #21 associated with DW0, which is set up in devicetree.cb from
this example.  The "21" indicates GPP_X21, where GPP_X is mapped onto DW0
elsewhere in the devicetree.

The last bit of the definition of that device includes:

```
    device i2c 15 on end
```

which means it's an I2C device, with 7-bit address 0x15, and the device is "on",
meaning it will be exposed in the ACPI table.  The PCI device that the
controller is located in determines which I2C bus the device is expected to be
found on.  In this example, this is I2C bus 0.  This also determines the ACPI
"Scope" that the device names and methods will live under, in this case
"\_SB.PCI0.I2C0".

## Other auto-generated names

(see [ACPI specification
6.3](https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf)
for more details on ACPI methods)

### _S0W (S0 Device Wake State)
_S0W indicates the deepest S0 sleep state this device can wake itself from,
which in this case is ACPI_DEVICE_SLEEP_D3_HOT, representing _D3hot_.

### _PRW (Power Resources for Wake)
_PRW indicates the power resources and events required for wake.  There are no
dependent power resources, but the GPE (GPE0_DW0_21) is mentioned here (0x15),
as well as the deepest sleep state supporting waking the system (3), which is
S3.

### _STA (Status)
The _STA method is generated automatically, and its values, 0xF, indicates the
following:

    Bit [0] – Set if the device is present.
    Bit [1] – Set if the device is enabled and decoding its resources.
    Bit [2] – Set if the device should be shown in the UI.
    Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics).

### _CRS (Current resource settings)
The _CRS method is generated automatically, as the driver knows it is an I2C
controller, and so specifies how to configure the controller for proper
operation with the touchpad.

```
Name (_CRS, ResourceTemplate ()  // _CRS: Current Resource Settings
{
    I2cSerialBusV2 (0x0015, ControllerInitiated, 400000,
                    AddressingMode7Bit, "\\_SB.PCI0.I2C0",
                    0x00, ResourceConsumer, , Exclusive, )
```

## Notes

 - **All fields that are left unspecified in the devicetree are initialized to
   zero.**
 - **All devices in devicetrees end up in the SSDT table, and are generated in
   coreboot's ramstage**