summaryrefslogtreecommitdiffstats
path: root/src/soc/intel/broadwell/smmrelocate.c
blob: 660a688df4d17e1b662a08aa1971f32a1d83dfc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* SPDX-License-Identifier: GPL-2.0-only */

#include <types.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/mp.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <cpu/intel/em64t101_save_state.h>
#include <cpu/intel/smm_reloc.h>
#include <console/console.h>
#include <smp/node.h>
#include <soc/cpu.h>
#include <soc/msr.h>
#include <soc/pci_devs.h>
#include <soc/systemagent.h>


static void update_save_state(int cpu, uintptr_t curr_smbase,
				uintptr_t staggered_smbase,
				struct smm_relocation_params *relo_params)
{
	u32 smbase;
	u32 iedbase;

	/* The relocated handler runs with all CPUs concurrently. Therefore
	 * stagger the entry points adjusting SMBASE downwards by save state
	 * size * CPU num. */
	smbase = staggered_smbase;
	iedbase = relo_params->ied_base;

	printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
	       smbase, iedbase);

	/* All threads need to set IEDBASE and SMBASE to the relocated
	 * handler region. However, the save state location depends on the
	 * smm_save_state_in_msrs field in the relocation parameters. If
	 * smm_save_state_in_msrs is non-zero then the CPUs are relocating
	 * the SMM handler in parallel, and each CPUs save state area is
	 * located in their respective MSR space. If smm_save_state_in_msrs
	 * is zero then the SMM relocation is happening serially so the
	 * save state is at the same default location for all CPUs. */
	if (relo_params->smm_save_state_in_msrs) {
		msr_t smbase_msr;
		msr_t iedbase_msr;

		smbase_msr.lo = smbase;
		smbase_msr.hi = 0;

		/* According the BWG the IEDBASE MSR is in bits 63:32. It's
		 * not clear why it differs from the SMBASE MSR. */
		iedbase_msr.lo = 0;
		iedbase_msr.hi = iedbase;

		wrmsr(SMBASE_MSR, smbase_msr);
		wrmsr(IEDBASE_MSR, iedbase_msr);
	} else {
		em64t101_smm_state_save_area_t *save_state;

		save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
				      sizeof(*save_state));

		save_state->smbase = smbase;
		save_state->iedbase = iedbase;
	}
}

/* Returns 1 if SMM MSR save state was set. */
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
{
	msr_t smm_mca_cap;

	smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
	if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
		msr_t smm_feature_control;

		smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
		smm_feature_control.hi = 0;
		smm_feature_control.lo |= SMM_CPU_SAVE_EN;
		wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
		relo_params->smm_save_state_in_msrs = 1;
	}
	return relo_params->smm_save_state_in_msrs;
}

/* The relocation work is actually performed in SMM context, but the code
 * resides in the ramstage module. This occurs by trampolining from the default
 * SMRAM entry point to here. */
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
				uintptr_t staggered_smbase)
{
	msr_t mtrr_cap;
	struct smm_relocation_params *relo_params = &smm_reloc_params;

	printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);

	/* Determine if the processor supports saving state in MSRs. If so,
	 * enable it before the non-BSPs run so that SMM relocation can occur
	 * in parallel in the non-BSP CPUs. */
	if (cpu == 0) {
		/* If smm_save_state_in_msrs is 1 then that means this is the
		 * 2nd time through the relocation handler for the BSP.
		 * Parallel SMM handler relocation is taking place. However,
		 * it is desired to access other CPUs save state in the real
		 * SMM handler. Therefore, disable the SMM save state in MSRs
		 * feature. */
		if (relo_params->smm_save_state_in_msrs) {
			msr_t smm_feature_control;

			smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
			smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
			wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
		} else if (bsp_setup_msr_save_state(relo_params))
			/* Just return from relocation handler if MSR save
			 * state is enabled. In that case the BSP will come
			 * back into the relocation handler to setup the new
			 * SMBASE as well disabling SMM save state in MSRs. */
			return;
	}

	/* Make appropriate changes to the save state map. */
	update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);

	/* Write PRMRR and SMRR MSRs based on indicated support. */
	mtrr_cap = rdmsr(MTRR_CAP_MSR);
	if (mtrr_cap.lo & SMRR_SUPPORTED)
		write_smrr(relo_params);

	if (mtrr_cap.lo & PRMRR_SUPPORTED) {
		write_prmrr(relo_params);
		/* UNCORE_PRMRR msrs are package level. Therefore, only
		 * configure these MSRs on the BSP. */
		if (cpu == 0)
			write_uncore_prmrr(relo_params);
	}
}

static void fill_in_relocation_params(struct smm_relocation_params *params)
{
	uintptr_t tseg_base;
	size_t tseg_size;
	u32 prmrr_base;
	u32 prmrr_size;
	int phys_bits;
	/* All range registers are aligned to 4KiB */
	const u32 rmask = ~((1 << 12) - 1);

	/* Some of the range registers are dependent on the number of physical
	 * address bits supported. */
	phys_bits = cpuid_eax(0x80000008) & 0xff;

	/* The range bounded by the TSEGMB and BGSM registers encompasses the
	 * SMRAM range as well as the IED range. However, the SMRAM available
	 * to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB.
	 */
	smm_region(&tseg_base, &tseg_size);

	/* SMRR has 32-bits of valid address aligned to 4KiB. */
	params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
	params->smrr_base.hi = 0;
	params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
	params->smrr_mask.hi = 0;

	smm_subregion(SMM_SUBREGION_CHIPSET, &params->ied_base, &params->ied_size);

	/* The PRMRR and UNCORE_PRMRR are at IEDBASE + 2MiB */
	prmrr_base = (params->ied_base + (2 << 20)) & rmask;
	prmrr_size = params->ied_size - (2 << 20);

	/* PRMRR has 46 bits of valid address aligned to 4KiB. It's dependent
	 * on the number of physical address bits supported. */
	params->prmrr_base.lo = prmrr_base | MTRR_TYPE_WRBACK;
	params->prmrr_base.hi = 0;
	params->prmrr_mask.lo = (~(prmrr_size - 1) & rmask)
		| MTRR_PHYS_MASK_VALID;
	params->prmrr_mask.hi = (1 << (phys_bits - 32)) - 1;

	/* UNCORE_PRMRR has 39 bits of valid address aligned to 4KiB. */
	params->uncore_prmrr_base.lo = prmrr_base;
	params->uncore_prmrr_base.hi = 0;
	params->uncore_prmrr_mask.lo = (~(prmrr_size - 1) & rmask) |
					MTRR_PHYS_MASK_VALID;
	params->uncore_prmrr_mask.hi = (1 << (39 - 32)) - 1;
}

static void setup_ied_area(struct smm_relocation_params *params)
{
	char *ied_base;

	struct ied_header ied = {
		.signature = "INTEL RSVD",
		.size = params->ied_size,
		.reserved = {0},
	};

	ied_base = (void *)params->ied_base;

	/* Place IED header at IEDBASE. */
	memcpy(ied_base, &ied, sizeof(ied));

	/* Zero out 32KiB at IEDBASE + 1MiB */
	memset(ied_base + (1 << 20), 0, (32 << 10));
}

void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
				size_t *smm_save_state_size)
{
	printk(BIOS_DEBUG, "Setting up SMI for CPU\n");

	fill_in_relocation_params(&smm_reloc_params);

	smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);

	setup_ied_area(&smm_reloc_params);

	*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
}

void smm_initialize(void)
{
	/* Clear the SMM state in the southbridge. */
	smm_southbridge_clear_state();

	/*
	 * Run the relocation handler for on the BSP to check and set up
	 * parallel SMM relocation.
	 */
	smm_initiate_relocation();

	if (smm_reloc_params.smm_save_state_in_msrs)
		printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
}

/* The default SMM entry can happen in parallel or serially. If the
 * default SMM entry is done in parallel the BSP has already setup
 * the saving state to each CPU's MSRs. At least one save state size
 * is required for the initial SMM entry for the BSP to determine if
 * parallel SMM relocation is even feasible. */
void smm_relocate(void)
{
	/*
	 * If smm_save_state_in_msrs is non-zero then parallel SMM relocation
	 * shall take place. Run the relocation handler a second time on the
	 * BSP to do * the final move. For APs, a relocation handler always
	 * needs to be run.
	 */
	if (smm_reloc_params.smm_save_state_in_msrs)
		smm_initiate_relocation_parallel();
	else if (!boot_cpu())
		smm_initiate_relocation();
}

void smm_lock(void)
{
	struct device *sa_dev = pcidev_path_on_root(SA_DEVFN_ROOT);
	/* LOCK the SMM memory window and enable normal SMM.
	 * After running this function, only a full reset can
	 * make the SMM registers writable again.
	 */
	printk(BIOS_DEBUG, "Locking SMM.\n");
	pci_write_config8(sa_dev, SMRAM, D_LCK | G_SMRAME | C_BASE_SEG);
}