summaryrefslogtreecommitdiffstats
path: root/src/soc/mediatek/mt8183/emi.c
blob: 3b5b2a7631623782e5410f5e774f77f9eb2aaa69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 * This file is part of the coreboot project.
 *
 * Copyright 2018 MediaTek Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <device/mmio.h>
#include <soc/emi.h>
#include <soc/infracfg.h>
#include <soc/dramc_pi_api.h>
#include <soc/dramc_register.h>

static const u8 freq_shuffle[DRAM_DFS_SHUFFLE_MAX] = {
	[DRAM_DFS_SHUFFLE_1] = LP4X_DDR3200,
	[DRAM_DFS_SHUFFLE_2] = LP4X_DDR2400,
	[DRAM_DFS_SHUFFLE_3] = LP4X_DDR1600,
};

static const u8 freq_shuffle_emcp[DRAM_DFS_SHUFFLE_MAX] = {
	[DRAM_DFS_SHUFFLE_1] = LP4X_DDR3600,
	[DRAM_DFS_SHUFFLE_2] = LP4X_DDR3200,
	[DRAM_DFS_SHUFFLE_3] = LP4X_DDR1600,
};

u32 frequency_table[LP4X_DDRFREQ_MAX] = {
	[LP4X_DDR1600] = 1600,
	[LP4X_DDR2400] = 2400,
	[LP4X_DDR3200] = 3200,
	[LP4X_DDR3600] = 3600,
};

struct emi_regs *emi_regs = (void *)EMI_BASE;
const u8 phy_mapping[CHANNEL_MAX][16] = {
	[CHANNEL_A] = {
		1, 0, 2, 4, 3, 7, 5, 6,
		9, 8, 12, 11, 10, 15, 13, 14
	},

	[CHANNEL_B] = {
		0, 1, 5, 6, 3, 7, 4, 2,
		9, 8, 12, 15, 11, 14, 13, 10
	}
};

struct optimize_ac_time {
	u8 rfc;
	u8 rfc_05t;
	u16 tx_ref_cnt;
};

void dramc_set_broadcast(u32 onoff)
{
	write32(&mt8183_infracfg->dramc_wbr, onoff);
}

u32 dramc_get_broadcast(void)
{
	return read32(&mt8183_infracfg->dramc_wbr);
}

static u64 get_ch_rank_size(u8 chn, u8 rank)
{
	u32 shift_for_16bit = 1;
	u32 col_bit, row_bit;
	u32 emi_cona = read32(&emi_regs->cona);

	shift_for_16bit = (emi_cona & 0x2) ? 0 : 1;

	col_bit = ((emi_cona >> (chn * 16 + rank * 2 + 4)) & 0x03) + 9;
	row_bit = ((((emi_cona >> (24 - chn * 20 + rank)) & 0x01) << 2) +
		((emi_cona >> (12 + chn * 16 + rank * 2)) & 0x03)) + 13;

	/* Data width (bytes) * 8 banks */
	return ((u64)(1 << (row_bit + col_bit))) *
		((u64)(4 >> shift_for_16bit) * 8);
}

void dramc_get_rank_size(u64 *dram_rank_size)
{
	u64 ch0_rank0_size, ch0_rank1_size, ch1_rank0_size, ch1_rank1_size;
	u64 ch_rank0_size = 0, ch_rank1_size = 0;
	u32 emi_cona = read32(&emi_regs->cona);
	u32 emi_conh = read32(&emi_regs->conh);

	dram_rank_size[0] = 0;
	dram_rank_size[1] = 0;

	ch0_rank0_size = (emi_conh >> 16) & 0xf;
	ch0_rank1_size = (emi_conh >> 20) & 0xf;
	ch1_rank0_size = (emi_conh >> 24) & 0xf;
	ch1_rank1_size = (emi_conh >> 28) & 0xf;

	/* CH0 EMI */
	if (ch0_rank0_size == 0)
		ch_rank0_size = get_ch_rank_size(CHANNEL_A, RANK_0);
	else
		ch_rank0_size = (ch0_rank0_size * 256 << 20);

	/* Dual rank enable */
	if ((emi_cona & (1 << 17)) != 0) {
		if (ch0_rank1_size == 0)
			ch_rank1_size = get_ch_rank_size(CHANNEL_A, RANK_1);
		else
			ch_rank1_size = (ch0_rank1_size * 256 << 20);
	}

	dram_rank_size[0] = ch_rank0_size;
	dram_rank_size[1] = ch_rank1_size;

	if (ch1_rank0_size == 0)
		ch_rank0_size = get_ch_rank_size(CHANNEL_B, RANK_0);
	else
		ch_rank0_size = (ch1_rank0_size * 256 << 20);

	if ((emi_cona & (1 << 16)) != 0) {
		if (ch1_rank1_size == 0)
			ch_rank1_size = get_ch_rank_size(CHANNEL_B, RANK_1);
		else
			ch_rank1_size = (ch1_rank1_size * 256 << 20);
	}
	dram_rank_size[0] += ch_rank0_size;
	dram_rank_size[1] += ch_rank1_size;
}

size_t sdram_size(void)
{
	size_t dram_size = 0;
	u64 rank_size[RANK_MAX];

	dramc_get_rank_size(rank_size);

	for (int i = 0; i < RANK_MAX; i++)
		dram_size += rank_size[i];

	return dram_size;
}

static void set_rank_info_to_conf(const struct sdram_params *params)
{
	bool is_dual_rank = (params->emi_cona_val & (0x1 << 17)) != 0;
	clrsetbits_le32(&ch[0].ao.rstmask, 0x1 << 12,
			(is_dual_rank ? 0 : 1) << 12);
}

static void set_MRR_pinmux_mapping(void)
{
	for (size_t chn = 0; chn < CHANNEL_MAX; chn++) {
		const u8 *map = phy_mapping[chn];
		write32(&ch[chn].ao.mrr_bit_mux1,
			(map[0] << 0) | (map[1] << 8) |
			(map[2] << 16) | (map[3] << 24));

		write32(&ch[chn].ao.mrr_bit_mux2,
			(map[4] << 0) | (map[5] << 8) |
			(map[6] << 16) | (map[7] << 24));

		write32(&ch[chn].ao.mrr_bit_mux3,
			(map[8] << 0) | (map[9] << 8) |
			(map[10] << 16) | (map[11] << 24));

		write32(&ch[chn].ao.mrr_bit_mux4,
			(map[12] << 0) | (map[13] << 8) |
			(map[14] << 16) | (map[15] << 24));
	}
}

static void global_option_init(const struct sdram_params *params)
{
	set_rank_info_to_conf(params);
	set_MRR_pinmux_mapping();
}

static void emi_esl_setting1(void)
{
	dramc_set_broadcast(DRAMC_BROADCAST_ON);

	write32(&emi_regs->cona, 0xa053a154);
	write32(&emi_regs->conb, 0x17283544);
	write32(&emi_regs->conc, 0x0a1a0b1a);
	write32(&emi_regs->cond, 0x3657587a);
	write32(&emi_regs->cone, 0x80400148);
	write32(&emi_regs->conf, 0x00000000);
	write32(&emi_regs->cong, 0x2b2b2a38);
	write32(&emi_regs->conh, 0x00000000);
	write32(&emi_regs->coni, 0x00008803);
	write32(&emi_regs->conm, 0x000001ff);
	write32(&emi_regs->conn, 0x00000000);
	write32(&emi_regs->mdct, 0x11338c17);
	write32(&emi_regs->mdct_2nd, 0x00001112);
	write32(&emi_regs->iocl, 0xa8a8a8a8);
	write32(&emi_regs->iocl_2nd, 0x25252525);
	write32(&emi_regs->iocm, 0xa8a8a8a8);
	write32(&emi_regs->iocm_2nd, 0x25252525);
	write32(&emi_regs->testb, 0x00060037);
	write32(&emi_regs->testc, 0x38460000);
	write32(&emi_regs->testd, 0x00000000);
	write32(&emi_regs->arba, 0x4020524f);
	write32(&emi_regs->arbb, 0x4020504f);
	write32(&emi_regs->arbc, 0xa0a050c6);
	write32(&emi_regs->arbd, 0x000070cc);
	write32(&emi_regs->arbe, 0x40406045);
	write32(&emi_regs->arbf, 0xa0a070d5);
	write32(&emi_regs->arbg, 0xa0a0504f);
	write32(&emi_regs->arbh, 0xa0a0504f);
	write32(&emi_regs->arbi, 0x00007108);
	write32(&emi_regs->arbi_2nd, 0x00007108);
	write32(&emi_regs->slct, 0x0001ff00);

	write32(&ch[0].emi.chn_cona, 0x0400a051);
	write32(&ch[0].emi.chn_conb, 0x00ff2048);
	write32(&ch[0].emi.chn_conc, 0x00000000);
	write32(&ch[0].emi.chn_mdct, 0x88008817);
	write32(&ch[0].emi.chn_testb, 0x00030027);
	write32(&ch[0].emi.chn_testc, 0x38460002);
	write32(&ch[0].emi.chn_testd, 0x00000000);
	write32(&ch[0].emi.chn_md_pre_mask, 0x00000f00);
	write32(&ch[0].emi.chn_md_pre_mask_shf, 0x00000b00);
	write32(&ch[0].emi.chn_arbi, 0x20406188);
	write32(&ch[0].emi.chn_arbi_2nd, 0x20406188);
	write32(&ch[0].emi.chn_arbj, 0x3719595e);
	write32(&ch[0].emi.chn_arbj_2nd, 0x3719595e);
	write32(&ch[0].emi.chn_arbk, 0x64f3fc79);
	write32(&ch[0].emi.chn_arbk_2nd, 0x64f3fc79);
	write32(&ch[0].emi.chn_slct, 0x00080888);
	write32(&ch[0].emi.chn_arb_ref, 0x82410222);
	write32(&ch[0].emi.chn_emi_shf0, 0x8a228c17);
	write32(&ch[0].emi.chn_rkarb0, 0x0006002f);
	write32(&ch[0].emi.chn_rkarb1, 0x01010101);
	write32(&ch[0].emi.chn_rkarb2, 0x10100820);
	write32(&ch[0].emi.chn_eco3, 0x00000000);

	dramc_set_broadcast(DRAMC_BROADCAST_OFF);
}

static void emi_esl_setting2(void)
{
	dramc_set_broadcast(DRAMC_BROADCAST_ON);

	write32(&ch[0].emi.chn_conc, 0x01);
	write32(&emi_regs->conm, 0x05ff);

	dramc_set_broadcast(DRAMC_BROADCAST_OFF);
}

static void emi_init(const struct sdram_params *params)
{
	emi_esl_setting1();

	write32(&emi_regs->cona, params->emi_cona_val);
	write32(&emi_regs->conf, params->emi_conf_val);
	write32(&emi_regs->conh, params->emi_conh_val);

	for (size_t chn = CHANNEL_A; chn < CHANNEL_MAX; chn++) {
		write32(&ch[chn].emi.chn_cona, params->chn_emi_cona_val[chn]);
		write32(&ch[chn].emi.chn_conc, 0);
	}
}

static void emi_init2(const struct sdram_params *params)
{
	emi_esl_setting2();

	setbits_le32(&emi_mpu->mpu_ctrl_d[1], 0x1 << 4);
	setbits_le32(&emi_mpu->mpu_ctrl_d[7], 0x1 << 4);

	write32(&emi_regs->bwct0, 0x0a000705);
	write32(&emi_regs->bwct0_3rd, 0x0);

	/* EMI QoS 0.5 */
	write32(&emi_regs->bwct0_2nd, 0x00030023);
	write32(&emi_regs->bwct0_4th, 0x00c00023);
	write32(&emi_regs->bwct0_5th, 0x00240023);
}

static void dramc_init_pre_settings(void)
{
	clrsetbits_le32(&ch[0].phy.ca_cmd[8],
		(0x1 << 21) | (0x1 << 20) | (0x1 << 19) | (0x1 << 18) |
		(0x1f << 8) | (0x1f << 0),
		(0x1 << 19) | (0xa << 8) | (0xa << 0));

	setbits_le32(&ch[0].phy.misc_ctrl1, 0x1 << 12);
	clrbits_le32(&ch[0].phy.misc_ctrl1, 0x1 << 13);
	setbits_le32(&ch[0].phy.misc_ctrl1, 0x1 << 31);
}

static void dramc_ac_timing_optimize(u8 freq_group)
{
	struct optimize_ac_time rf_cab_opt[LP4X_DDRFREQ_MAX] = {
		[LP4X_DDR1600] = {.rfc = 44, .rfc_05t = 0, .tx_ref_cnt = 62},
		[LP4X_DDR2400] = {.rfc = 44, .rfc_05t = 0, .tx_ref_cnt = 62},
		[LP4X_DDR3200] = {.rfc = 100, .rfc_05t = 0, .tx_ref_cnt = 119},
		[LP4X_DDR3600] = {.rfc = 118, .rfc_05t = 1, .tx_ref_cnt = 138},
	};

	for (size_t chn = 0; chn < CHANNEL_MAX; chn++) {
		clrsetbits_le32(&ch[chn].ao.shu[0].actim[3],
			0xff << 16, rf_cab_opt[freq_group].rfc << 16);
		clrbits_le32(&ch[chn].ao.shu[0].ac_time_05t,
			rf_cab_opt[freq_group].rfc_05t << 2);
		clrsetbits_le32(&ch[chn].ao.shu[0].actim[4],
			0x3ff << 0, rf_cab_opt[freq_group].tx_ref_cnt << 0);
	}
}

static void dfs_init_for_calibration(const struct sdram_params *params, u8 freq_group)
{
	dramc_init(params, freq_group);
	dramc_apply_config_before_calibration(freq_group);
}

static void init_dram(const struct sdram_params *params, u8 freq_group)
{
	global_option_init(params);
	emi_init(params);

	dramc_set_broadcast(DRAMC_BROADCAST_ON);
	dramc_init_pre_settings();
	dramc_sw_impedance_cal(params, ODT_OFF);
	dramc_sw_impedance_cal(params, ODT_ON);

	dfs_init_for_calibration(params, freq_group);
	emi_init2(params);
}

void enable_emi_dcm(void)
{
	clrbits_le32(&emi_regs->conm, 0xff << 24);
	clrbits_le32(&emi_regs->conn, 0xff << 24);

	for (size_t chn = 0; chn < CHANNEL_MAX; chn++)
		clrbits_le32(&ch[chn].emi.chn_conb, 0xff << 24);
}

static void do_calib(const struct sdram_params *params, u8 freq_group)
{
	dramc_show("Start K, current clock is:%d\n", params->frequency);
	dramc_calibrate_all_channels(params, freq_group);
	dramc_ac_timing_optimize(freq_group);
	dramc_show("K finish with clock:%d\n", params->frequency);
}

static void after_calib(void)
{
	dramc_apply_config_after_calibration();
	dramc_runtime_config();
}

void mt_set_emi(const struct sdram_params *freq_params)
{
	const u8 *freq_tbl;
	const int shuffle = DRAM_DFS_SHUFFLE_1;
	u8 current_freqsel;
	const struct sdram_params *params;

	if (CONFIG(MT8183_DRAM_EMCP))
		freq_tbl = freq_shuffle_emcp;
	else
		freq_tbl = freq_shuffle;

	current_freqsel = freq_tbl[shuffle];
	params = &freq_params[shuffle];

	init_dram(params, current_freqsel);
	do_calib(params, current_freqsel);

	after_calib();
}