summaryrefslogtreecommitdiffstats
path: root/Documentation/getting_started/gpio.md
blob: 26939ce7cfcf45292df09d076c0860cdf928c5e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Configuring a mainboard's GPIOs in coreboot

## Introduction

Every mainboard needs to appropriately configure its General Purpose Inputs /
Outputs (GPIOs). There are many facets of this issue, including which boot
stage a GPIO might need to be configured.

## Boot stages

Typically, coreboot does most of its non-memory related initialization work in
ramstage, when DRAM is available for use. Hence, the bulk of a mainboard's GPIOs
are configured in this stage. However, some boards might need a few GPIOs
configured before that; think of memory strapping pins which indicate what kind
of DRAM is installed. These pins might need to be read before initializing the
memory, so these GPIOs are then typically configured in bootblock or romstage.

## Configuration

Most mainboards will have a ``gpio.c`` file in their mainboard directory. This
file typically contains tables which describe the configuration of the GPIO
registers. Since these registers could be different on a per-SoC or per
SoC-family basis, you may need to consult the datasheet for your SoC to find out
how to appropriately set these registers. In addition, some mainboards are
based on a baseboard/variant model, where several variant mainboards may share a
lot of their circuitry and ICs and the commonality between the boards is
collected into a virtual ``baseboard.`` In that case, the GPIOs which are shared
between multiple boards are placed in the baseboard's ``gpio.c` file, while the
ones that are board-specific go into each variant's ``gpio.c`` file.

## Intel SoCs

Many newer Intel SoCs share a common IP block for GPIOs, and that commonality
has been taken advantage of in coreboot, which has a large set of macros that
can be used to describe the configuration of each GPIO pad. This file lives in
``src/soc/intel/common/block/include/intelblocks/gpio_defs.h``.

### Older Intel SoCs

Baytrail and Braswell, for example, simply expect the mainboard to supply a
callback, `mainboard_get_gpios` which returns an array of `struct soc_gpio`
objects, defining the configuration of each pin.

### AMD SoCs

Some AMD SoCs use a list of `struct soc_amd_gpio` objects to define the
register values configuring each pin, similar to Intel.

### Register details

GPIO configuration registers typically control properties such as:
1. Input / Output
2. Pullups / Pulldowns
3. Termination
4. Tx / Rx Disable
5. Which reset signal to use
6. Native Function / IO
7. Interrupts
    * IRQ routing (e.g. on x86, APIC, SCI, SMI)
    * Edge or Level Triggered
    * Active High or Active Low
8. Debouncing

## Configuring GPIOs for pre-ramstage

coreboot provides for several SoC-specific and mainboard-specific callbacks at
specific points in time, such as bootblock-early, bootblock, romstage entry,
pre-silicon init, pre-RAM init, or post-RAM init. The GPIOs that are
configured in either bootblock or romstage, depending on when they are needed,
are denoted the "early" GPIOs. Some mainboard will use
``bootblock_mainboard_init()`` to configure their early GPIOs, and this is
probably a good place to start. Many mainboards will declare their GPIO
configuration as structs, i.e. (Intel),

```C
struct pad_config {
    /* offset of pad within community */
        int             pad;
    /* Pad config data corresponding to DW0, DW1,.... */
        uint32_t        pad_config[GPIO_NUM_PAD_CFG_REGS];
};
```

and will usually place these in an array, one for each pad to be configured.
Mainboards using Intel SoCs can use a library which combines common
configurations together into a set of macros, e.g.,

```C
    /* Native function configuration */
    #define PAD_CFG_NF(pad, pull, rst, func)
    /*
     * Set native function with RX Level/Edge configuration and disable
     * input/output buffer if necessary
     */
    #define PAD_CFG_NF_BUF_TRIG(pad, pull, rst, func, bufdis, trig)
    /* General purpose output, no pullup/down. */
    #define PAD_CFG_GPO(pad, val, rst)
    /* General purpose output, with termination specified */
    #define PAD_CFG_TERM_GPO(pad, val, pull, rst)
    /* General purpose output, no pullup/down. */
    #define PAD_CFG_GPO_GPIO_DRIVER(pad, val, rst, pull)
    /* General purpose input */
    #define PAD_CFG_GPI(pad, pull, rst)
```
etc.

## Configuring GPIOs for ramstage and beyond...

In ramstage, most mainboards will configure the rest of their GPIOs for the
function they will be performing while the device is active. The goal is the
same as above in bootblock; another ``static const`` array is created, and the
rest of the GPIO registers are programmed.

In the baseboard/variant model described above, the baseboard will provide the
configuration for the GPIOs which are configured identically between variants,
and will provide a mechanism for a variant to override the baseboard's
configuration. This is usually done via two tables: the baseboard table and the
variant's override table.

This configuration is often hooked into the mainboard's `enable_dev` callback,
defined in its `struct chip_operations`.

## Potential issues (gotchas!)

There are a couple of configurations that you need to especially careful about,
as they can have a large impact on your mainboard.

The first is configuring a pin as an output, when it was designed to be an
input. There is a real risk in this case of short-circuiting a component which
could cause catastrophic failures, up to and including your mainboard!

The other configuration option to watch out for deals with unconnected GPIOs.
If no pullup or pulldown is declared with these, they may end up "floating",
i.e., not at logical high or logical low. This can cause problems such as
unwanted power consumption or not reading the pin correctly, if it was intended
to be strapped.