summaryrefslogtreecommitdiffstats
path: root/src/vendorcode/amd/agesa/f15tn/Proc/Mem/NB/mnmct.c
blob: 17fc1a7535a57912d14e3f5f2f0eee98f7c70632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
/* $NoKeywords:$ */
/**
 * @file
 *
 * mnmct.c
 *
 * Northbridge Common MCT supporting functions
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/NB)
 * @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $
 *
 **/
/*****************************************************************************
*
 * Copyright (c) 2008 - 2012, Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the names of
 *       its contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ***************************************************************************
*
*/

/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "amdlib.h"
#include "Ids.h"
#include "mport.h"
#include "mm.h"
#include "mn.h"
#include "mu.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "GeneralServices.h"
#include "cpuFeatures.h"
#include "merrhdl.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G1_PEICC)

#define FILECODE PROC_MEM_NB_MNMCT_FILECODE
/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */
#define _16MB_RJ16  0x0100

/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */
BOOLEAN
STATIC
MemNSetMTRRrangeNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 Base,
  IN OUT   UINT32 *LimitPtr,
  IN       UINT32 MtrrAddr,
  IN       UINT8 MtrrType
  );

/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */
extern BUILD_OPT_CFG UserOptions;

/* -----------------------------------------------------------------------------*/
/**
 *
 *     Get max frequency from OEM platform definition, from
 *     any user override (limiting) of max frequency, and
 *     from any Si Revision Specific information.  Return
 *     the least of these three in DIE_STRUCT.Timings.TargetSpeed.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSyncTargetSpeedNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  CONST UINT16 DdrMaxRateTab[] = {
    UNSUPPORTED_DDR_FREQUENCY,
    DDR1600_FREQUENCY,
    DDR1333_FREQUENCY,
    DDR1066_FREQUENCY,
    DDR800_FREQUENCY,
    DDR667_FREQUENCY,
    DDR533_FREQUENCY,
    DDR400_FREQUENCY
  };

  UINT8  Dct;
  UINT8  Channel;
  UINT16 MinSpeed;
  UINT16 DdrMaxRate;
  DCT_STRUCT *DCTPtr;
  USER_MEMORY_TIMING_MODE *ChnlTmgMod;
  USER_MEMORY_TIMING_MODE Mode[MAX_CHANNELS_PER_SOCKET];
  MEMORY_BUS_SPEED MemClkFreq;
  MEMORY_BUS_SPEED ProposedFreq;

  ASSERT (NBPtr->DctCount <= sizeof (Mode));
  MinSpeed = 16000;
  DdrMaxRate = 16000;
  if (NBPtr->IsSupported[CheckMaxDramRate]) {
    // Check maximum DRAM data rate that the processor is designed to support.
    DdrMaxRate = DdrMaxRateTab[MemNGetBitFieldNb (NBPtr, BFDdrMaxRate)];
    NBPtr->FamilySpecificHook[GetDdrMaxRate] (NBPtr, &DdrMaxRate);
    IDS_OPTION_HOOK (IDS_SKIP_FUSED_MAX_RATE, &DdrMaxRate, &NBPtr->MemPtr->StdHeader);
  }

  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    MemNSwitchDCTNb (NBPtr, Dct);
    DCTPtr = NBPtr->DCTPtr;

    // Check if input user time mode is valid or not
    ASSERT ((NBPtr->RefPtr->UserTimingMode == TIMING_MODE_SPECIFIC) ||
        (NBPtr->RefPtr->UserTimingMode == TIMING_MODE_LIMITED) ||
        (NBPtr->RefPtr->UserTimingMode == TIMING_MODE_AUTO));
    Mode[Dct] = NBPtr->RefPtr->UserTimingMode;
    // Check if input clock value is valid or not
    ASSERT ((NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY) ?
      (NBPtr->RefPtr->MemClockValue >= DDR667_FREQUENCY) :
      (NBPtr->RefPtr->MemClockValue <= DDR1066_FREQUENCY));
    MemClkFreq = NBPtr->RefPtr->MemClockValue;
    if (DCTPtr->Timings.DctDimmValid != 0) {
      Channel = MemNGetSocketRelativeChannelNb (NBPtr, Dct, 0);
      ChnlTmgMod = (USER_MEMORY_TIMING_MODE *) FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_BUS_SPEED, NBPtr->MCTPtr->SocketId, Channel, 0,
                                                                    &(NBPtr->MCTPtr->LogicalCpuid), &(NBPtr->MemPtr->StdHeader));
      if (ChnlTmgMod != NULL) {
        // Check if input user timing mode is valid or not
        ASSERT ((ChnlTmgMod[0] == TIMING_MODE_SPECIFIC) || (ChnlTmgMod[0] == TIMING_MODE_LIMITED) ||
          (ChnlTmgMod[0] != TIMING_MODE_AUTO));
        if (ChnlTmgMod[0] != TIMING_MODE_AUTO) {
          Mode[Dct] = ChnlTmgMod[0];
          // Check if input clock value is valid or not
          ASSERT ((NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY) ?
            ((MEMORY_BUS_SPEED)ChnlTmgMod[1] >= DDR667_FREQUENCY) :
            ((MEMORY_BUS_SPEED)ChnlTmgMod[1] <= DDR1066_FREQUENCY));
          MemClkFreq = (MEMORY_BUS_SPEED)ChnlTmgMod[1];
        }
      }

      ProposedFreq = UserOptions.CfgMemoryBusFrequencyLimit;
      if (Mode[Dct] == TIMING_MODE_LIMITED) {
        if (MemClkFreq < ProposedFreq) {
          ProposedFreq = MemClkFreq;
        }
      } else if (Mode[Dct] == TIMING_MODE_SPECIFIC) {
        ProposedFreq = MemClkFreq;
      }

      if (Mode[Dct] == TIMING_MODE_SPECIFIC) {
        DCTPtr->Timings.TargetSpeed = (UINT16) ProposedFreq;
      } else {
        // "limit" mode
        if (DCTPtr->Timings.TargetSpeed > ProposedFreq) {
          DCTPtr->Timings.TargetSpeed = (UINT16) ProposedFreq;
        }
      }

      NBPtr->MemNCapSpeedBatteryLife (NBPtr);

      if (DCTPtr->Timings.TargetSpeed > DdrMaxRate) {
        if (Mode[Dct] == TIMING_MODE_SPECIFIC) {
          PutEventLog (AGESA_ALERT, MEM_ALERT_USER_TMG_MODE_OVERRULED, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
          SetMemError (AGESA_ALERT, NBPtr->MCTPtr);
        }
        DCTPtr->Timings.TargetSpeed = DdrMaxRate;
      }

      IDS_SKIP_HOOK (IDS_POR_MEM_FREQ, NBPtr, &NBPtr->MemPtr->StdHeader) {
        //
        //Call Platform POR Frequency Override
        //
        if (!MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SPEEDLIMIT, ALL_DIMMS)) {
          //
          // Get the POR frequency limit
          //
          NBPtr->PsPtr->MemPGetPORFreqLimit (NBPtr);
        }
      }
      IDS_OPTION_HOOK (IDS_STRETCH_FREQUENCY_LIMIT, NBPtr, &NBPtr->MemPtr->StdHeader);

      if (MinSpeed > DCTPtr->Timings.TargetSpeed) {
        MinSpeed = DCTPtr->Timings.TargetSpeed;
      }
    }
  }

  if (MinSpeed == DDR667_FREQUENCY) {
    NBPtr->StartupSpeed = DDR667_FREQUENCY;
  }

  // Sync all DCTs to the same speed
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    MemNSwitchDCTNb (NBPtr, Dct);
    NBPtr->DCTPtr->Timings.TargetSpeed = MinSpeed;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function waits for all DCTs to be ready
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */

BOOLEAN
MemNSyncDctsReadyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  if (NBPtr->MCTPtr->DimmValid) {
    MemNPollBitFieldNb (NBPtr, BFDramEnabled, 1, PCI_ACCESS_TIMEOUT, FALSE);
    // Re-enable phy compensation engine after Dram init has completed
    MemNSwitchDCTNb (NBPtr, 0);
    MemNSetBitFieldNb (NBPtr, BFDisAutoComp, 0);
  }
  // Wait 750 us for the phy compensation engine to reinitialize.
  MemUWait10ns (75000, NBPtr->MemPtr);

  MemNSyncAddrMapToAllNodesNb (NBPtr);
  return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function create the HT memory map
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */

BOOLEAN
MemNHtMemMapInitNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 BottomIo;
  UINT32 HoleOffset;
  UINT32 DctSelBaseAddr;
  UINT32 NodeSysBase;
  UINT32 NodeSysLimit;
  MEM_PARAMETER_STRUCT *RefPtr;
  DIE_STRUCT *MCTPtr;

  RefPtr = NBPtr->RefPtr;
  MCTPtr = NBPtr->MCTPtr;
  //
  // Physical addresses in this function are right adjusted by 16 bits ([47:16])
  // They are BottomIO, HoleOffset, DctSelBaseAddr, NodeSysBase, NodeSysLimit.
  //

  // Enforce bottom of IO be be 128MB aligned
  ASSERT ((RefPtr->BottomIo < (_4GB_RJ16 >> 8)) && (RefPtr->BottomIo != 0));
  BottomIo = (RefPtr->BottomIo & 0xF8) << 8;

  if (!MCTPtr->GangedMode) {
    DctSelBaseAddr = MCTPtr->DctData[0].Timings.DctMemSize;
  } else {
    DctSelBaseAddr = 0;
  }

  if (MCTPtr->NodeMemSize) {
    NodeSysBase = NBPtr->SharedPtr->CurrentNodeSysBase;
    NodeSysLimit = NodeSysBase + MCTPtr->NodeMemSize - 1;
    DctSelBaseAddr += NodeSysBase;

    if ((NBPtr->IsSupported[ForceEnMemHoleRemapping]) || (RefPtr->MemHoleRemapping)) {
      if ((NodeSysBase < BottomIo) && (NodeSysLimit >= BottomIo)) {
        // HW Dram Remap
        MCTPtr->Status[SbHWHole] = TRUE;
        RefPtr->GStatus[GsbHWHole] = TRUE;
        MCTPtr->NodeHoleBase = BottomIo;
        RefPtr->HoleBase = BottomIo;

        HoleOffset = _4GB_RJ16 - BottomIo;

        NodeSysLimit += HoleOffset;

        if ((DctSelBaseAddr > 0) && (DctSelBaseAddr < BottomIo)) {
          HoleOffset += DctSelBaseAddr;
        } else {
          if (DctSelBaseAddr >= BottomIo) {
            DctSelBaseAddr += HoleOffset;
          }
          HoleOffset += NodeSysBase;
        }

        MemNSetBitFieldNb (NBPtr, BFDramHoleBase, BottomIo >> 8);
        MemNSetBitFieldNb (NBPtr, BFDramHoleOffset, HoleOffset >> 7);
        MemNSetBitFieldNb (NBPtr, BFDramHoleValid, 1);

      } else if (NodeSysBase == BottomIo) {
        // SW Node Hoist
        MCTPtr->Status[SbSWNodeHole] = TRUE;
        RefPtr->GStatus[GsbSpIntRemapHole] = TRUE;
        RefPtr->GStatus[GsbSoftHole] = TRUE;

        RefPtr->HoleBase = NodeSysBase;
        DctSelBaseAddr = _4GB_RJ16 + (DctSelBaseAddr - NodeSysBase);
        NodeSysLimit = _4GB_RJ16 + (NodeSysLimit - NodeSysBase);
        NodeSysBase = _4GB_RJ16;

      } else if ((NodeSysBase < HT_REGION_BASE_RJ16) && (NodeSysLimit >= HT_REGION_BASE_RJ16)) {
        if (!NBPtr->SharedPtr->UndoHoistingAbove1TB) {
          // SW Hoisting above 1TB to avoid HT Reserved region
          DctSelBaseAddr = _1TB_RJ16 + (DctSelBaseAddr - NodeSysBase);
          NodeSysLimit = _1TB_RJ16 + (NodeSysLimit - NodeSysBase);
          NodeSysBase = _1TB_RJ16;

          if (RefPtr->LimitMemoryToBelow1Tb) {
            // Flag to undo 1TB hoisting after training
            NBPtr->SharedPtr->UndoHoistingAbove1TB = TRUE;
          }
        }

      } else {
        // No Remapping.  Normal Contiguous mapping
      }
    } else {
      // No Remapping.  Normal Contiguous mapping
    }

    if (NBPtr->IsSupported[Check1GAlign]) {
      if (UserOptions.CfgNodeMem1GBAlign) {
        NBPtr->MemPNodeMemBoundaryNb (NBPtr, (UINT32 *)&NodeSysLimit);
      }
    }

    MCTPtr->NodeSysBase = NodeSysBase;
    MCTPtr->NodeSysLimit = NodeSysLimit;
    RefPtr->SysLimit = NodeSysLimit;
    RefPtr->Sub1THoleBase = (NodeSysLimit < HT_REGION_BASE_RJ16) ? (NodeSysLimit + 1) : RefPtr->Sub1THoleBase;
    IDS_OPTION_HOOK (IDS_MEM_SIZE_OVERLAY, NBPtr, &NBPtr->MemPtr->StdHeader);

    NBPtr->SharedPtr->TopNode = NBPtr->Node;

    NBPtr->SharedPtr->NodeMap[NBPtr->Node].IsValid = TRUE;
    NBPtr->SharedPtr->NodeMap[NBPtr->Node].SysBase = NodeSysBase;
    NBPtr->SharedPtr->NodeMap[NBPtr->Node].SysLimit = NodeSysLimit & 0xFFFFFF00;

    MemNSetBitFieldNb (NBPtr, BFDramBaseAddr, NodeSysBase >> (27 - 16));
    MemNSetBitFieldNb (NBPtr, BFDramLimitAddr, NodeSysLimit >> (27 - 16));

    if ((MCTPtr->DctData[1].Timings.DctMemSize != 0) && (!NBPtr->Ganged)) {
      MemNSetBitFieldNb (NBPtr, BFDctSelBaseAddr, DctSelBaseAddr >> 11);
      MemNSetBitFieldNb (NBPtr, BFDctSelHiRngEn, 1);
      MemNSetBitFieldNb (NBPtr, BFDctSelHi, 1);
      MemNSetBitFieldNb (NBPtr, BFDctSelBaseOffset, DctSelBaseAddr >> 10);
    }

    NBPtr->SharedPtr->CurrentNodeSysBase = (NodeSysLimit + 1) & 0xFFFFFFF0;
  }
  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *     Program system DRAM map to this node
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNSyncAddrMapToAllNodesNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Node;
  UINT32 NodeSysBase;
  UINT32 NodeSysLimit;
  UINT8  WeReMask;
  MEM_PARAMETER_STRUCT *RefPtr;

  RefPtr = NBPtr->RefPtr;
  for (Node = 0; Node < NBPtr->NodeCount; Node++) {
    NodeSysBase = NBPtr->SharedPtr->NodeMap[Node].SysBase;
    NodeSysLimit = NBPtr->SharedPtr->NodeMap[Node].SysLimit;
    if (NBPtr->SharedPtr->NodeMap[Node].IsValid) {
      WeReMask = 3;
    } else {
      WeReMask = 0;
    }
    // Set the Dram base and set the WE and RE flags in the base.
    MemNSetBitFieldNb (NBPtr, BFDramBaseReg0 + Node, (NodeSysBase << 8) | WeReMask);
    MemNSetBitFieldNb (NBPtr, BFDramBaseHiReg0 + Node, NodeSysBase >> 24);
    // Set the Dram limit and set DstNode.
    MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + Node, (NodeSysLimit << 8) | Node);
    MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + Node, NodeSysLimit >> 24);

    if (RefPtr->GStatus[GsbHWHole]) {
      MemNSetBitFieldNb (NBPtr, BFDramMemHoistValid, 1);
      MemNSetBitFieldNb (NBPtr, BFDramHoleBase, (RefPtr->HoleBase >> 8));
    }
  }

  NBPtr->FamilySpecificHook[InitExtMMIOAddr] (NBPtr, NULL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function enables power down mode
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNPowerDownCtlNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MEM_PARAMETER_STRUCT *RefPtr;
  UINT8 PowerDownMode;

  RefPtr = NBPtr->RefPtr;

  // we can't enable powerdown mode when doing WL
  if (RefPtr->EnablePowerDown) {
    MemNSetBitFieldNb (NBPtr, BFPowerDownEn, 1);
    PowerDownMode = (UINT8) ((UserOptions.CfgPowerDownMode == POWER_DOWN_MODE_AUTO) ? POWER_DOWN_BY_CHANNEL : UserOptions.CfgPowerDownMode);
    IDS_OPTION_HOOK (IDS_POWERDOWN_MODE, &PowerDownMode, &(NBPtr->MemPtr->StdHeader));
    if (PowerDownMode) {
      MemNSetBitFieldNb (NBPtr, BFPowerDownMode, 1);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the Optimal Critical Gross Delay Difference between
 *   the delay parameters across all Dimms on each bytelane.  Then takes the
 *   largest of all the bytelanes.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       TrnDly1 - Type of first Gross Delay parameter
 *     @param[in]       TrnDly2 - Type of second Gross Delay parameter
 *
 *     @return  The largest difference between the largest and smallest
 *               of the two Gross delay types within a single bytelane
 */
INT8
MemNGetOptimalCGDDNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       TRN_DLY_TYPE TrnDly1,
  IN       TRN_DLY_TYPE TrnDly2
  )
{
  INT8  CGDD;
  INT8  GDD;
  UINT8  Dimm1;
  UINT8  Dimm2;
  UINT8  ByteLane;
  UINT16 CsEnabled;
  BOOLEAN CGDDInit;
  BOOLEAN SameDelayType;

  CGDD = 0;
  CGDDInit = FALSE;
  SameDelayType = (BOOLEAN) (TrnDly1 == TrnDly2);
  CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled;

  // If the two delay types compared are the same type, then no need to compare the same
  // pair twice. Adjustments are made in the upper bound and lower bound of the loop to
  // handle this.
  for (Dimm1 = 0; Dimm1 < (SameDelayType ? (MAX_DIMMS_PER_CHANNEL - 1) : MAX_DIMMS_PER_CHANNEL); Dimm1 ++) {
    if (CsEnabled & (UINT16) (3 << (Dimm1 << 1))) {
      for (Dimm2 = (SameDelayType ? (Dimm1 + 1) : 0); Dimm2 < MAX_DIMMS_PER_CHANNEL; Dimm2 ++) {
        if ((CsEnabled & (UINT16) (3 << (Dimm2 << 1)))) {
          for (ByteLane = 0 ; ByteLane < 8 ; ByteLane++) {
            // check each byte lane delay pair
            GDD = (UINT8) (NBPtr->GetTrainDly (NBPtr, TrnDly1, DIMM_BYTE_ACCESS (Dimm1, ByteLane)) >> 5) -
                  (UINT8) (NBPtr->GetTrainDly (NBPtr, TrnDly2, DIMM_BYTE_ACCESS (Dimm2, ByteLane)) >> 5);
            // If the 2 delay types to be compared are the same, then keep the absolute difference
            if (SameDelayType && (GDD < 0)) {
              GDD = (-GDD);
            }

            // If CGDD is yet to be initialized, initialize it
            // Otherwise, keep the largest difference so far
            CGDD = (!CGDDInit) ? GDD : ((CGDD > GDD) ? CGDD : GDD);
            if (!CGDDInit) {
              CGDDInit = TRUE;
            }
          }
        }
      }
    }
  }
  return CGDD;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function calculates the critical delay difference (CDD)
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]       TrnDlyType1 - Type of first Gross Delay parameter
 *     @param[in]       TrnDlyType2 - Type of second Gross Delay parameter
 *     @param[in]       SameDimm - CDD of same DIMMs
 *     @param[in]       DiffDimm - CDD of different DIMMs
 *
 *     @return          CDD term - in 1/2 MEMCLK
 */
INT16
MemNCalcCDDNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       TRN_DLY_TYPE TrnDlyType1,
  IN       TRN_DLY_TYPE TrnDlyType2,
  IN       BOOLEAN SameDimm,
  IN       BOOLEAN DiffDimm
  )
{
  INT16 CDD;
  INT16 CDDtemp;
  UINT16 TrnDly1;
  UINT16 TrnDly2;
  UINT8 i;
  UINT8 j;
  UINT8 ByteLane;
  UINT16 CsEnabled;
  BOOLEAN SameDlyType;

  SameDlyType = (BOOLEAN) (TrnDlyType1 == TrnDlyType2);
  CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled;
  CDD = -127;
  // If the two delay types compared are the same type, then no need to compare the same
  // pair twice. Adjustments are made in the upper bound and lower bound of the loop to
  // handle this.
  for (i = 0; i < (SameDlyType ? (NBPtr->CsPerChannel - NBPtr->CsPerDelay) : NBPtr->CsPerChannel); i = i + NBPtr->CsPerDelay) {
    if ((CsEnabled & ((UINT16) ((NBPtr->CsPerDelay == 2) ? 3 : 1) << i)) != 0) {
      for (j = SameDlyType ? (i + NBPtr->CsPerDelay) : 0; j < NBPtr->CsPerChannel; j = j + NBPtr->CsPerDelay) {
        if (((CsEnabled & ((UINT16) ((NBPtr->CsPerDelay == 2)? 3 : 1) << j)) != 0) &&
            ((SameDimm && ((i / 2) == (j / 2))) || (DiffDimm && ((i / 2) != (j / 2))))) {
          for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) {
            /// @todo: Gross delay mask should not be constant.
            TrnDly1 = GetTrainDlyFromHeapNb (NBPtr, TrnDlyType1, DIMM_BYTE_ACCESS (i / NBPtr->CsPerDelay, ByteLane)) >> 5;  // Gross delay only
            TrnDly2 = GetTrainDlyFromHeapNb (NBPtr, TrnDlyType2, DIMM_BYTE_ACCESS (j / NBPtr->CsPerDelay, ByteLane)) >> 5;  // Gross delay only

            CDDtemp = TrnDly1 - TrnDly2;
            // If the 2 delay types to be compared are the same, then keep the absolute difference
            if ((SameDlyType) && (CDDtemp < 0)) {
              CDDtemp = (-CDDtemp);
            }

            CDD = (CDD < CDDtemp) ? CDDtemp : CDD;
          }
        }
      }
    }
  }

  return CDD;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets DQS timing from data saved in heap.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]   TrnDlyType - type of delay to be set
 *     @param[in]   Drbn - encoding of Dimm-Rank-Byte-Nibble to be accessed
 *                  (use either DIMM_BYTE_ACCESS(dimm,byte) or CS_NBBL_ACCESS(cs,nibble) to use this encoding
 *
 *     @return      value of the target timing.
 */
UINT16
GetTrainDlyFromHeapNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       TRN_DLY_TYPE TrnDlyType,
  IN       DRBN Drbn
  )
{
  UINT8 Dimm;
  UINT8 Byte;
  UINT16 TrainDly;
  CH_DEF_STRUCT *ChannelPtr;
  MEM_TECH_BLOCK *TechPtr;

  Dimm = DRBN_DIMM (Drbn);
  Byte = DRBN_BYTE (Drbn);
  ChannelPtr = NBPtr->ChannelPtr;
  TechPtr = NBPtr->TechPtr;

  ASSERT (Dimm < (NBPtr->CsPerChannel / NBPtr->CsPerDelay));
  ASSERT (Byte <= ECC_DLY);

  if (NBPtr->MemPstate == MEMORY_PSTATE1) {
    switch (TrnDlyType) {
    case AccessRcvEnDly:
      TrainDly = ChannelPtr->RcvEnDlysMemPs1[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessWrDqsDly:
      TrainDly = ChannelPtr->WrDqsDlysMemPs1[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessWrDatDly:
      TrainDly = ChannelPtr->WrDatDlysMemPs1[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessRdDqsDly:
      TrainDly = ChannelPtr->RdDqsDlysMemPs1[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    default:
      TrainDly = 0;
      IDS_ERROR_TRAP;
    }
  } else {
    switch (TrnDlyType) {
    case AccessRcvEnDly:
      TrainDly = ChannelPtr->RcvEnDlys[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessWrDqsDly:
      TrainDly = ChannelPtr->WrDqsDlys[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessWrDatDly:
      TrainDly = ChannelPtr->WrDatDlys[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    case AccessRdDqsDly:
      TrainDly = ChannelPtr->RdDqsDlys[Dimm * TechPtr->DlyTableWidth () + Byte];
      break;
    default:
      TrainDly = 0;
      IDS_ERROR_TRAP;
    }
  }

  return TrainDly;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function sets the fixed MTRRs for common legacy ranges.
 *   It sets TOP_MEM and TOM2 and some variable MTRRs with WB Uncacheable type.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_FATAL may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred
 */

BOOLEAN
MemNCPUMemTypingNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 Bottom32bIO;
  UINT32 Bottom40bIO;
  UINT32 Cache32bTOP;
  S_UINT64 SMsr;

  MEM_DATA_STRUCT *MemPtr;
  MEM_PARAMETER_STRUCT *RefPtr;
  RefPtr = NBPtr->RefPtr;
  MemPtr = NBPtr->MemPtr;

  //
  //======================================================================
  // Set temporary top of memory from Node structure data.
  // Adjust temp top of memory down to accommodate 32-bit IO space.
  //======================================================================
  //Bottom40bIO=top of memory, right justified 16 bits  (defines dram versus IO space type)
  //Bottom32bIO=sub 4GB top of memory, right justified 16 bits (defines dram versus IO space type)
  //Cache32bTOP=sub 4GB top of WB cacheable memory, right justified 16 bits
  //
  if (RefPtr->HoleBase != 0) {
    Bottom32bIO = RefPtr->HoleBase;
  } else if (RefPtr->BottomIo != 0) {
    Bottom32bIO = (UINT32)RefPtr->BottomIo << (24 - 16);
  } else {
    Bottom32bIO = (UINT32)1 << (24 - 16);
  }

  Cache32bTOP = RefPtr->SysLimit + 1;
  if (Cache32bTOP < _4GB_RJ16) {
    Bottom40bIO = 0;
    if (Bottom32bIO >= Cache32bTOP) {
      Bottom32bIO = Cache32bTOP;
    }
  } else {
    Bottom40bIO = Cache32bTOP;
  }

  Cache32bTOP = Bottom32bIO;


  //
  //======================================================================
  // Set default values for CPU registers
  //======================================================================
  //
  LibAmdMsrRead (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader);
  SMsr.lo |= 0x1C0000;                // turn on modification enable bit and
                                      // mtrr enable bits
  LibAmdMsrWrite (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader);

  SMsr.lo = SMsr.hi = 0x1E1E1E1E;
  LibAmdMsrWrite (0x250, (UINT64 *)&SMsr, &MemPtr->StdHeader);      // 0 - 512K = WB Mem
  LibAmdMsrWrite (0x258, (UINT64 *)&SMsr, &MemPtr->StdHeader);      // 512K - 640K = WB Mem

  //
  //======================================================================
  // Set variable MTRR values
  //======================================================================
  //
  MemNSetMTRRrangeNb (NBPtr, 0, &Cache32bTOP, 0x200, 6);

  RefPtr->Sub4GCacheTop = Cache32bTOP << 16;

  //
  //======================================================================
  // Set TOP_MEM and TOM2 CPU registers
  //======================================================================
  //
  SMsr.hi = Bottom32bIO >> (32 - 16);
  SMsr.lo = Bottom32bIO << 16;
  LibAmdMsrWrite (TOP_MEM, (UINT64 *)&SMsr, &MemPtr->StdHeader);
  IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM:  %08x0000\n", Bottom32bIO);

  if (Bottom40bIO) {
    SMsr.hi = Bottom40bIO >> (32 - 16);
    SMsr.lo = Bottom40bIO << 16;
  } else {
    SMsr.hi = 0;
    SMsr.lo = 0;
  }
  LibAmdMsrWrite (TOP_MEM2, (UINT64 *)&SMsr, &MemPtr->StdHeader);

  LibAmdMsrRead (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader);
  if (Bottom40bIO) {
    IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM2: %08x0000\n", Bottom40bIO);
    IDS_HDT_CONSOLE (MEM_FLOW, "Sub1THoleBase: %08x0000\n", RefPtr->Sub1THoleBase);
    // Enable TOM2
    SMsr.lo |= 0x00600000;
  } else {
    // Disable TOM2
    SMsr.lo &= ~0x00600000;
  }
  SMsr.lo &= 0xFFF7FFFF; // turn off modification enable bit
  LibAmdMsrWrite (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader);

  return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function runs on the BSP only, it sets the fixed MTRRs for common legacy ranges.
 *   It sets TOP_MEM and TOM2 and some variable MTRRs with WB Uncacheable type.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemNUMAMemTypingNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 Bottom32bIO;
  UINT32 Bottom32bUMA;
  UINT32 Cache32bTOP;
  UINT32 Value32;
  UINT8 BitCount;
  UINT8 i;

  MEM_PARAMETER_STRUCT *RefPtr;
  RefPtr = NBPtr->RefPtr;
  BitCount = 0;
  //
  //======================================================================
  // Adjust temp top of memory down to accommodate UMA memory start
  //======================================================================
  // Bottom32bIO=sub 4GB top of memory, right justified 16 bits (defines dram versus IO space type)
  // Cache32bTOP=sub 4GB top of WB cacheable memory, right justified 16 bits
  //
  Bottom32bIO = RefPtr->Sub4GCacheTop >> 16;
  Bottom32bUMA = RefPtr->UmaBase;

  if (Bottom32bUMA < Bottom32bIO) {
    Cache32bTOP = Bottom32bUMA;
    RefPtr->Sub4GCacheTop = Bottom32bUMA << 16;
    //
    //======================================================================
    //Set variable MTRR values
    //======================================================================
    //
    Value32 = Cache32bTOP;
    //Pre-check the bit count of bottom Uma to see if it is potentially running out of Mtrr while typing.
    while (Value32 != 0) {
      i = LibAmdBitScanForward (Value32);
      Value32 &= ~ (1 << i);
      BitCount++;
    }

    if (BitCount > 5) {
      NBPtr->RefPtr->GStatus[GsbMTRRshort] = TRUE;
      MemNSetMTRRUmaRegionUCNb (NBPtr, &Cache32bTOP, &Bottom32bIO);
    } else {
      MemNSetMTRRrangeNb (NBPtr, 0, &Cache32bTOP, 0x200, 6);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *  Program MTRRs to describe given range as given cache type.  Use MTRR pairs
 *  starting with the given MTRRphys Base address, and use as many as is
 *  required up to (excluding) MSR 020C, which is reserved for OS.
 *
 *  "Limit" in the context of this procedure is not the numerically correct
 *  limit, but rather the Last address+1, for purposes of coding efficiency
 *  and readability.  Size of a region is then Limit-Base.
 *
 *  1. Size of each range must be a power of two
 *  2. Each range must be naturally aligned (Base is same as size)
 *
 *  There are two code paths: the ascending path and descending path (analogous
 *  to bsf and bsr), where the next limit is a function of the next set bit in
 *  a forward or backward sequence of bits (as a function of the Limit).  We
 *  start with the ascending path, to ensure that regions are naturally aligned,
 *  then we switch to the descending path to maximize MTRR usage efficiency.
 *  Base=0 is a special case where we start with the descending path.
 *  Correct Mask for region is 2comp(Size-1)-1,
 *  which is 2comp(Limit-Base-1)-1 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]     Base - Base address[47:16] of specified range.
 *     @param[in]     *LimitPtr - Limit address[47:16] of specified range.
 *     @param[in]     MtrrAddr - address of var MTRR pair to start using.
 *     @param[in]     MtrrType - Cache type for the range.
 *
 *     @return      TRUE - No failure occurred
 *     @return      FALSE - Failure occurred because run out of variable-size MTRRs before completion.
 */

BOOLEAN
STATIC
MemNSetMTRRrangeNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 Base,
  IN OUT   UINT32 *LimitPtr,
  IN       UINT32 MtrrAddr,
  IN       UINT8 MtrrType
  )
{
  S_UINT64 SMsr;
  UINT32 CurBase;
  UINT32 CurLimit;
  UINT32 CurSize;
  UINT32 CurAddr;
  UINT32 Value32;

  CurBase = Base;
  CurLimit = *LimitPtr;
  CurAddr = MtrrAddr;

  while ((CurAddr >= 0x200) && (CurAddr < 0x20A) && (CurBase < *LimitPtr)) {
    CurSize = CurLimit = (UINT32)1 << LibAmdBitScanForward (CurBase);
    CurLimit += CurBase;
    if ((CurBase == 0) || (*LimitPtr < CurLimit)) {
      CurLimit = *LimitPtr - CurBase;
      CurSize = CurLimit = (UINT32)1 << LibAmdBitScanReverse (CurLimit);
      CurLimit += CurBase;
    }

    // prog. MTRR with current region Base
    SMsr.lo = (CurBase << 16) | (UINT32)MtrrType;
    SMsr.hi = CurBase >> (32 - 16);
    LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);

    // prog. MTRR with current region Mask
    CurAddr++;                              // other half of MSR pair
    Value32 = CurSize - (UINT32)1;
    Value32 = ~Value32;
    SMsr.hi = (Value32 >> (32 - 16)) & NBPtr->VarMtrrHiMsk;
    SMsr.lo = (Value32 << 16) | ((UINT32)1 << MTRR_VALID);
    LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);

    CurBase = CurLimit;
    CurAddr++;                              // next MSR pair
  }

  if (CurLimit < *LimitPtr) {
    // Announce failure
    *LimitPtr = CurLimit;
    IDS_ERROR_TRAP;
  }

  while ((CurAddr >= 0x200) && (CurAddr < 0x20C)) {
    SMsr.lo = SMsr.hi = 0;
    LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);
    CurAddr++;
  }

  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *     Program one MTRR to describe Uma region as UC cache type if we detect running out of
 *     Mtrr circumstance.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]     *BasePtr - Base address[47:24] of specified range.
 *     @param[in]     *LimitPtr - Limit address[47:24] of specified range.
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */
BOOLEAN
MemNSetMTRRUmaRegionUCNb  (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT32 *BasePtr,
  IN OUT   UINT32 *LimitPtr
  )
{
  S_UINT64 SMsr;
  UINT32 Mtrr;
  UINT32 Size;
  UINT32 Value32;

  Size = *LimitPtr - *BasePtr;
  // Check if Size is a power of 2
  if ((Size & (Size - 1)) != 0) {
    for (Mtrr = 0x200; Mtrr < 0x20A; Mtrr += 2) {
      LibAmdMsrRead (Mtrr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);
      if ((SMsr.lo & ((UINT32) 1 << 11)) == 0) {
        MemNSetMTRRrangeNb (NBPtr, *BasePtr, LimitPtr, Mtrr, 0);
        break;
      }
    }
    if (Mtrr == 0x20A) {
      // Run out of MTRRs
      IDS_ERROR_TRAP;
    }
  } else {
    Mtrr = 0x20A; //Reserved pair of MTRR for UMA region.

    // prog. MTRR with current region Base
    SMsr.lo = *BasePtr  << 16;
    SMsr.hi = *BasePtr >> (32 - 16);
    LibAmdMsrWrite (Mtrr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);

    // prog. MTRR with current region Mask
    Mtrr++;                              // other half of MSR pair
    Value32 = Size - (UINT32)1;
    Value32 = ~Value32;
    SMsr.hi = (Value32 >> (32 - 16)) & NBPtr->VarMtrrHiMsk;
    SMsr.lo = (Value32 << 16) | ((UINT32)1 << MTRR_VALID);
    LibAmdMsrWrite (Mtrr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);
  }

  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *     Report the Uma size that is going to be allocated.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          Uma size [31:0] = Addr [47:16]
 */
UINT32
MemNGetUmaSizeNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  return 0;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This function allocates 16MB of memory for C6 storage when it is requested to be enabled
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNAllocateC6StorageClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 SysLimit;

  if (IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) {
    SysLimit = NBPtr->RefPtr->SysLimit;
    SysLimit -= _16MB_RJ16;

    // Set Dram Limit
    NBPtr->MCTPtr->NodeSysLimit = SysLimit;
    NBPtr->RefPtr->SysLimit = SysLimit;
    MemNSetBitFieldNb (NBPtr, BFDramLimitReg0, ((SysLimit << 8) & 0xFFFF0000));

    // Set TOPMEM and MTRRs
    MemNC6AdjustMSRs (NBPtr);

    // Set C6Base
    MemNSetBitFieldNb (NBPtr, BFC6Base, (SysLimit + 1) >> (24 - 16));

    // C6DramLock will be set in FinalizeMCT
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This function allocates 16MB of memory for C6 storage when it is requested to be enabled
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNAllocateC6StorageUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8  Node;
  UINT32 SysLimit;
  UINT32 DramLimitReg;

  if (NBPtr->SharedPtr->C6Enabled || IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) {

    SysLimit = NBPtr->RefPtr->SysLimit;

    // Calculate new SysLimit
    if (!NBPtr->SharedPtr->C6Enabled) {
      if (NBPtr->SharedPtr->NodeIntlv.NodeCnt >= 2) {
        // Node Interleave is enabled, system memory available is reduced by 16MB * number of nodes
        SysLimit -= _16MB_RJ16 * NBPtr->SharedPtr->NodeIntlv.NodeCnt;
      } else {
        // Otherwise, system memory available is reduced by 16MB
        SysLimit -= _16MB_RJ16;
      }
      NBPtr->RefPtr->SysLimit = SysLimit;
      NBPtr->SharedPtr->C6Enabled = TRUE;

      // Set TOPMEM and MTRRs (only need to be done once for BSC)
      MemNC6AdjustMSRs (NBPtr);
    }

    // Set Dram Limit
    if (NBPtr->SharedPtr->NodeIntlv.NodeCnt >= 2) {
      for (Node = 0; Node < NBPtr->NodeCount; Node++) {
        DramLimitReg = MemNGetBitFieldNb (NBPtr, BFDramLimitReg0 + Node);
        if ((DramLimitReg & 0xFFFF0000) != 0) {
          MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + Node, ((SysLimit << 8) & 0xFFFF0000) | (DramLimitReg & 0xFFFF));
          MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + Node, SysLimit >> 24);
        }
      }
      // Node Interleave is enabled, CoreStateSaveDestNode points to its own node
      MemNSetBitFieldNb (NBPtr, BFCoreStateSaveDestNode, NBPtr->Node);
      NBPtr->MCTPtr->NodeSysLimit = SysLimit;
    } else {
      DramLimitReg = MemNGetBitFieldNb (NBPtr, BFDramLimitReg0 + NBPtr->SharedPtr->TopNode) & 0x0000FFFF;
      MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + NBPtr->SharedPtr->TopNode, ((SysLimit << 8) & 0xFFFF0000) | DramLimitReg);
      MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + NBPtr->SharedPtr->TopNode, SysLimit >> 24);

      // Node Interleave is not enabled, CoreStateSaveDestNode points to the node that contains top memory
      MemNSetBitFieldNb (NBPtr, BFCoreStateSaveDestNode, NBPtr->SharedPtr->TopNode);

      if (NBPtr->Node == NBPtr->SharedPtr->TopNode) {
        NBPtr->MCTPtr->NodeSysLimit = SysLimit;
      }
    }

    // Set BFCC6SaveEn
    MemNSetBitFieldNb (NBPtr, BFCC6SaveEn, 1);

    // LockDramCfg will be set in FinalizeMCT
  }
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *     This function readjusts TOPMEM and MTRRs after allocating storage for C6
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */
VOID
MemNC6AdjustMSRs (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 SysLimit;
  UINT32 CurAddr;
  S_UINT64 SMsr;

  SysLimit = NBPtr->RefPtr->SysLimit + 1;
  SMsr.hi = SysLimit >> (32 - 16);
  SMsr.lo = SysLimit << 16;
  if (SysLimit < _4GB_RJ16) {
    LibAmdMsrWrite (TOP_MEM, (UINT64 *)&SMsr, &(NBPtr->MemPtr->StdHeader));
    IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM:  %08x0000\n", SysLimit);
    // If there is no UMA buffer, then set top of cache and MTRR.
    // Otherwise, top of cache and MTRR will be set when UMA buffer is set up.
    if (NBPtr->RefPtr->UmaMode == UMA_NONE) {
      NBPtr->RefPtr->Sub4GCacheTop = (SysLimit << 16);
      // Find unused MTRR to set C6 region to UC
      for (CurAddr = 0x200; CurAddr < 0x20C; CurAddr += 2) {
        LibAmdMsrRead (CurAddr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);
        if ((SMsr.lo & ((UINT32) 1 << 11)) == 0) {
          // Set region base as TOM
          SMsr.hi = SysLimit >> (32 - 16);
          SMsr.lo = SysLimit << 16;
          LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);

          // set region mask to 16MB
          SMsr.hi = NBPtr->VarMtrrHiMsk;
          SMsr.lo = 0xFF000800;
          LibAmdMsrWrite (CurAddr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader);

          break;
        }
      }
    }
  } else {
    LibAmdMsrWrite (TOP_MEM2, (UINT64 *)&SMsr, &(NBPtr->MemPtr->StdHeader));
    IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM2: %08x0000\n", SysLimit);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     Family-specific hook to override the DdrMaxRate value for families with a
 *     non-GH-compatible encoding for BFDdrMaxRate
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]   *DdrMaxRate - Void pointer to DdrMaxRate.  Used as INT16.
 *
 *     @return          TRUE
 *
 */
BOOLEAN
MemNGetMaxDdrRateUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       VOID *DdrMaxRate
  )
{
  UINT8 DdrMaxRateEncoded;

  DdrMaxRateEncoded = (UINT8) MemNGetBitFieldNb (NBPtr, BFDdrMaxRate);

  if (DdrMaxRateEncoded == 0) {
    * (UINT16 *) DdrMaxRate = UNSUPPORTED_DDR_FREQUENCY;
  } else {
    * (UINT16 *) DdrMaxRate = MemNGetMemClkFreqUnb (NBPtr, DdrMaxRateEncoded);
  }
  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function performs the action after save/restore execution
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]  OptParam   - Optional parameter
 *
 *     @return    TRUE
 *
 */

BOOLEAN
MemNAfterSaveRestoreUnb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   VOID *OptParam
  )
{
  // Sync. up DctCfgSel value with NBPtr->Dct
  MemNSetBitFieldNb (NBPtr, BFDctCfgSel, NBPtr->Dct);

  return TRUE;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function performs the action before and after excluding dimms on CNB
 *
 *     @param[in,out]  *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in,out]  *IsBefore   - If the function is called before excluding dimms
 *
 *     @return    TRUE
 *
 */

BOOLEAN
MemNBfAfExcludeDimmClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN OUT   VOID *IsBefore
  )
{
  if (*(BOOLEAN *) IsBefore == TRUE) {
    NBPtr->BrdcstSet (NBPtr, BFEnterSelfRef, 1);
    NBPtr->PollBitField (NBPtr, BFEnterSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);
  } else {
    NBPtr->BrdcstSet (NBPtr, BFExitSelfRef, 1);
    NBPtr->PollBitField (NBPtr, BFExitSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE);
  }

  return TRUE;
}

/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */