summaryrefslogtreecommitdiffstats
path: root/src/northbridge/intel/gm45/raminit_read_write_training.c
blob: 38a48d96d3244d974273d1c4be4ccc0c360c2030 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* SPDX-License-Identifier: GPL-2.0-only */
/* This file is part of the coreboot project. */

#include <stdint.h>
#include <device/mmio.h>
#include <pc80/mc146818rtc.h>
#include <console/console.h>
#include "gm45.h"

typedef struct {
	u32 addr[RANKS_PER_CHANNEL];
	unsigned int count;
} address_bunch_t;

/* Read Training. */
#define CxRDTy_MCHBAR(ch, bl)	(0x14b0 + (ch * 0x0100) + ((7 - bl) * 4))
#define CxRDTy_T_SHIFT		20
#define CxRDTy_T_MASK		(0xf << CxRDTy_T_SHIFT)
#define CxRDTy_T(t)		((t << CxRDTy_T_SHIFT) & CxRDTy_T_MASK)
#define CxRDTy_P_SHIFT		16
#define CxRDTy_P_MASK		(0x7 << CxRDTy_P_SHIFT)
#define CxRDTy_P(p)		((p << CxRDTy_P_SHIFT) & CxRDTy_P_MASK)
static const u32 read_training_schedule[] = {
	0xfefefefe, 0x7f7f7f7f, 0xbebebebe, 0xdfdfdfdf,
	0xeeeeeeee, 0xf7f7f7f7, 0xfafafafa, 0xfdfdfdfd,
	0x00000000, 0x81818181, 0x40404040, 0x21212121,
	0x10101010, 0x09090909, 0x04040404, 0x03030303,
	0x10101010, 0x11111111, 0xeeeeeeee, 0xefefefef,
	0x10101010, 0x11111111, 0xeeeeeeee, 0xefefefef,
	0x10101010, 0xefefefef, 0x10101010, 0xefefefef,
	0x10101010, 0xefefefef, 0x10101010, 0xefefefef,
	0x00000000, 0xffffffff, 0x00000000, 0xffffffff,
	0x00000000, 0xffffffff, 0x00000000, 0x00000000,
};
#define READ_TIMING_P_SHIFT	3
#define READ_TIMING_P_BOUND	(1 << READ_TIMING_P_SHIFT)
#define READ_TIMING_T_BOUND	14
typedef struct {
	int t;
	int p;
} read_timing_t;
static void print_read_timing(const int msg_lvl, const char *const msg,
			      const int lane, const int channel,
			      const read_timing_t *const timing)
{
	printk(msg_lvl, "%sbyte lane %d, ch %d: %d.%d\n",
	       msg, lane, channel, timing->t, timing->p);
}

static int normalize_read_timing(read_timing_t *const timing)
{
	while (timing->p >= READ_TIMING_P_BOUND) {
		timing->t++;
		timing->p -= READ_TIMING_P_BOUND;
	}
	while (timing->p < 0) {
		timing->t--;
		timing->p += READ_TIMING_P_BOUND;
	}
	if (timing->t < 0) {
		printk(BIOS_WARNING,
		       "Timing underflow during read training.\n");
		timing->t = 0;
		timing->p = 0;
		return -1;
	} else if (timing->t >= READ_TIMING_T_BOUND) {
		printk(BIOS_WARNING,
		       "Timing overflow during read training.\n");
		timing->t = READ_TIMING_T_BOUND - 1;
		timing->p = READ_TIMING_P_BOUND - 1;
		return -1;
	}
	return 0;
}
static int program_read_timing(const int ch, const int lane,
			       read_timing_t *const timing)
{
	if (normalize_read_timing(timing) < 0)
		return -1;

	u32 reg = MCHBAR32(CxRDTy_MCHBAR(ch, lane));
	reg &= ~(CxRDTy_T_MASK | CxRDTy_P_MASK);
	reg |= CxRDTy_T(timing->t) | CxRDTy_P(timing->p);
	MCHBAR32(CxRDTy_MCHBAR(ch, lane)) = reg;

	return 0;
}
/* Returns 1 on success, 0 on failure. */
static int read_training_test(const int channel, const int lane,
			      const address_bunch_t *const addresses)
{
	int i;

	const int lane_offset = lane & 4;
	const int lane_mask = 0xff << ((lane & ~4) << 3);

	for (i = 0; i < addresses->count; ++i) {
		unsigned int offset;
		for (offset = lane_offset; offset < 320; offset += 8) {
			const u32 read = read32((u32 *)(addresses->addr[i] + offset));
			const u32 good = read_training_schedule[offset >> 3];
			if ((read & lane_mask) != (good & lane_mask))
				return 0;
		}
	}
	return 1;
}
static int read_training_find_lower(const int channel, const int lane,
				    const address_bunch_t *const addresses,
				    read_timing_t *const lower)
{
	/* Coarse search for good t. */
	program_read_timing(channel, lane, lower);
	while (!read_training_test(channel, lane, addresses)) {
		++lower->t;
		if (program_read_timing(channel, lane, lower) < 0)
			return -1;
	}

	/* Step back, then fine search for good p. */
	if (lower->t <= 0)
		/* Can't step back, zero is good. */
		return 0;

	--lower->t;
	program_read_timing(channel, lane, lower);
	while (!read_training_test(channel, lane, addresses)) {
		++lower->p;
		if (program_read_timing(channel, lane, lower) < 0)
			return -1;
	}

	return 0;
}
static int read_training_find_upper(const int channel, const int lane,
				    const address_bunch_t *const addresses,
				    read_timing_t *const upper)
{
	if (program_read_timing(channel, lane, upper) < 0)
		return -1;
	if (!read_training_test(channel, lane, addresses)) {
		printk(BIOS_WARNING,
		       "Read training failure: limits too narrow.\n");
		return -1;
	}
	/* Coarse search for bad t. */
	do {
		++upper->t;
		if (program_read_timing(channel, lane, upper) < 0)
			return -1;
	} while (read_training_test(channel, lane, addresses));
	/* Fine search for bad p. */
	--upper->t;
	program_read_timing(channel, lane, upper);
	while (read_training_test(channel, lane, addresses)) {
		++upper->p;
		if (program_read_timing(channel, lane, upper) < 0)
			return -1;
	}

	return 0;
}
static void read_training_per_lane(const int channel, const int lane,
				   const address_bunch_t *const addresses)
{
	read_timing_t lower, upper;

	MCHBAR32(CxRDTy_MCHBAR(channel, lane)) |= 3 << 25;

	/*** Search lower bound. ***/

	/* Start at zero. */
	lower.t = 0;
	lower.p = 0;
	if (read_training_find_lower(channel, lane, addresses, &lower) < 0)
		die("Read training failure: lower bound.\n");
	print_read_timing(RAM_DEBUG, "Lower bound for ", lane, channel, &lower);

	/*** Search upper bound. ***/

	/* Start at lower + 1t. */
	upper.t = lower.t + 1;
	upper.p = lower.p;
	if (read_training_find_upper(channel, lane, addresses, &upper) < 0)
		/* Overflow on upper edge is not fatal. */
		printk(BIOS_WARNING, "Read training failure: upper bound.\n");
	print_read_timing(RAM_DEBUG, "Upper bound for ", lane, channel, &upper);

	/*** Calculate and program mean value. ***/

	lower.p += lower.t << READ_TIMING_P_SHIFT;
	upper.p += upper.t << READ_TIMING_P_SHIFT;
	const int mean_p = (lower.p + upper.p) >> 1;
	/* lower becomes the mean value. */
	lower.t = mean_p >> READ_TIMING_P_SHIFT;
	lower.p = mean_p & (READ_TIMING_P_BOUND - 1);
	program_read_timing(channel, lane, &lower);
	printk(RAM_DEBUG, "Final timings for ");
	print_read_timing(BIOS_DEBUG, "", lane, channel, &lower);
}
static void perform_read_training(const dimminfo_t *const dimms)
{
	int ch, i;

	FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
		address_bunch_t addresses = { { 0, }, 0 };
		FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, i)
			addresses.addr[addresses.count++] =
				raminit_get_rank_addr(ch, i);

		for (i = 0; i < addresses.count; ++i) {
			/* Write test pattern. */
			unsigned int offset;
			for (offset = 0; offset < 320; offset += 4)
				write32((u32 *)(addresses.addr[i] + offset),
					read_training_schedule[offset >> 3]);
		}

		for (i = 0; i < 8; ++i)
			read_training_per_lane(ch, i, &addresses);
	}
}
static void read_training_store_results(void)
{
	u8 bytes[TOTAL_CHANNELS * 8];
	int ch, i;

	/* Store one timing pair in one byte each. */
	FOR_EACH_CHANNEL(ch) {
		for (i = 0; i < 8; ++i) {
			const u32 bl_reg = MCHBAR32(CxRDTy_MCHBAR(ch, i));
			bytes[(ch * 8) + i] =
				(((bl_reg & CxRDTy_T_MASK) >> CxRDTy_T_SHIFT)
				 << 4) |
				((bl_reg & CxRDTy_P_MASK) >> CxRDTy_P_SHIFT);
		}
	}

	/* Store everything in CMOS above 128 bytes. */
	for (i = 0; i < (TOTAL_CHANNELS * 8); ++i)
		cmos_write(bytes[i], CMOS_READ_TRAINING + i);
}
static void read_training_restore_results(void)
{
	u8 bytes[TOTAL_CHANNELS * 8];
	int ch, i;

	/* Read from CMOS. */
	for (i = 0; i < (TOTAL_CHANNELS * 8); ++i)
		bytes[i] = cmos_read(CMOS_READ_TRAINING + i);

	/* Program restored results. */
	FOR_EACH_CHANNEL(ch) {
		for (i = 0; i < 8; ++i) {
			const int t = bytes[(ch * 8) + i] >> 4;
			const int p = bytes[(ch * 8) + i] & 7;
			u32 bl_reg = MCHBAR32(CxRDTy_MCHBAR(ch, i));
			bl_reg &= ~(CxRDTy_T_MASK | CxRDTy_P_MASK);
			bl_reg |= (3 << 25) | CxRDTy_T(t) | CxRDTy_P(p);
			MCHBAR32(CxRDTy_MCHBAR(ch, i)) = bl_reg;
			printk(BIOS_DEBUG, "Restored timings for byte lane "
			       "%d on channel %d: %d.%d\n", i, ch, t, p);
		}
	}
}
void raminit_read_training(const dimminfo_t *const dimms, const int s3resume)
{
	if (!s3resume) {
		perform_read_training(dimms);
		read_training_store_results();
	} else {
		read_training_restore_results();
	}
	raminit_reset_readwrite_pointers();
}

/* Write Training. */
#define CxWRTy_T_SHIFT		28
#define CxWRTy_T_MASK		(0xf << CxWRTy_T_SHIFT)
#define CxWRTy_T(t)		((t << CxWRTy_T_SHIFT) & CxWRTy_T_MASK)
#define CxWRTy_P_SHIFT		24
#define CxWRTy_P_MASK		(0x7 << CxWRTy_P_SHIFT)
#define CxWRTy_P(p)		((p << CxWRTy_P_SHIFT) & CxWRTy_P_MASK)
#define CxWRTy_F_SHIFT		18
#define CxWRTy_F_MASK		(0x3 << CxWRTy_F_SHIFT)
#define CxWRTy_F(f)		((f << CxWRTy_F_SHIFT) & CxWRTy_F_MASK)
#define CxWRTy_D_SHIFT		16
#define CxWRTy_D_MASK		(0x3 << CxWRTy_D_SHIFT)
#define CxWRTy_BELOW_D		(0x3 << CxWRTy_D_SHIFT)
#define CxWRTy_ABOVE_D		(0x1 << CxWRTy_D_SHIFT)
static const u32 write_training_schedule[] = {
	0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
	0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
	0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
	0xffffffff, 0x00000000, 0xffffffff, 0x00000000,
	0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
	0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
	0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
	0xefefefef, 0x10101010, 0xefefefef, 0x10101010,
	0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
	0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
	0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
	0xefefefef, 0xeeeeeeee, 0x11111111, 0x10101010,
	0x03030303, 0x04040404, 0x09090909, 0x10101010,
	0x21212121, 0x40404040, 0x81818181, 0x00000000,
	0x03030303, 0x04040404, 0x09090909, 0x10101010,
	0x21212121, 0x40404040, 0x81818181, 0x00000000,
	0xfdfdfdfd, 0xfafafafa, 0xf7f7f7f7, 0xeeeeeeee,
	0xdfdfdfdf, 0xbebebebe, 0x7f7f7f7f, 0xfefefefe,
	0xfdfdfdfd, 0xfafafafa, 0xf7f7f7f7, 0xeeeeeeee,
	0xdfdfdfdf, 0xbebebebe, 0x7f7f7f7f, 0xfefefefe,
};
/* for raw card types A, B and C: MEM_CLOCK_1067MT? X group X lower/upper */
static const u32 write_training_bytelane_masks_abc[2][4][2] = {
	{ /* clock < MEM_CLOCK_1067MT */
		{ 0xffffffff, 0x00000000 }, { 0x00000000, 0x00000000 },
		{ 0x00000000, 0xffffffff }, { 0x00000000, 0x00000000 },
	},
	{ /* clock == MEM_CLOCK_1067MT */
		{ 0x0000ffff, 0x00000000 }, { 0xffff0000, 0x00000000 },
		{ 0x00000000, 0x0000ffff }, { 0x00000000, 0xffff0000 },
	},
};
/* for raw card type F: group X lower/upper */
static const u32 write_training_bytelane_masks_f[4][2] = {
	{ 0xff00ff00, 0x00000000 }, { 0x00ff00ff, 0x00000000 },
	{ 0x00000000, 0xff00ff00 }, { 0x00000000, 0x00ff00ff },
};
#define WRITE_TIMING_P_SHIFT	3
#define WRITE_TIMING_P_BOUND	(1 << WRITE_TIMING_P_SHIFT)
#define WRITE_TIMING_F_BOUND	4
typedef struct {
	int f;
	int t;
	const int t_bound;
	int p;
} write_timing_t;
static void print_write_timing(const int msg_lvl, const char *const msg,
			       const int group, const int channel,
			       const write_timing_t *const timing)
{
	printk(msg_lvl, "%sgroup %d, ch %d: %d.%d.%d\n",
	       msg, group, channel, timing->f, timing->t, timing->p);
}

static int normalize_write_timing(write_timing_t *const timing)
{
	while (timing->p >= WRITE_TIMING_P_BOUND) {
		timing->t++;
		timing->p -= WRITE_TIMING_P_BOUND;
	}
	while (timing->p < 0) {
		timing->t--;
		timing->p += WRITE_TIMING_P_BOUND;
	}
	while (timing->t >= timing->t_bound) {
		timing->f++;
		timing->t -= timing->t_bound;
	}
	while (timing->t < 0) {
		timing->f--;
		timing->t += timing->t_bound;
	}
	if (timing->f < 0) {
		printk(BIOS_WARNING,
		       "Timing underflow during write training.\n");
		timing->f = 0;
		timing->t = 0;
		timing->p = 0;
		return -1;
	} else if (timing->f >= WRITE_TIMING_F_BOUND) {
		printk(BIOS_WARNING,
		       "Timing overflow during write training.\n");
		timing->f = WRITE_TIMING_F_BOUND - 1;
		timing->t = timing->t_bound - 1;
		timing->p = WRITE_TIMING_P_BOUND - 1;
		return -1;
	}
	return 0;
}
static int program_write_timing(const int ch, const int group,
				write_timing_t *const timing, int memclk1067)
{
	/* MEM_CLOCK_1067MT? X lower/upper */
	const u32 d_bounds[2][2] = { { 1, 6 }, { 2, 9 } };

	if (normalize_write_timing(timing) < 0)
		return -1;

	const int f = timing->f;
	const int t = timing->t;
	const int p = (memclk1067 && (((t ==  9) && (timing->p >= 4)) ||
				       ((t == 10) && (timing->p < 4))))
		? 4 : timing->p;
	const int d =
		(t <= d_bounds[memclk1067][0]) ? CxWRTy_BELOW_D :
		((t >  d_bounds[memclk1067][1]) ? CxWRTy_ABOVE_D : 0);

	u32 reg = MCHBAR32(CxWRTy_MCHBAR(ch, group));
	reg &= ~(CxWRTy_T_MASK | CxWRTy_P_MASK | CxWRTy_F_MASK);
	reg &= ~CxWRTy_D_MASK;
	reg |= CxWRTy_T(t) | CxWRTy_P(p) | CxWRTy_F(f) | d;
	MCHBAR32(CxWRTy_MCHBAR(ch, group)) = reg;

	return 0;
}
/* Returns 1 on success, 0 on failure. */
static int write_training_test(const address_bunch_t *const addresses,
			       const u32 *const masks)
{
	int i, ret = 0;

	const u32 mmarb0 = MCHBAR32(0x0220);
	const u8  wrcctl = MCHBAR8(0x0218);
	MCHBAR32(0x0220) |= 0xf << 28;
	MCHBAR8(0x0218)  |= 0x1 <<  4;

	for (i = 0; i < addresses->count; ++i) {
		const unsigned int addr = addresses->addr[i];
		unsigned int off;
		for (off = 0; off < 640; off += 8) {
			const u32 pattern = write_training_schedule[off >> 3];
			write32((u32 *)(addr + off), pattern);
			write32((u32 *)(addr + off + 4), pattern);
		}

		MCHBAR8(0x78) |= 1;

		for (off = 0; off < 640; off += 8) {
			const u32 good = write_training_schedule[off >> 3];
			const u32 read1 = read32((u32 *)(addr + off));
			if ((read1 & masks[0]) != (good & masks[0]))
				goto _bad_timing_out;
			const u32 read2 = read32((u32 *)(addr + off + 4));
			if ((read2 & masks[1]) != (good & masks[1]))
				goto _bad_timing_out;
		}
	}
	ret = 1;

_bad_timing_out:
	MCHBAR32(0x0220) = mmarb0;
	MCHBAR8(0x0218)  = wrcctl;

	return ret;
}
static int write_training_find_lower(const int ch, const int group,
				     const address_bunch_t *const addresses,
				     const u32 masks[][2], const int memclk1067,
				     write_timing_t *const lower)
{
	program_write_timing(ch, group, lower, memclk1067);
	/* Coarse search for good t. */
	while (!write_training_test(addresses, masks[group])) {
		++lower->t;
		if (program_write_timing(ch, group, lower, memclk1067) < 0)
			return -1;
	}
	/* Step back, then fine search for good p. */
	if ((lower->f <= 0) && (lower->t <= 0))
		/* Can't step back, zero is good. */
		return 0;

	--lower->t;
	program_write_timing(ch, group, lower, memclk1067);
	while (!write_training_test(addresses, masks[group])) {
		++lower->p;
		if (program_write_timing(ch, group, lower, memclk1067) < 0)
			return -1;
	}

	return 0;
}
static int write_training_find_upper(const int ch, const int group,
				     const address_bunch_t *const addresses,
				     const u32 masks[][2], const int memclk1067,
				     write_timing_t *const upper)
{
	if (program_write_timing(ch, group, upper, memclk1067) < 0)
		return -1;
	if (!write_training_test(addresses, masks[group])) {
		printk(BIOS_WARNING,
		       "Write training failure; limits too narrow.\n");
		return -1;
	}
	/* Coarse search for bad t. */
	while (write_training_test(addresses, masks[group])) {
		++upper->t;
		if (program_write_timing(ch, group, upper, memclk1067) < 0)
			return -1;
	}
	/* Fine search for bad p. */
	--upper->t;
	program_write_timing(ch, group, upper, memclk1067);
	while (write_training_test(addresses, masks[group])) {
		++upper->p;
		if (program_write_timing(ch, group, upper, memclk1067) < 0)
			return -1;
	}

	return 0;
}
static void write_training_per_group(const int ch, const int group,
				     const address_bunch_t *const addresses,
				     const u32 masks[][2], const int memclk1067)
{
	const int t_bound = memclk1067 ? 12 : 11;
	write_timing_t lower = { 0, 0, t_bound, 0 },
		       upper = { 0, 0, t_bound, 0 };

	/*** Search lower bound. ***/

	/* Start at -1f from current values. */
	const u32 reg = MCHBAR32(CxWRTy_MCHBAR(ch, group));
	lower.t =  (reg >> 12) & 0xf;
	lower.p =  (reg >>  8) & 0x7;
	lower.f = ((reg >>  2) & 0x3) - 1;

	if (write_training_find_lower(ch, group, addresses,
				      masks, memclk1067, &lower) < 0)
		die("Write training failure: lower bound.\n");
	print_write_timing(RAM_DEBUG, "Lower bound for ", group, ch, &lower);

	/*** Search upper bound. ***/

	/* Start at lower + 3t. */
	upper.t = lower.t + 3;
	upper.p = lower.p;
	upper.f = lower.f;

	if (write_training_find_upper(ch, group, addresses,
				      masks, memclk1067, &upper) < 0)
		printk(BIOS_WARNING, "Write training failure: upper bound.\n");
	print_write_timing(RAM_DEBUG, "Upper bound for ", group, ch, &upper);

	/*** Calculate and program mean value. ***/

	lower.t += lower.f * lower.t_bound;
	lower.p += lower.t << WRITE_TIMING_P_SHIFT;
	upper.t += upper.f * upper.t_bound;
	upper.p += upper.t << WRITE_TIMING_P_SHIFT;
	/* lower becomes the mean value. */
	const int mean_p = (lower.p + upper.p) >> 1;
	lower.f = mean_p / (lower.t_bound << WRITE_TIMING_P_SHIFT);
	lower.t = (mean_p >> WRITE_TIMING_P_SHIFT) % lower.t_bound;
	lower.p = mean_p & (WRITE_TIMING_P_BOUND - 1);
	program_write_timing(ch, group, &lower, memclk1067);
	printk(RAM_DEBUG, "Final timings for ");
	print_write_timing(BIOS_DEBUG, "", group, ch, &lower);
}
static void perform_write_training(const int memclk1067,
				   const dimminfo_t *const dimms)
{
	const int cardF[] = { dimms[0].card_type == 0xf,
			      dimms[1].card_type == 0xf };
	int ch, r, group;

	address_bunch_t addr[2] = { { { 0, }, 0 }, { { 0, }, 0 }, };
	/* Add check if channel A is populated, i.e. if cardF[0] is valid.
	 * Otherwise we would write channel A registers when DIMM in channel B
	 * is of raw card type A, B or C (cardF[1] == 0) even if channel A is
	 * not populated.
	 * Needs raw card type A, B or C for testing. */
	if ((dimms[0].card_type != 0) && (cardF[0] == cardF[1])) {
		/* Common path for both channels. */
		FOR_EACH_POPULATED_RANK(dimms, ch, r)
			addr[0].addr[addr[0].count++] =
				raminit_get_rank_addr(ch, r);
	} else {
		FOR_EACH_POPULATED_RANK(dimms, ch, r)
			addr[ch].addr[addr[ch].count++] =
				raminit_get_rank_addr(ch, r);
	}

	FOR_EACH_CHANNEL(ch) if (addr[ch].count > 0) {
		const u32 (*const masks)[2] = (!cardF[ch])
			? write_training_bytelane_masks_abc[memclk1067]
			: write_training_bytelane_masks_f;
		for (group = 0; group < 4; ++group) {
			if (!masks[group][0] && !masks[group][1])
				continue;
			write_training_per_group(
				ch, group, &addr[ch], masks, memclk1067);
		}
	}
}
static void write_training_store_results(void)
{
	u8 bytes[TOTAL_CHANNELS * 4 * 2]; /* two bytes per group */
	int ch, i;

	/* Store one T/P pair in one, F in the other byte. */
	/* We could save six bytes by putting all F values in two bytes. */
	FOR_EACH_CHANNEL(ch) {
		for (i = 0; i < 4; ++i) {
			const u32 reg = MCHBAR32(CxWRTy_MCHBAR(ch, i));
			bytes[(ch * 8) + (i * 2)] =
				(((reg & CxWRTy_T_MASK)
				  >> CxWRTy_T_SHIFT) << 4) |
				((reg & CxWRTy_P_MASK) >> CxWRTy_P_SHIFT);
			bytes[(ch * 8) + (i * 2) + 1] =
				((reg & CxWRTy_F_MASK) >> CxWRTy_F_SHIFT);
		}
	}

	/* Store everything in CMOS above 128 bytes. */
	for (i = 0; i < (TOTAL_CHANNELS * 4 * 2); ++i)
		cmos_write(bytes[i], CMOS_WRITE_TRAINING + i);
}
static void write_training_restore_results(const int memclk1067)
{
	const int t_bound = memclk1067 ? 12 : 11;

	u8 bytes[TOTAL_CHANNELS * 4 * 2]; /* two bytes per group */
	int ch, i;

	/* Read from CMOS. */
	for (i = 0; i < (TOTAL_CHANNELS * 4 * 2); ++i)
		bytes[i] = cmos_read(CMOS_WRITE_TRAINING + i);

	/* Program with original program_write_timing(). */
	FOR_EACH_CHANNEL(ch) {
		for (i = 0; i < 4; ++i) {
			write_timing_t timing = { 0, 0, t_bound, 0 };
			timing.f = bytes[(ch * 8) + (i * 2) + 1] & 3;
			timing.t = bytes[(ch * 8) + (i * 2)] >> 4;
			timing.p = bytes[(ch * 8) + (i * 2)] & 7;
			program_write_timing(ch, i, &timing, memclk1067);
			printk(BIOS_DEBUG, "Restored timings for group %d "
					   "on channel %d: %d.%d.%d\n",
			       i, ch, timing.f, timing.t, timing.p);
		}
	}
}
void raminit_write_training(const mem_clock_t ddr3clock,
			    const dimminfo_t *const dimms,
			    const int s3resume)
{
	const int memclk1067 = ddr3clock == MEM_CLOCK_1067MT;

	if (!s3resume) {
		perform_write_training(memclk1067, dimms);
		write_training_store_results();
	} else {
		write_training_restore_results(memclk1067);
	}
	raminit_reset_readwrite_pointers();
}