summaryrefslogtreecommitdiffstats
path: root/src/drivers/spi/tpm/tpm.c
blob: d9c3a6dc1cfe2d7a46be88e48b788f7656fb5c01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/* SPDX-License-Identifier: BSD-3-Clause */
/* This is a driver for a SPI interfaced TPM2 device.
 *
 * It assumes that the required SPI interface has been initialized before the
 * driver is started. A 'struct spi_slave' pointer passed at initialization is
 * used to direct traffic to the correct SPI interface. This driver does not
 * provide a way to instantiate multiple TPM devices. Also, to keep things
 * simple, the driver unconditionally uses of TPM locality zero.
 *
 * References to documentation are based on the TCG issued "TPM Profile (PTP)
 * Specification Revision 00.43".
 */

#include <assert.h>
#include <commonlib/endian.h>
#include <console/console.h>
#include <delay.h>
#include <drivers/tpm/cr50.h>
#include <endian.h>
#include <security/tpm/tis.h>
#include <string.h>
#include <timer.h>
#include <types.h>

#include "tpm.h"

/* Assorted TPM2 registers for interface type FIFO. */
#define TPM_ACCESS_REG    (TPM_LOCALITY_0_SPI_BASE + 0)
#define TPM_STS_REG       (TPM_LOCALITY_0_SPI_BASE + 0x18)
#define TPM_DATA_FIFO_REG (TPM_LOCALITY_0_SPI_BASE + 0x24)
#define TPM_INTF_ID_REG   (TPM_LOCALITY_0_SPI_BASE + 0x30)
#define TPM_DID_VID_REG   (TPM_LOCALITY_0_SPI_BASE + 0xf00)
#define TPM_RID_REG       (TPM_LOCALITY_0_SPI_BASE + 0xf04)
#define TPM_FW_VER	  (TPM_LOCALITY_0_SPI_BASE + 0xf90)
#define CR50_BOARD_CFG     (TPM_LOCALITY_0_SPI_BASE + 0xfe0)

#define CR50_TIMEOUT_INIT_MS 30000 /* Very long timeout for TPM init */

/* SPI slave structure for TPM device. */
static struct spi_slave spi_slave;

/* Cached TPM device identification. */
static struct tpm2_info tpm_info;

/*
 * TODO(vbendeb): make CONFIG(DEBUG_TPM) an int to allow different level of
 * debug traces. Right now it is either 0 or 1.
 */
static const int debug_level_ = CONFIG(DEBUG_TPM);

/*
 * SPI frame header for TPM transactions is 4 bytes in size, it is described
 * in section "6.4.6 Spi Bit Protocol".
 */
typedef struct {
	unsigned char body[4];
} spi_frame_header;

void tpm2_get_info(struct tpm2_info *info)
{
	*info = tpm_info;
}

/*
 * Each TPM2 SPI transaction starts the same: CS is asserted, the 4 byte
 * header is sent to the TPM, the master waits til TPM is ready to continue.
 */
static enum cb_err start_transaction(int read_write, size_t bytes, unsigned int addr)
{
	spi_frame_header header, header_resp;
	uint8_t byte;
	int i;
	int ret;
	struct stopwatch sw;
	static int tpm_sync_needed;
	static struct stopwatch wake_up_sw;

	if (CONFIG(TPM_GOOGLE)) {
		/*
		 * First Cr50 access in each coreboot stage where TPM is used will be
		 * prepended by a wake up pulse on the CS line.
		 */
		int wakeup_needed = 1;

		/* Wait for TPM to finish previous transaction if needed */
		if (tpm_sync_needed) {
			if (cr50_wait_tpm_ready() != CB_SUCCESS)
				printk(BIOS_ERR, "Timeout waiting for TPM IRQ!\n");

			/*
			 * During the first invocation of this function on each stage
			 * this if () clause code does not run (as tpm_sync_needed
			 * value is zero), during all following invocations the
			 * stopwatch below is guaranteed to be started.
			 */
			if (!stopwatch_expired(&wake_up_sw))
				wakeup_needed = 0;
		} else {
			tpm_sync_needed = 1;
		}

		if (wakeup_needed) {
			/* Just in case Cr50 is asleep. */
			spi_claim_bus(&spi_slave);
			udelay(1);
			spi_release_bus(&spi_slave);
			udelay(100);
		}

		/*
		 * The Cr50 on H1 does not go to sleep for 1 second after any
		 * SPI slave activity, let's be conservative and limit the
		 * window to 900 ms.
		 */
		stopwatch_init_msecs_expire(&wake_up_sw, 900);
	}

	/*
	 * The first byte of the frame header encodes the transaction type
	 * (read or write) and transfer size (set to length - 1), limited to
	 * 64 bytes.
	 */
	header.body[0] = (read_write ? 0x80 : 0) | 0x40 | (bytes - 1);

	/* The rest of the frame header is the TPM register address. */
	for (i = 0; i < 3; i++)
		header.body[i + 1] = (addr >> (8 * (2 - i))) & 0xff;

	/* CS assert wakes up the slave. */
	spi_claim_bus(&spi_slave);

	/*
	 * The TCG TPM over SPI specification introduces the notion of SPI
	 * flow control (Section "6.4.5 Flow Control").
	 *
	 * Again, the slave (TPM device) expects each transaction to start
	 * with a 4 byte header transmitted by master. The header indicates if
	 * the master needs to read or write a register, and the register
	 * address.
	 *
	 * If the slave needs to stall the transaction (for instance it is not
	 * ready to send the register value to the master), it sets the MOSI
	 * line to 0 during the last clock of the 4 byte header. In this case
	 * the master is supposed to start polling the SPI bus, one byte at
	 * time, until the last bit in the received byte (transferred during
	 * the last clock of the byte) is set to 1.
	 *
	 * Due to some SPI controllers' shortcomings (Rockchip comes to
	 * mind...) we transmit the 4 byte header without checking the byte
	 * transmitted by the TPM during the transaction's last byte.
	 *
	 * We know that cr50 is guaranteed to set the flow control bit to 0
	 * during the header transfer. Real TPM2 are fast enough to not require
	 * to stall the master. They might still use this feature, so test the
	 * last bit after shifting in the address bytes.
	 * crosbug.com/p/52132 has been opened to track this.
	 */

	header_resp.body[3] = 0;
	if (CONFIG(TPM_GOOGLE))
		ret = spi_xfer(&spi_slave, header.body, sizeof(header.body), NULL, 0);
	else
		ret = spi_xfer(&spi_slave, header.body, sizeof(header.body),
			       header_resp.body, sizeof(header_resp.body));
	if (ret) {
		printk(BIOS_ERR, "SPI-TPM: transfer error\n");
		spi_release_bus(&spi_slave);
		return CB_ERR;
	}

	if (header_resp.body[3] & 1)
		return CB_SUCCESS;

	/*
	 * Now poll the bus until TPM removes the stall bit. Give it up to 100
	 * ms to sort it out - it could be saving stuff in nvram at some point.
	 */
	stopwatch_init_msecs_expire(&sw, 100);
	do {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "TPM flow control failure\n");
			spi_release_bus(&spi_slave);
			return CB_ERR;
		}
		spi_xfer(&spi_slave, NULL, 0, &byte, 1);
	} while (!(byte & 1));

	return CB_SUCCESS;
}

/*
 * Print out the contents of a buffer, if debug is enabled. Skip registers
 * other than FIFO, unless debug_level_ is 2.
 */
static void trace_dump(const char *prefix, uint32_t reg,
		       size_t bytes, const uint8_t *buffer,
		       int force)
{
	static char prev_prefix;
	static unsigned int prev_reg;
	static int current_char;
	const int BYTES_PER_LINE = 32;

	if (!force) {
		if (!debug_level_)
			return;

		if ((debug_level_ < 2) && (reg != TPM_DATA_FIFO_REG))
			return;
	}

	/*
	 * Do not print register address again if the last dump print was for
	 * that register.
	 */
	if (prev_prefix != *prefix || (prev_reg != reg)) {
		prev_prefix = *prefix;
		prev_reg = reg;
		printk(BIOS_DEBUG, "\n%s %2.2x:", prefix, reg);
		current_char = 0;
	}

	if ((reg != TPM_DATA_FIFO_REG) && (bytes == 4)) {
		/*
		 * This must be a regular register address, print the 32 bit
		 * value.
		 */
		printk(BIOS_DEBUG, " %8.8x", *(const uint32_t *)buffer);
	} else {
		int i;

		/*
		 * Data read from or written to FIFO or not in 4 byte
		 * quantities is printed byte at a time.
		 */
		for (i = 0; i < bytes; i++) {
			if (current_char &&
				!(current_char % BYTES_PER_LINE)) {
				printk(BIOS_DEBUG, "\n     ");
				current_char = 0;
			}
			(current_char)++;
			printk(BIOS_DEBUG, " %2.2x", buffer[i]);
		}
	}
}

/*
 * Once transaction is initiated and the TPM indicated that it is ready to go,
 * write the actual bytes to the register.
 */
static void write_bytes(const void *buffer, size_t bytes)
{
	spi_xfer(&spi_slave, buffer, bytes, NULL, 0);
}

/*
 * Once transaction is initiated and the TPM indicated that it is ready to go,
 * read the actual bytes from the register.
 */
static void read_bytes(void *buffer, size_t bytes)
{
	spi_xfer(&spi_slave, NULL, 0, buffer, bytes);
}

/*
 * To write a register, start transaction, transfer data to the TPM, deassert
 * CS when done.
 */
static enum cb_err tpm2_write_reg(unsigned int reg_number, const void *buffer, size_t bytes)
{
	trace_dump("W", reg_number, bytes, buffer, 0);
	if (start_transaction(false, bytes, reg_number) != CB_SUCCESS)
		return CB_ERR;
	write_bytes(buffer, bytes);
	spi_release_bus(&spi_slave);
	return CB_SUCCESS;
}

/*
 * To read a register, start transaction, transfer data from the TPM, deassert
 * CS when done.
 *
 * In case of failure zero out the user buffer.
 */
static enum cb_err tpm2_read_reg(unsigned int reg_number, void *buffer, size_t bytes)
{
	if (start_transaction(true, bytes, reg_number) != CB_SUCCESS) {
		memset(buffer, 0, bytes);
		return CB_ERR;
	}
	read_bytes(buffer, bytes);
	spi_release_bus(&spi_slave);
	trace_dump("R", reg_number, bytes, buffer, 0);
	return CB_SUCCESS;
}

/*
 * Status register is accessed often, wrap reading and writing it into
 * dedicated functions.
 */
static enum cb_err read_tpm_sts(uint32_t *status)
{
	return tpm2_read_reg(TPM_STS_REG, status, sizeof(*status));
}

static enum cb_err __must_check write_tpm_sts(uint32_t status)
{
	return tpm2_write_reg(TPM_STS_REG, &status, sizeof(status));
}

/*
 * The TPM may limit the transaction bytes count (burst count) below the 64
 * bytes max. The current value is available as a field of the status
 * register.
 */
static uint32_t get_burst_count(void)
{
	uint32_t status;

	read_tpm_sts(&status);
	return (status & TPM_STS_BURST_COUNT_MASK) >> TPM_STS_BURST_COUNT_SHIFT;
}

static uint8_t tpm2_read_access_reg(void)
{
	uint8_t access;
	tpm2_read_reg(TPM_ACCESS_REG, &access, sizeof(access));
	/* We do not care about access establishment bit state. Ignore it. */
	return access & ~TPM_ACCESS_ESTABLISHMENT;
}

static void tpm2_write_access_reg(uint8_t cmd)
{
	/* Writes to access register can set only 1 bit at a time. */
	assert(!(cmd & (cmd - 1)));

	tpm2_write_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
}

static enum cb_err tpm2_claim_locality(void)
{
	uint8_t access;
	struct stopwatch sw;

	/*
	 * Locality is released by TPM reset.
	 *
	 * If locality is taken at this point, this could be due to the fact
	 * that the TPM is performing a long operation and has not processed
	 * reset request yet. We'll wait up to CR50_TIMEOUT_INIT_MS and see if
	 * it releases locality when reset is processed.
	 */
	stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_INIT_MS);
	do {
		access = tpm2_read_access_reg();
		if (access & TPM_ACCESS_ACTIVE_LOCALITY) {
			/*
			 * Don't bombard the chip with traffic, let it keep
			 * processing the command.
			 */
			mdelay(2);
			continue;
		}

		/*
		 * Ok, the locality is free, TPM must be reset, let's claim
		 * it.
		 */

		tpm2_write_access_reg(TPM_ACCESS_REQUEST_USE);
		access = tpm2_read_access_reg();
		if (access != (TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) {
			break;
		}

		printk(BIOS_INFO, "TPM ready after %lld ms\n",
		       stopwatch_duration_msecs(&sw));

		return CB_SUCCESS;
	} while (!stopwatch_expired(&sw));

	printk(BIOS_ERR,
	       "Failed to claim locality 0 after %lld ms, status: %#x\n",
	       stopwatch_duration_msecs(&sw), access);

	return CB_ERR;
}

/* Device/vendor ID values of the TPM devices this driver supports. */
static const uint32_t supported_did_vids[] = {
	0x00281ae0,  /* H1 based Cr50 security chip. */
	0x504a6666,  /* H1D3C based Ti50 security chip. */
	0x0000104a   /* ST33HTPH2E32 */
};

tpm_result_t tpm2_init(struct spi_slave *spi_if)
{
	uint32_t did_vid, status, intf_id;
	uint8_t cmd;
	int retries;

	memcpy(&spi_slave, spi_if, sizeof(*spi_if));

	/* Clear any pending IRQs. */
	if (CONFIG(TPM_GOOGLE))
		cr50_plat_irq_status();

	/*
	 * 150 ms should be enough to synchronize with the TPM even under the
	 * worst nested reset request conditions. In vast majority of cases
	 * there would be no wait at all.
	 */
	printk(BIOS_INFO, "Probing TPM: ");
	for (retries = 15; retries > 0; retries--) {
		int i;

		/* In case of failure to read div_vid is set to zero. */
		tpm2_read_reg(TPM_DID_VID_REG, &did_vid, sizeof(did_vid));

		for (i = 0; i < ARRAY_SIZE(supported_did_vids); i++)
			if (did_vid == supported_did_vids[i])
				break; /* TPM is up and ready. */

		if (i < ARRAY_SIZE(supported_did_vids))
			break;

		/* TPM might be resetting, let's retry in a bit. */
		mdelay(10);
		printk(BIOS_INFO, ".");
	}

	if (!retries) {
		printk(BIOS_ERR, "\n%s: Failed to connect to the TPM\n",
		       __func__);
		return TPM_CB_FAIL;
	}

	printk(BIOS_INFO, " done!\n");

	/* Google TPMs haven't always been 100% accurate in reflecting the spec (particularly
	 * on older versions) and are always TPM 2.0. */
	if (!CONFIG(TPM_GOOGLE)) {
		if (tpm2_read_reg(TPM_INTF_ID_REG, &intf_id, sizeof(intf_id)) != CB_SUCCESS) {
			printk(BIOS_ERR, "\n%s: Failed to read interface ID register\n",
			       __func__);
			return TPM_CB_FAIL;
		}
		if ((be32toh(intf_id) & 0xF) == 0xF) {
			printk(BIOS_DEBUG, "\n%s: Not a TPM2 device\n", __func__);
			return TPM_CB_FAIL;
		}
	}

	// FIXME: Move this to tpm_setup()
	if (tpm_first_access_this_boot())
		/*
		 * Claim locality 0, do it only during the first
		 * initialization after reset.
		 */
		if (tpm2_claim_locality() != CB_SUCCESS)
			return TPM_CB_FAIL;

	if (read_tpm_sts(&status) != CB_SUCCESS) {
		printk(BIOS_ERR, "Reading status reg failed\n");
		return TPM_CB_FAIL;
	}
	if ((status & TPM_STS_FAMILY_MASK) != TPM_STS_FAMILY_TPM_2_0) {
		printk(BIOS_ERR, "unexpected TPM family value, status: %#x\n",
		       status);
		return TPM_CB_FAIL;
	}

	/*
	 * Locality claimed, read the revision value and set up the tpm_info
	 * structure.
	 */
	tpm2_read_reg(TPM_RID_REG, &cmd, sizeof(cmd));
	tpm_info.vendor_id = did_vid & 0xffff;
	tpm_info.device_id = did_vid >> 16;
	tpm_info.revision = cmd;

	printk(BIOS_INFO, "Connected to device vid:did:rid of %4.4x:%4.4x:%2.2x\n",
	       tpm_info.vendor_id, tpm_info.device_id, tpm_info.revision);

	/* Do some GSC-specific things here. */
	if (CONFIG(TPM_GOOGLE)) {
		if (tpm_first_access_this_boot()) {
			/* This is called for the side-effect of printing the firmware version
			   string */
			cr50_get_firmware_version(NULL);
                        cr50_set_board_cfg();
		}
	}
	return TPM_SUCCESS;
}

/*
 * This is in seconds, certain TPM commands, like key generation, can take
 * long time to complete.
 */
#define MAX_STATUS_TIMEOUT 120
static enum cb_err wait_for_status(uint32_t status_mask, uint32_t status_expected)
{
	uint32_t status;
	struct stopwatch sw;

	stopwatch_init_usecs_expire(&sw, MAX_STATUS_TIMEOUT * 1000 * 1000);
	do {
		udelay(1000);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "failed to get expected status %#x\n",
			       status_expected);
			return CB_ERR;
		}
		read_tpm_sts(&status);
	} while ((status & status_mask) != status_expected);

	return CB_SUCCESS;
}

enum fifo_transfer_direction {
	fifo_transmit = 0,
	fifo_receive = 1
};

/* Union allows to avoid casting away 'const' on transmit buffers. */
union fifo_transfer_buffer {
	uint8_t *rx_buffer;
	const uint8_t *tx_buffer;
};

/*
 * Transfer requested number of bytes to or from TPM FIFO, accounting for the
 * current burst count value.
 */
static enum cb_err __must_check fifo_transfer(size_t transfer_size,
					   union fifo_transfer_buffer buffer,
					   enum fifo_transfer_direction direction)
{
	size_t transaction_size;
	size_t burst_count;
	size_t handled_so_far = 0;

	do {
		do {
			/* Could be zero when TPM is busy. */
			burst_count = get_burst_count();
		} while (!burst_count);

		transaction_size = transfer_size - handled_so_far;
		transaction_size = MIN(transaction_size, burst_count);

		/*
		 * The SPI frame header does not allow to pass more than 64
		 * bytes.
		 */
		transaction_size = MIN(transaction_size, 64);

		if (direction == fifo_receive) {
			if (tpm2_read_reg(TPM_DATA_FIFO_REG,
					  buffer.rx_buffer + handled_so_far,
					  transaction_size) != CB_SUCCESS)
				return CB_ERR;
		} else {
			if (tpm2_write_reg(TPM_DATA_FIFO_REG,
					   buffer.tx_buffer + handled_so_far,
					   transaction_size) != CB_SUCCESS)
				return CB_ERR;
		}

		handled_so_far += transaction_size;

	} while (handled_so_far != transfer_size);

	return CB_SUCCESS;
}

size_t tpm2_process_command(const void *tpm2_command, size_t command_size,
			    void *tpm2_response, size_t max_response)
{
	uint32_t status;
	uint32_t expected_status_bits;
	size_t payload_size;
	size_t bytes_to_go;
	const uint8_t *cmd_body = tpm2_command;
	uint8_t *rsp_body = tpm2_response;
	union fifo_transfer_buffer fifo_buffer;
	const int HEADER_SIZE = 6;

	/* Do not try using an uninitialized TPM. */
	if (!tpm_info.vendor_id)
		return 0;

	/* Skip the two byte tag, read the size field. */
	payload_size = read_be32(cmd_body + 2);

	/* Sanity check. */
	if (payload_size != command_size) {
		printk(BIOS_ERR,
		       "Command size mismatch: encoded %zd != requested %zd\n",
		       payload_size, command_size);
		trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
		printk(BIOS_DEBUG, "\n");
		return 0;
	}

	/* Let the TPM know that the command is coming. */
	if (write_tpm_sts(TPM_STS_COMMAND_READY) != CB_SUCCESS) {
		printk(BIOS_ERR, "TPM_STS_COMMAND_READY failed\n");
		return 0;
	}

	/*
	 * TPM commands and responses written to and read from the FIFO
	 * register (0x24) are datagrams of variable size, prepended by a 6
	 * byte header.
	 *
	 * The specification description of the state machine is a bit vague,
	 * but from experience it looks like there is no need to wait for the
	 * sts.expect bit to be set, at least with the 9670 and cr50 devices.
	 * Just write the command into FIFO, making sure not to exceed the
	 * burst count or the maximum PDU size, whatever is smaller.
	 */
	fifo_buffer.tx_buffer = cmd_body;
	if (fifo_transfer(command_size, fifo_buffer, fifo_transmit) != CB_SUCCESS) {
		printk(BIOS_ERR, "fifo_transfer %zd command bytes failed\n",
		       command_size);
		return 0;
	}

	/* Now tell the TPM it can start processing the command. */
	if (write_tpm_sts(TPM_STS_GO) != CB_SUCCESS) {
		printk(BIOS_ERR, "TPM_STS_GO failed\n");
		return 0;
	}

	/* Now wait for it to report that the response is ready. */
	expected_status_bits = TPM_STS_VALID | TPM_STS_DATA_AVAIL;
	if (wait_for_status(expected_status_bits, expected_status_bits) != CB_SUCCESS) {
		/*
		 * If timed out, which should never happen, let's at least
		 * print out the offending command.
		 */
		trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
		printk(BIOS_DEBUG, "\n");
		return 0;
	}

	/*
	 * The response is ready, let's read it. First we read the FIFO
	 * payload header, to see how much data to expect. The response header
	 * size is fixed to six bytes, the total payload size is stored in
	 * network order in the last four bytes.
	 */
	tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body, HEADER_SIZE);

	/* Find out the total payload size, skipping the two byte tag. */
	payload_size = read_be32(rsp_body + 2);

	if (payload_size > max_response) {
		/*
		 * TODO(vbendeb): at least drain the FIFO here or somehow let
		 * the TPM know that the response can be dropped.
		 */
		printk(BIOS_ERR, " TPM response too long (%zd bytes)",
		       payload_size);
		return 0;
	}

	/*
	 * Now let's read all but the last byte in the FIFO to make sure the
	 * status register is showing correct flow control bits: 'more data'
	 * until the last byte and then 'no more data' once the last byte is
	 * read.
	 */
	bytes_to_go = payload_size - 1 - HEADER_SIZE;
	fifo_buffer.rx_buffer = rsp_body + HEADER_SIZE;
	if (fifo_transfer(bytes_to_go, fifo_buffer, fifo_receive) != CB_SUCCESS) {
		printk(BIOS_ERR, "fifo_transfer %zd receive bytes failed\n",
		       bytes_to_go);
		return 0;
	}

	/* Verify that there is still data to read. */
	read_tpm_sts(&status);
	if ((status & expected_status_bits) != expected_status_bits) {
		printk(BIOS_ERR, "unexpected intermediate status %#x\n",
		       status);
		return 0;
	}

	/* Read the last byte of the PDU. */
	tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body + payload_size - 1, 1);

	/* Terminate the dump, if enabled. */
	if (debug_level_)
		printk(BIOS_DEBUG, "\n");

	/* Verify that 'data available' is not asserted any more. */
	read_tpm_sts(&status);
	if ((status & expected_status_bits) != TPM_STS_VALID) {
		printk(BIOS_ERR, "unexpected final status %#x\n", status);
		return 0;
	}

	/* Move the TPM back to idle state. */
	if (write_tpm_sts(TPM_STS_COMMAND_READY) != CB_SUCCESS) {
		printk(BIOS_ERR, "TPM_STS_COMMAND_READY failed\n");
		return 0;
	}

	return payload_size;
}

enum cb_err tis_vendor_write(unsigned int addr, const void *buffer, size_t bytes)
{
	return tpm2_write_reg(addr, buffer, bytes);
}

enum cb_err tis_vendor_read(unsigned int addr, void *buffer, size_t bytes)
{
	return tpm2_read_reg(addr, buffer, bytes);
}