summaryrefslogtreecommitdiffstats
path: root/src/soc/rockchip/rk3399/mipi.c
blob: c6526700eb525e664a0f994e6ddb0875065e07d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/* SPDX-License-Identifier: GPL-2.0-only */
/* This file is part of the coreboot project. */

#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <device/device.h>
#include <edid.h>
#include <gpio.h>
#include <string.h>
#include <soc/addressmap.h>
#include <soc/clock.h>
#include <soc/display.h>
#include <soc/mipi.h>
#include <soc/soc.h>
#include <types.h>
#include <timer.h>

static struct rk_mipi_dsi rk_mipi[2] = {
	{ .mipi_regs = (void *)MIPI0_BASE},
	{ .mipi_regs = (void *)MIPI1_BASE}
};

/*
 * The controller should generate 2 frames before
 * preparing the peripheral.
 */
static void rk_mipi_dsi_wait_for_two_frames(struct rk_mipi_dsi *dsi,
					    const struct edid *edid)
{
	int two_frames;
	unsigned int refresh = edid->mode.refresh;

	two_frames = DIV_ROUND_UP(MSECS_PER_SEC * 2, refresh);
	mdelay(two_frames);
}

static const struct dphy_pll_parameter_map dppa_map[] = {
	{  89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM},
	{  99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM},
	{ 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM},
	{ 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM},
	{ 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM},
	{ 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM},
	{ 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM},
	{ 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM},
	{ 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM},
	{ 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM},
	{ 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM},
	{ 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM},
	{ 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM},
	{ 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM},
	{ 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM},
	{ 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM},
	{ 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM},
	{1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM},
	{1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM},
	{1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM},
	{1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM}
};

static int max_mbps_to_parameter(unsigned int max_mbps)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dppa_map); i++) {
		if (dppa_map[i].max_mbps >= max_mbps)
			return i;
	}

	return -1;
}

static void rk_mipi_dsi_phy_write(struct rk_mipi_dsi *dsi,
				  u8 test_code,
				  u8 test_data)
{
	/*
	 * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content
	 * is latched internally as the current test code. Test data is
	 * programmed internally by rising edge on TESTCLK.
	 */
	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0,
		PHY_TESTCLK | PHY_UNTESTCLR);

	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl1,
		PHY_TESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_code));

	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0,
		PHY_UNTESTCLK | PHY_UNTESTCLR);

	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl1,
		PHY_UNTESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_data));

	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0,
		PHY_TESTCLK | PHY_UNTESTCLR);
}

/* bytes_per_ns - Nanoseconds to byte clock cycles */
static inline unsigned int bytes_per_ns(struct rk_mipi_dsi *dsi, int ns)
{
	return DIV_ROUND_UP((u64)ns * dsi->lane_bps, (u64)8 * NSECS_PER_SEC);
}

 /* bits_per_ns - Nanoseconds to bit time periods */
static inline unsigned int bits_per_ns(struct rk_mipi_dsi *dsi, int ns)
{
	return DIV_ROUND_UP((u64)ns * dsi->lane_bps, NSECS_PER_SEC);
}

static int rk_mipi_dsi_wait_phy_lock(struct rk_mipi_dsi *dsi)
{
	struct stopwatch sw;
	int val;

	stopwatch_init_msecs_expire(&sw, 20);
	do {
		val = read32(&dsi->mipi_regs->dsi_phy_status);
		if (val & LOCK)
			return 0;
	} while (!stopwatch_expired(&sw));

	return -1;
}

static int rk_mipi_dsi_phy_init(struct rk_mipi_dsi *dsi)
{
	int i, vco, val;
	int lane_mbps = DIV_ROUND_UP(dsi->lane_bps, USECS_PER_SEC);
	struct stopwatch sw;

	vco = (lane_mbps < 200) ? 0 : (lane_mbps + 100) / 200;

	i = max_mbps_to_parameter(lane_mbps);
	if (i < 0) {
		printk(BIOS_DEBUG,
		       "failed to get parameter for %dmbps clock\n", lane_mbps);
		return i;
	}

	/* Start by clearing PHY state */
	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0, PHY_UNTESTCLR);
	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0, PHY_TESTCLR);
	write32(&dsi->mipi_regs->dsi_phy_tst_ctrl0, PHY_UNTESTCLR);

	rk_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL,
			      BYPASS_VCO_RANGE |
			      VCO_RANGE_CON_SEL(vco) |
			      VCO_IN_CAP_CON_LOW |
			      REF_BIAS_CUR_SEL);

	rk_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS,
			      CP_CURRENT_SEL(dppa_map[i].icpctrl));
	rk_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL,
			      CP_PROGRAM_EN |
			      LPF_PROGRAM_EN |
			      LPF_RESISTORS_SEL(dppa_map[i].lpfctrl));
	rk_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0,
			      HSFREQRANGE_SEL(dppa_map[i].hsfreqrange));

	rk_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO,
			      INPUT_DIVIDER(dsi->input_div));
	rk_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
			      LOOP_DIV_LOW_SEL(dsi->feedback_div) |
			      LOW_PROGRAM_EN);

	/*
	 * we need set divider control register immediately to make
	 * the configured LSB effective according to IP simulation
	 * and lab test results. Only in this way can we get correct
	 * mipi phy pll frequency.
	 */
	rk_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
			      PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
	rk_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
			      LOOP_DIV_HIGH_SEL(dsi->feedback_div) |
			      HIGH_PROGRAM_EN);
	rk_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
			      PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
	rk_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
			      LOW_PROGRAM_EN |
			      BIASEXTR_SEL(BIASEXTR_127_7));
	rk_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
			      HIGH_PROGRAM_EN |
			      BANDGAP_SEL(BANDGAP_96_10));
	rk_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL,
			      POWER_CONTROL | INTERNAL_REG_CURRENT |
			      BIAS_BLOCK_ON | BANDGAP_ON);
	rk_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
			      TER_RESISTOR_LOW | TER_CAL_DONE |
			      SETRD_MAX | TER_RESISTORS_ON);
	rk_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
			      TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON |
			      SETRD_MAX | POWER_MANAGE |
			      TER_RESISTORS_ON);
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL,
			      TLP_PROGRAM_EN | bytes_per_ns(dsi, 500));
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL,
			      THS_PRE_PROGRAM_EN | bits_per_ns(dsi, 40));
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL,
			      THS_ZERO_PROGRAM_EN | bytes_per_ns(dsi, 300));
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL,
			      THS_PRE_PROGRAM_EN | bits_per_ns(dsi, 100));
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL,
			      BIT(5) | bytes_per_ns(dsi, 100));
	rk_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL,
			      BIT(5) | (bytes_per_ns(dsi, 60) + 7));
	rk_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL,
			      TLP_PROGRAM_EN | bytes_per_ns(dsi, 500));
	rk_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL,
			      THS_PRE_PROGRAM_EN | (bits_per_ns(dsi, 50) + 5));
	rk_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL,
				   THS_ZERO_PROGRAM_EN |
				   (bytes_per_ns(dsi, 140) + 2));
	rk_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL,
			      THS_PRE_PROGRAM_EN | (bits_per_ns(dsi, 60) + 8));
	rk_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL,
			      BIT(5) | bytes_per_ns(dsi, 100));

	write32(&dsi->mipi_regs->dsi_phy_rstz,
				PHY_ENFORCEPLL | PHY_ENABLECLK |
				PHY_UNRSTZ | PHY_UNSHUTDOWNZ);

	if (rk_mipi_dsi_wait_phy_lock(dsi)) {
		printk(BIOS_ERR, "failed to wait for phy lock state\n");
		return -1;
	}

	stopwatch_init_msecs_expire(&sw, 20);
	do {
		val = read32(&dsi->mipi_regs->dsi_phy_status);
		if (val & STOP_STATE_CLK_LANE)
			return 0;
	} while (!stopwatch_expired(&sw));

	printk(BIOS_ERR, "failed to wait for phy clk lane stop state");
	return -1;
}

static inline int mipi_dsi_pixel_format_to_bpp(enum mipi_dsi_pixel_format fmt)
{
	switch (fmt) {
	case MIPI_DSI_FMT_RGB888:
	case MIPI_DSI_FMT_RGB666:
		return 24;

	case MIPI_DSI_FMT_RGB666_PACKED:
		return 18;

	case MIPI_DSI_FMT_RGB565:
		return 16;
	}

	return -1;
}

static int rk_mipi_dsi_get_lane_bps(struct rk_mipi_dsi *dsi,
				    const struct edid *edid,
				    const struct mipi_panel_data *panel_data)
{
	u64 pclk, target_bps;
	u32 max_bps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps * MHz;
	int bpp;
	u64 best_freq = 0;
	u64 fvco_min, fvco_max, fref;
	u32 min_prediv, max_prediv;
	u32 prediv, best_prediv;
	u64 fbdiv, best_fbdiv;
	u32 min_delta;

	bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
	if (bpp < 0) {
		printk(BIOS_DEBUG, "failed to get bpp for pixel format %d\n",
		       dsi->format);
		return bpp;
	}
	pclk = (u64)edid->mode.pixel_clock * MSECS_PER_SEC;

	/* take 1 / 0.8, since mbps must bigger than bandwidth of RGB */
	target_bps = pclk / panel_data->lanes * bpp / 8 * 10;
	if (target_bps >= max_bps) {
		printk(BIOS_DEBUG, "DPHY clock frequency is out of range\n");
		return -1;
	}

	fref = OSC_HZ;

	/* constraint: 5Mhz <= Fref / N <= 40MHz */
	min_prediv = DIV_ROUND_UP(fref, 40 * MHz);
	max_prediv = fref / (5 * MHz);

	/* constraint: 80MHz <= Fvco <= 1500MHz */
	fvco_min = 80 * MHz;
	fvco_max = 1500 * MHz;
	min_delta = 1500 * MHz;

	for (prediv = min_prediv; prediv <= max_prediv; prediv++) {
		u64 freq;
		int delta;

		/* Fvco = Fref * M / N */
		fbdiv = target_bps * prediv / fref;

		/*
		 * Due to the use of a "by 2 pre-scaler", the range of the
		 * feedback multiplication value M is limited to even division
		 * numbers, and m must be in 6 <= m <= 512.
		 */
		fbdiv += fbdiv % 2;
		if (fbdiv < 6 || fbdiv > 512)
			continue;

		freq = (u64)fbdiv * fref / prediv;
		if (freq < fvco_min || freq > fvco_max)
			continue;

		delta = target_bps - freq;
		delta = ABS(delta);
		if (delta >= min_delta)
			continue;

		best_prediv = prediv;
		best_fbdiv = fbdiv;
		min_delta = delta;
		best_freq = freq;
	}

	if (best_freq) {
		dsi->lane_bps = best_freq;
		dsi->input_div = best_prediv;
		dsi->feedback_div = best_fbdiv;
	} else {
		printk(BIOS_ERR, "Can not find best_freq for DPHY\n");
		return -1;
	}

	return 0;
}

static void rk_mipi_dsi_dpi_config(struct rk_mipi_dsi *dsi)
{
	u32 color = 0;

	switch (dsi->format) {
	case MIPI_DSI_FMT_RGB888:
		color = DPI_COLOR_CODING_24BIT;
		break;
	case MIPI_DSI_FMT_RGB666:
		color = DPI_COLOR_CODING_18BIT_2 | EN18_LOOSELY;
		break;
	case MIPI_DSI_FMT_RGB666_PACKED:
		color = DPI_COLOR_CODING_18BIT_1;
		break;
	case MIPI_DSI_FMT_RGB565:
		color = DPI_COLOR_CODING_16BIT_1;
		break;
	}

	write32(&dsi->mipi_regs->dsi_dpi_vcid, 0);
	write32(&dsi->mipi_regs->dsi_dpi_color_coding, color);

	write32(&dsi->mipi_regs->dsi_dpi_cfg_pol, 0);

	write32(&dsi->mipi_regs->dsi_dpi_lp_cmd_tim,
		OUTVACT_LPCMD_TIME(4) | INVACT_LPCMD_TIME(4));
}

static void rk_mipi_dsi_packet_handler_config(struct rk_mipi_dsi *dsi)
{
	write32(&dsi->mipi_regs->dsi_pckhdl_cfg,
		EN_CRC_RX | EN_ECC_RX | EN_BTA);
}

static void rk_mipi_dsi_video_mode_config(struct rk_mipi_dsi *dsi)
{
	write32(&dsi->mipi_regs->dsi_vid_mode_cfg,
		VID_MODE_TYPE_BURST_SYNC_PULSES | ENABLE_LOW_POWER);
}

static void rk_mipi_dsi_video_packet_config(struct rk_mipi_dsi *dsi,
			const struct edid *edid,
			const struct mipi_panel_data *panel_data)
{
	int pkt_size;

	if (panel_data->mipi_num > 1)
		pkt_size = VID_PKT_SIZE(edid->mode.ha / 2 + 4);
	else
		pkt_size = VID_PKT_SIZE(edid->mode.ha);

	write32(&dsi->mipi_regs->dsi_vid_pkt_size, pkt_size);
}

static void rk_mipi_dsi_command_mode_config(struct rk_mipi_dsi *dsi)
{
	write32(&dsi->mipi_regs->dsi_to_cnt_cfg,
		HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000));
	write32(&dsi->mipi_regs->dsi_bta_to_cnt, 0xd00);
	write32(&dsi->mipi_regs->dsi_cmd_mode_cfg, CMD_MODE_ALL_LP);
	write32(&dsi->mipi_regs->dsi_mode_cfg, ENABLE_CMD_MODE);
}

/* Get lane byte clock cycles. */
static u32 rk_mipi_dsi_get_hcomponent_lbcc(struct rk_mipi_dsi *dsi,
					   u32 hcomponent,
					   const struct edid *edid)
{
	u32 lbcc;
	u64 lbcc_tmp;

	lbcc_tmp = hcomponent * dsi->lane_bps / (8 * MSECS_PER_SEC);
	lbcc = DIV_ROUND_UP(lbcc_tmp, edid->mode.pixel_clock);

	return lbcc;
}

static void rk_mipi_dsi_line_timer_config(struct rk_mipi_dsi *dsi,
					  const struct edid *edid)
{
	u32 htotal, hsa, hbp, lbcc;

	htotal = edid->mode.ha + edid->mode.hbl;
	hsa = edid->mode.hspw;
	hbp = edid->mode.hbl - edid->mode.hso - edid->mode.hspw;

	lbcc = rk_mipi_dsi_get_hcomponent_lbcc(dsi, htotal, edid);
	write32(&dsi->mipi_regs->dsi_vid_hline_time, lbcc);

	lbcc = rk_mipi_dsi_get_hcomponent_lbcc(dsi, hsa, edid);
	write32(&dsi->mipi_regs->dsi_vid_hsa_time, lbcc);
	lbcc = rk_mipi_dsi_get_hcomponent_lbcc(dsi, hbp, edid);
	write32(&dsi->mipi_regs->dsi_vid_hbp_time, lbcc);
}

static void rk_mipi_dsi_vertical_timing_config(struct rk_mipi_dsi *dsi,
					       const struct edid *edid)
{
	u32 vactive, vsa, vfp, vbp;

	vactive = edid->mode.va;
	vsa = edid->mode.vspw;
	vfp = edid->mode.vso;
	vbp = edid->mode.vbl - edid->mode.vso - edid->mode.vspw;

	write32(&dsi->mipi_regs->dsi_vid_vactive_lines, vactive);
	write32(&dsi->mipi_regs->dsi_vid_vsa_lines, vsa);
	write32(&dsi->mipi_regs->dsi_vid_vfp_lines, vfp);
	write32(&dsi->mipi_regs->dsi_vid_vbp_lines, vbp);
}

static void rk_mipi_dsi_dphy_timing_config(struct rk_mipi_dsi *dsi)
{
	/*
	 * HS-PREPARE: 40ns + 4 * UI ~ 85ns + 6 * UI
	 * HS-EXIT: 100ns
	 */
	write32(&dsi->mipi_regs->dsi_phy_tmr_cfg, PHY_HS2LP_TIME(0x40) |
					     PHY_LP2HS_TIME(0x40) |
					     MAX_RD_TIME(10000));

	write32(&dsi->mipi_regs->dsi_phy_tmr_lpclk_cfg,
		PHY_CLKHS2LP_TIME(0x40) | PHY_CLKLP2HS_TIME(0x40));
}

static void rk_mipi_dsi_clear_err(struct rk_mipi_dsi *dsi)
{
	read32(&dsi->mipi_regs->dsi_int_st0);
	read32(&dsi->mipi_regs->dsi_int_st1);
	write32(&dsi->mipi_regs->dsi_int_msk0, 0);
	write32(&dsi->mipi_regs->dsi_int_msk1, 0);
}

static void rk_mipi_dsi_dphy_interface_config(struct rk_mipi_dsi *dsi)
{
	write32(&dsi->mipi_regs->dsi_phy_if_cfg, PHY_STOP_WAIT_TIME(0x20) |
					    N_LANES(dsi->lanes));
}

static void rk_mipi_dsi_set_mode(struct rk_mipi_dsi *dsi,
				 enum rk_mipi_dsi_mode mode)
{
	write32(&dsi->mipi_regs->dsi_pwr_up, RESET);
	if (mode == MIPI_DSI_CMD_MODE) {
		write32(&dsi->mipi_regs->dsi_mode_cfg, ENABLE_CMD_MODE);
	} else {
		write32(&dsi->mipi_regs->dsi_mode_cfg, ENABLE_VIDEO_MODE);
		rk_mipi_dsi_video_mode_config(dsi);
		write32(&dsi->mipi_regs->dsi_lpclk_ctrl, PHY_TXREQUESTCLKHS);
	}
	write32(&dsi->mipi_regs->dsi_pwr_up, POWERUP);
}

static void rk_mipi_dsi_init(struct rk_mipi_dsi *dsi)
{
	/*
	 * The maximum permitted escape clock is 20MHz and it is derived from
	 * lanebyteclk, which is running at "lane_mbps / 8".  Thus we want:
	 *
	 *     (lane_mbps >> 3) / esc_clk_division < 20
	 * which is:
	 *     (lane_mbps >> 3) / 20 > esc_clk_division
	 */
	u32 esc_clk_division = DIV_ROUND_UP(dsi->lane_bps,
					    8 * 20 * USECS_PER_SEC);

	write32(&dsi->mipi_regs->dsi_pwr_up, RESET);
	write32(&dsi->mipi_regs->dsi_phy_rstz,
		PHY_DISFORCEPLL | PHY_DISABLECLK | PHY_RSTZ | PHY_SHUTDOWNZ);
	write32(&dsi->mipi_regs->dsi_clk_cfg,
		TO_CLK_DIVIDSION(10) |
		TX_ESC_CLK_DIVIDSION(esc_clk_division));
}

static void rk_mipi_message_config(struct rk_mipi_dsi *dsi)
{
	write32(&dsi->mipi_regs->dsi_lpclk_ctrl, 0);
	write32(&dsi->mipi_regs->dsi_cmd_mode_cfg, CMD_MODE_ALL_LP);
}

static int rk_mipi_dsi_check_fifo(struct rk_mipi_dsi *dsi, u32 flag)
{
	struct stopwatch sw;
	int val;

	stopwatch_init_msecs_expire(&sw, 20);
	do {
		val = read32(&dsi->mipi_regs->dsi_cmd_pkt_status);
		if (!(val & flag))
			return 0 ;
	} while (!stopwatch_expired(&sw));

	return -1;
}

static int rk_mipi_dsi_gen_pkt_hdr_write(struct rk_mipi_dsi *dsi, u32 hdr_val)
{
	int val;
	struct stopwatch sw;
	u32 mask;

	if (rk_mipi_dsi_check_fifo(dsi, GEN_CMD_FULL)) {
		printk(BIOS_ERR, "failed to get available command FIFO\n");
		return -1;
	}

	write32(&dsi->mipi_regs->dsi_gen_hdr, hdr_val);

	mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY;
	stopwatch_init_msecs_expire(&sw, 20);
	do {
		val = read32(&dsi->mipi_regs->dsi_cmd_pkt_status);
		if ((val & mask) == mask)
			return 0 ;
	} while (!stopwatch_expired(&sw));
	printk(BIOS_ERR, "failed to write command FIFO\n");

	return -1;
}

static int rk_mipi_dsi_dcs_cmd(struct rk_mipi_dsi *dsi, u8 cmd)
{
	u32 val;

	rk_mipi_message_config(dsi);

	val = GEN_HDATA(cmd) | GEN_HTYPE(MIPI_DSI_DCS_SHORT_WRITE);

	return rk_mipi_dsi_gen_pkt_hdr_write(dsi, val);
}

static int rk_mipi_dsi_dci_long_write(struct rk_mipi_dsi *dsi,
				      char *data, u32 len)
{
	u32 remainder;
	int ret = 0;

	while (len) {
		if (len < 4) {
			remainder = 0;
			memcpy(&remainder, data, len);
			write32(&dsi->mipi_regs->dsi_gen_pld_data, remainder);
			len = 0;
		} else {
			remainder = *(u32 *)data;
			write32(&dsi->mipi_regs->dsi_gen_pld_data, remainder);
			data += 4;
			len -= 4;
		}

		ret = rk_mipi_dsi_check_fifo(dsi, GEN_PLD_W_FULL);
		if (ret) {
			printk(BIOS_ERR, "Failed to write fifo\n");
			return ret;
		}
	}

	return ret;
}

static int rk_mipi_dsi_write(struct rk_mipi_dsi *dsi, char *data, int len)
{
	u16 buf = 0;
	u32 val;
	int ret = 0;

	rk_mipi_message_config(dsi);

	switch (len) {
	case 0:
		die("not data!");
	case 1:
		val = GEN_HDATA(*data) |
		      GEN_HTYPE(MIPI_DSI_DCS_SHORT_WRITE);
		break;
	case 2:
		buf = *data++;
		buf |= *data << 8;
		val = GEN_HDATA(buf) |
		      GEN_HTYPE(MIPI_DSI_DCS_SHORT_WRITE_PARAM);
		break;
	default:
		ret = rk_mipi_dsi_dci_long_write(dsi, data, len);
		if (ret) {
			printk(BIOS_ERR, "error happened during long write\n");
			return ret;
		}
		val = GEN_HDATA(len) | GEN_HTYPE(MIPI_DSI_DCS_LONG_WRITE);
		break;
	}

	return rk_mipi_dsi_gen_pkt_hdr_write(dsi, val);
}

static void rk_mipi_enable(struct rk_mipi_dsi *dsi,
			   const struct edid *edid,
			   const struct mipi_panel_data *panel_data)
{
	if (rk_mipi_dsi_get_lane_bps(dsi, edid, panel_data) < 0)
		return;

	rk_mipi_dsi_init(dsi);
	rk_mipi_dsi_dpi_config(dsi);
	rk_mipi_dsi_packet_handler_config(dsi);
	rk_mipi_dsi_video_mode_config(dsi);
	rk_mipi_dsi_video_packet_config(dsi, edid, panel_data);
	rk_mipi_dsi_command_mode_config(dsi);
	rk_mipi_dsi_line_timer_config(dsi, edid);
	rk_mipi_dsi_vertical_timing_config(dsi, edid);
	rk_mipi_dsi_dphy_timing_config(dsi);
	rk_mipi_dsi_dphy_interface_config(dsi);
	rk_mipi_dsi_clear_err(dsi);
	if (rk_mipi_dsi_phy_init(dsi) < 0)
		return;
	rk_mipi_dsi_wait_for_two_frames(dsi, edid);

	rk_mipi_dsi_set_mode(dsi, MIPI_DSI_CMD_MODE);
}

void rk_mipi_prepare(const struct edid *edid,
		     const struct mipi_panel_data *panel_data)
{
	int i, num;
	struct panel_init_command *cmds;

	for (i = 0; i < panel_data->mipi_num; i++) {
		rk_mipi[i].lanes = panel_data->lanes / panel_data->mipi_num;
		rk_mipi[i].format = panel_data->format;
		rk_mipi_enable(&rk_mipi[i], edid, panel_data);
	}

	if (panel_data->init_cmd) {
		cmds = panel_data->init_cmd;
		for (num = 0; cmds[num].len != 0; num++) {
			struct panel_init_command *cmd = &cmds[num];
			for (i = 0; i < panel_data->mipi_num; i++) {
				if (rk_mipi_dsi_write(&rk_mipi[i], cmd->data,
						      cmd->len))
					return;

				/* make sure panel picks up the command */
				if (rk_mipi_dsi_dcs_cmd(&rk_mipi[i],
							MIPI_DCS_NOP))
					return;
			}
		}
	}

	for (i = 0; i < panel_data->mipi_num; i++) {
		if (rk_mipi_dsi_dcs_cmd(&rk_mipi[i],
					MIPI_DCS_EXIT_SLEEP_MODE) < 0)
			return;
	}
	udelay(panel_data->display_on_udelay);
	for (i = 0; i < panel_data->mipi_num; i++) {
		if (rk_mipi_dsi_dcs_cmd(&rk_mipi[i],
					MIPI_DCS_SET_DISPLAY_ON) < 0)
			return;
	}
	udelay(panel_data->video_mode_udelay);
	for (i = 0; i < panel_data->mipi_num; i++)
		rk_mipi_dsi_set_mode(&rk_mipi[i], MIPI_DSI_VID_MODE);
}