summaryrefslogtreecommitdiffstats
path: root/StdLib/LibC/Softfloat/bits32
diff options
context:
space:
mode:
authorNetBSD project <NetBSD project>2015-07-30 09:50:51 +0000
committerlersek <lersek@Edk2>2015-07-30 09:50:51 +0000
commit3352b62bebfd1e5c2e9961f481df968ab317d78d (patch)
tree12bfd6162cefbb63fa6e26c9fc9b7c9526838d9d /StdLib/LibC/Softfloat/bits32
parentb393333538ee3a6b16a3a1d25ab2372942c3aac7 (diff)
downloadedk2-3352b62bebfd1e5c2e9961f481df968ab317d78d.tar.gz
edk2-3352b62bebfd1e5c2e9961f481df968ab317d78d.tar.bz2
edk2-3352b62bebfd1e5c2e9961f481df968ab317d78d.zip
StdLib/LibC: Add software floating point library from NetBSD
Floating point processing is not supported on ARM for UEFI. In order to support UEFI applications in AppPkg we use this library to provide the required functionality. Changes as compared to the NetBSD version: - Formatting changes (tabs to spaces, DOS line endings etc). - Disable exceptions as described in the float_raise() function. - Disable definition of 'Symbolic Boolean literals' in milieu.h. Source originally from: NetBSD project - Source: http://cvsweb.netbsd.org/bsdweb.cgi/?only_with_tag=MAIN - Licensing and Copyright: http://www.netbsd.org/about/redistribution.html Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Harry Liebel <Harry.Liebel@arm.com> Reviewed-by: Olivier Martin <Olivier.Martin@arm.com> Reviewed-by: Daryl McDaniel <edk2-lists@mc2research.org> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18116 6f19259b-4bc3-4df7-8a09-765794883524
Diffstat (limited to 'StdLib/LibC/Softfloat/bits32')
-rw-r--r--StdLib/LibC/Softfloat/bits32/softfloat-macros648
-rw-r--r--StdLib/LibC/Softfloat/bits32/softfloat.c2355
2 files changed, 3003 insertions, 0 deletions
diff --git a/StdLib/LibC/Softfloat/bits32/softfloat-macros b/StdLib/LibC/Softfloat/bits32/softfloat-macros
new file mode 100644
index 0000000000..8e1f2d8b9a
--- /dev/null
+++ b/StdLib/LibC/Softfloat/bits32/softfloat-macros
@@ -0,0 +1,648 @@
+
+/*
+===============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/*
+-------------------------------------------------------------------------------
+Shifts `a' right by the number of bits given in `count'. If any nonzero
+bits are shifted off, they are ``jammed'' into the least significant bit of
+the result by setting the least significant bit to 1. The value of `count'
+can be arbitrarily large; in particular, if `count' is greater than 32, the
+result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+The result is stored in the location pointed to by `zPtr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+{
+ bits32 z;
+
+ if ( count == 0 ) {
+ z = a;
+ }
+ else if ( count < 32 ) {
+ z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
+ }
+ else {
+ z = ( a != 0 );
+ }
+ *zPtr = z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' can be arbitrarily large; in particular, if `count' is greater
+than 64, the result will be 0. The result is broken into two 32-bit pieces
+which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift64Right(
+ bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+ bits32 z0, z1;
+ int8 negCount = ( - count ) & 31;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 32 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. If any nonzero bits are shifted off, they
+are ``jammed'' into the least significant bit of the result by setting the
+least significant bit to 1. The value of `count' can be arbitrarily large;
+in particular, if `count' is greater than 64, the result will be either 0
+or 1, depending on whether the concatenation of `a0' and `a1' is zero or
+nonzero. The result is broken into two 32-bit pieces which are stored at
+the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift64RightJamming(
+ bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+ bits32 z0, z1;
+ int8 negCount = ( - count ) & 31;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 32 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 32 ) {
+ z1 = a0 | ( a1 != 0 );
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
+ }
+ else {
+ z1 = ( ( a0 | a1 ) != 0 );
+ }
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
+by 32 _plus_ the number of bits given in `count'. The shifted result is
+at most 64 nonzero bits; these are broken into two 32-bit pieces which are
+stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
+off form a third 32-bit result as follows: The _last_ bit shifted off is
+the most-significant bit of the extra result, and the other 31 bits of the
+extra result are all zero if and only if _all_but_the_last_ bits shifted off
+were all zero. This extra result is stored in the location pointed to by
+`z2Ptr'. The value of `count' can be arbitrarily large.
+ (This routine makes more sense if `a0', `a1', and `a2' are considered
+to form a fixed-point value with binary point between `a1' and `a2'. This
+fixed-point value is shifted right by the number of bits given in `count',
+and the integer part of the result is returned at the locations pointed to
+by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
+corrupted as described above, and is returned at the location pointed to by
+`z2Ptr'.)
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift64ExtraRightJamming(
+ bits32 a0,
+ bits32 a1,
+ bits32 a2,
+ int16 count,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr
+ )
+{
+ bits32 z0, z1, z2;
+ int8 negCount = ( - count ) & 31;
+
+ if ( count == 0 ) {
+ z2 = a2;
+ z1 = a1;
+ z0 = a0;
+ }
+ else {
+ if ( count < 32 ) {
+ z2 = a1<<negCount;
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 32 ) {
+ z2 = a1;
+ z1 = a0;
+ }
+ else {
+ a2 |= a1;
+ if ( count < 64 ) {
+ z2 = a0<<negCount;
+ z1 = a0>>( count & 31 );
+ }
+ else {
+ z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
+ z1 = 0;
+ }
+ }
+ z0 = 0;
+ }
+ z2 |= ( a2 != 0 );
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' must be less than 32. The result is broken into two 32-bit
+pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift64Left(
+ bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+
+ *z1Ptr = a1<<count;
+ *z0Ptr =
+ ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
+by the number of bits given in `count'. Any bits shifted off are lost.
+The value of `count' must be less than 32. The result is broken into three
+32-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift96Left(
+ bits32 a0,
+ bits32 a1,
+ bits32 a2,
+ int16 count,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr
+ )
+{
+ bits32 z0, z1, z2;
+ int8 negCount;
+
+ z2 = a2<<count;
+ z1 = a1<<count;
+ z0 = a0<<count;
+ if ( 0 < count ) {
+ negCount = ( ( - count ) & 31 );
+ z1 |= a2>>negCount;
+ z0 |= a1>>negCount;
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
+value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
+any carry out is lost. The result is broken into two 32-bit pieces which
+are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add64(
+ bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+ bits32 z1;
+
+ z1 = a1 + b1;
+ *z1Ptr = z1;
+ *z0Ptr = a0 + b0 + ( z1 < a1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
+96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
+modulo 2^96, so any carry out is lost. The result is broken into three
+32-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add96(
+ bits32 a0,
+ bits32 a1,
+ bits32 a2,
+ bits32 b0,
+ bits32 b1,
+ bits32 b2,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr
+ )
+{
+ bits32 z0, z1, z2;
+ int8 carry0, carry1;
+
+ z2 = a2 + b2;
+ carry1 = ( z2 < a2 );
+ z1 = a1 + b1;
+ carry0 = ( z1 < a1 );
+ z0 = a0 + b0;
+ z1 += carry1;
+ z0 += ( z1 < (bits32)carry1 );
+ z0 += carry0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
+64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
+2^64, so any borrow out (carry out) is lost. The result is broken into two
+32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
+`z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub64(
+ bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+
+ *z1Ptr = a1 - b1;
+ *z0Ptr = a0 - b0 - ( a1 < b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
+the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
+is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
+into three 32-bit pieces which are stored at the locations pointed to by
+`z0Ptr', `z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub96(
+ bits32 a0,
+ bits32 a1,
+ bits32 a2,
+ bits32 b0,
+ bits32 b1,
+ bits32 b2,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr
+ )
+{
+ bits32 z0, z1, z2;
+ int8 borrow0, borrow1;
+
+ z2 = a2 - b2;
+ borrow1 = ( a2 < b2 );
+ z1 = a1 - b1;
+ borrow0 = ( a1 < b1 );
+ z0 = a0 - b0;
+ z0 -= ( z1 < (bits32)borrow1 );
+ z1 -= borrow1;
+ z0 -= borrow0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
+into two 32-bit pieces which are stored at the locations pointed to by
+`z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
+{
+ bits16 aHigh, aLow, bHigh, bLow;
+ bits32 z0, zMiddleA, zMiddleB, z1;
+
+ aLow = a;
+ aHigh = a>>16;
+ bLow = b;
+ bHigh = b>>16;
+ z1 = ( (bits32) aLow ) * bLow;
+ zMiddleA = ( (bits32) aLow ) * bHigh;
+ zMiddleB = ( (bits32) aHigh ) * bLow;
+ z0 = ( (bits32) aHigh ) * bHigh;
+ zMiddleA += zMiddleB;
+ z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
+ zMiddleA <<= 16;
+ z1 += zMiddleA;
+ z0 += ( z1 < zMiddleA );
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
+to obtain a 96-bit product. The product is broken into three 32-bit pieces
+which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
+`z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul64By32To96(
+ bits32 a0,
+ bits32 a1,
+ bits32 b,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr
+ )
+{
+ bits32 z0, z1, z2, more1;
+
+ mul32To64( a1, b, &z1, &z2 );
+ mul32To64( a0, b, &z0, &more1 );
+ add64( z0, more1, 0, z1, &z0, &z1 );
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
+64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
+product. The product is broken into four 32-bit pieces which are stored at
+the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul64To128(
+ bits32 a0,
+ bits32 a1,
+ bits32 b0,
+ bits32 b1,
+ bits32 *z0Ptr,
+ bits32 *z1Ptr,
+ bits32 *z2Ptr,
+ bits32 *z3Ptr
+ )
+{
+ bits32 z0, z1, z2, z3;
+ bits32 more1, more2;
+
+ mul32To64( a1, b1, &z2, &z3 );
+ mul32To64( a1, b0, &z1, &more2 );
+ add64( z1, more2, 0, z2, &z1, &z2 );
+ mul32To64( a0, b0, &z0, &more1 );
+ add64( z0, more1, 0, z1, &z0, &z1 );
+ mul32To64( a0, b1, &more1, &more2 );
+ add64( more1, more2, 0, z2, &more1, &z2 );
+ add64( z0, z1, 0, more1, &z0, &z1 );
+ *z3Ptr = z3;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the 32-bit integer quotient obtained by dividing
+`b' into the 64-bit value formed by concatenating `a0' and `a1'. The
+divisor `b' must be at least 2^31. If q is the exact quotient truncated
+toward zero, the approximation returned lies between q and q + 2 inclusive.
+If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
+unsigned integer is returned.
+-------------------------------------------------------------------------------
+*/
+static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
+{
+ bits32 b0, b1;
+ bits32 rem0, rem1, term0, term1;
+ bits32 z;
+
+ if ( b <= a0 ) return 0xFFFFFFFF;
+ b0 = b>>16;
+ z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
+ mul32To64( b, z, &term0, &term1 );
+ sub64( a0, a1, term0, term1, &rem0, &rem1 );
+ while ( ( (sbits32) rem0 ) < 0 ) {
+ z -= 0x10000;
+ b1 = b<<16;
+ add64( rem0, rem1, b0, b1, &rem0, &rem1 );
+ }
+ rem0 = ( rem0<<16 ) | ( rem1>>16 );
+ z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
+ return z;
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the square root of the 32-bit significand given
+by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
+`aExp' (the least significant bit) is 1, the integer returned approximates
+2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
+is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
+case, the approximation returned lies strictly within +/-2 of the exact
+value.
+-------------------------------------------------------------------------------
+*/
+static bits32 estimateSqrt32( int16 aExp, bits32 a )
+{
+ static const bits16 sqrtOddAdjustments[] = {
+ 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
+ 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
+ };
+ static const bits16 sqrtEvenAdjustments[] = {
+ 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
+ 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
+ };
+ int8 index;
+ bits32 z;
+
+ index = ( a>>27 ) & 15;
+ if ( aExp & 1 ) {
+ z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
+ z = ( ( a / z )<<14 ) + ( z<<15 );
+ a >>= 1;
+ }
+ else {
+ z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
+ z = a / z + z;
+ z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
+ if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+ }
+ return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the number of leading 0 bits before the most-significant 1 bit of
+`a'. If `a' is zero, 32 is returned.
+-------------------------------------------------------------------------------
+*/
+static int8 countLeadingZeros32( bits32 a )
+{
+ static const int8 countLeadingZerosHigh[] = {
+ 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ int8 shiftCount;
+
+ shiftCount = 0;
+ if ( a < 0x10000 ) {
+ shiftCount += 16;
+ a <<= 16;
+ }
+ if ( a < 0x1000000 ) {
+ shiftCount += 8;
+ a <<= 8;
+ }
+ shiftCount += countLeadingZerosHigh[ a>>24 ];
+ return shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
+equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
+returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+ return ( a0 == b0 ) && ( a1 == b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
+than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
+than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
+returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
+equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
+returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
+{
+
+ return ( a0 != b0 ) || ( a1 != b1 );
+
+}
+
diff --git a/StdLib/LibC/Softfloat/bits32/softfloat.c b/StdLib/LibC/Softfloat/bits32/softfloat.c
new file mode 100644
index 0000000000..a513bf94e1
--- /dev/null
+++ b/StdLib/LibC/Softfloat/bits32/softfloat.c
@@ -0,0 +1,2355 @@
+/* $NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $ */
+
+/*
+ * This version hacked for use with gcc -msoft-float by bjh21.
+ * (Mostly a case of #ifdefing out things GCC doesn't need or provides
+ * itself).
+ */
+
+/*
+ * Things you may want to define:
+ *
+ * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
+ * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
+ * properly renamed.
+ */
+
+/*
+ * This differs from the standard bits32/softfloat.c in that float64
+ * is defined to be a 64-bit integer rather than a structure. The
+ * structure is float64s, with translation between the two going via
+ * float64u.
+ */
+
+/*
+===============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-Point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#include <sys/cdefs.h>
+#if defined(LIBC_SCCS) && !defined(lint)
+__RCSID("$NetBSD: softfloat.c,v 1.3 2013/01/10 08:16:11 matt Exp $");
+#endif /* LIBC_SCCS and not lint */
+
+#ifdef SOFTFLOAT_FOR_GCC
+#include "softfloat-for-gcc.h"
+#endif
+
+#include "milieu.h"
+#include "softfloat.h"
+
+/*
+ * Conversions between floats as stored in memory and floats as
+ * SoftFloat uses them
+ */
+#ifndef FLOAT64_DEMANGLE
+#define FLOAT64_DEMANGLE(a) (a)
+#endif
+#ifndef FLOAT64_MANGLE
+#define FLOAT64_MANGLE(a) (a)
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Floating-point rounding mode and exception flags.
+-------------------------------------------------------------------------------
+*/
+#ifndef set_float_rounding_mode
+fp_rnd float_rounding_mode = float_round_nearest_even;
+fp_except float_exception_flags = 0;
+#endif
+#ifndef set_float_exception_inexact_flag
+#define set_float_exception_inexact_flag() \
+ ((void)(float_exception_flags |= float_flag_inexact))
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Primitive arithmetic functions, including multi-word arithmetic, and
+division and square root approximations. (Can be specialized to target if
+desired.)
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-macros"
+
+/*
+-------------------------------------------------------------------------------
+Functions and definitions to determine: (1) whether tininess for underflow
+is detected before or after rounding by default, (2) what (if anything)
+happens when exceptions are raised, (3) how signaling NaNs are distinguished
+from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
+are propagated from function inputs to output. These details are target-
+specific.
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-specialize"
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits32 extractFloat32Frac( float32 a )
+{
+
+ return a & 0x007FFFFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat32Exp( float32 a )
+{
+
+ return ( a>>23 ) & 0xFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat32Sign( float32 a )
+{
+
+ return a>>31;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal single-precision floating-point value represented
+by the denormalized significand `aSig'. The normalized exponent and
+significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( aSig ) - 8;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+single-precision floating-point value, returning the result. After being
+shifted into the proper positions, the three fields are simply added
+together to form the result. This means that any integer portion of `zSig'
+will be added into the exponent. Since a properly normalized significand
+will have an integer portion equal to 1, the `zExp' input should be 1 less
+than the desired result exponent whenever `zSig' is a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+
+ return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. Ordinarily, the abstract
+value is simply rounded and packed into the single-precision format, with
+the inexact exception raised if the abstract input cannot be represented
+exactly. However, if the abstract value is too large, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal single-
+precision floating-point number.
+ The input significand `zSig' has its binary point between bits 30
+and 29, which is 7 bits to the left of the usual location. This shifted
+significand must be normalized or smaller. If `zSig' is not normalized,
+`zExp' must be 0; in that case, the result returned is a subnormal number,
+and it must not require rounding. In the usual case that `zSig' is
+normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+The handling of underflow and overflow follows the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = roundingMode == float_round_nearest_even;
+ roundIncrement = 0x40;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x7F;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig & 0x7F;
+ if ( 0xFD <= (bits16) zExp ) {
+ if ( ( 0xFD < zExp )
+ || ( ( zExp == 0xFD )
+ && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < (uint32)0x80000000 );
+ shift32RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x7F;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ }
+ }
+ if ( roundBits ) set_float_exception_inexact_flag();
+ zSig = ( zSig + roundIncrement )>>7;
+ zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. This routine is just like
+`roundAndPackFloat32' except that `zSig' does not have to be normalized.
+Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
+floating-point exponent.
+-------------------------------------------------------------------------------
+*/
+static float32
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( zSig ) - 1;
+ return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the least-significant 32 fraction bits of the double-precision
+floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits32 extractFloat64Frac1( float64 a )
+{
+
+ return (bits32)(FLOAT64_DEMANGLE(a) & LIT64(0x00000000FFFFFFFF));
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the most-significant 20 fraction bits of the double-precision
+floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits32 extractFloat64Frac0( float64 a )
+{
+
+ return (bits32)((FLOAT64_DEMANGLE(a) >> 32) & 0x000FFFFF);
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat64Exp( float64 a )
+{
+
+ return (int16)((FLOAT64_DEMANGLE(a) >> 52) & 0x7FF);
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat64Sign( float64 a )
+{
+
+ return (flag)(FLOAT64_DEMANGLE(a) >> 63);
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal double-precision floating-point value represented
+by the denormalized significand formed by the concatenation of `aSig0' and
+`aSig1'. The normalized exponent is stored at the location pointed to by
+`zExpPtr'. The most significant 21 bits of the normalized significand are
+stored at the location pointed to by `zSig0Ptr', and the least significant
+32 bits of the normalized significand are stored at the location pointed to
+by `zSig1Ptr'.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat64Subnormal(
+ bits32 aSig0,
+ bits32 aSig1,
+ int16 *zExpPtr,
+ bits32 *zSig0Ptr,
+ bits32 *zSig1Ptr
+ )
+{
+ int8 shiftCount;
+
+ if ( aSig0 == 0 ) {
+ shiftCount = countLeadingZeros32( aSig1 ) - 11;
+ if ( shiftCount < 0 ) {
+ *zSig0Ptr = aSig1>>( - shiftCount );
+ *zSig1Ptr = aSig1<<( shiftCount & 31 );
+ }
+ else {
+ *zSig0Ptr = aSig1<<shiftCount;
+ *zSig1Ptr = 0;
+ }
+ *zExpPtr = - shiftCount - 31;
+ }
+ else {
+ shiftCount = countLeadingZeros32( aSig0 ) - 11;
+ shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+ *zExpPtr = 1 - shiftCount;
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', the exponent `zExp', and the significand formed by
+the concatenation of `zSig0' and `zSig1' into a double-precision floating-
+point value, returning the result. After being shifted into the proper
+positions, the three fields `zSign', `zExp', and `zSig0' are simply added
+together to form the most significant 32 bits of the result. This means
+that any integer portion of `zSig0' will be added into the exponent. Since
+a properly normalized significand will have an integer portion equal to 1,
+the `zExp' input should be 1 less than the desired result exponent whenever
+`zSig0' and `zSig1' concatenated form a complete, normalized significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float64
+ packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
+{
+
+ return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
+ ( ( (bits64) zExp )<<52 ) +
+ ( ( (bits64) zSig0 )<<32 ) + zSig1 );
+
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and extended significand formed by the concatenation of `zSig0', `zSig1',
+and `zSig2', and returns the proper double-precision floating-point value
+corresponding to the abstract input. Ordinarily, the abstract value is
+simply rounded and packed into the double-precision format, with the inexact
+exception raised if the abstract input cannot be represented exactly.
+However, if the abstract value is too large, the overflow and inexact
+exceptions are raised and an infinity or maximal finite value is returned.
+If the abstract value is too small, the input value is rounded to a
+subnormal number, and the underflow and inexact exceptions are raised if the
+abstract input cannot be represented exactly as a subnormal double-precision
+floating-point number.
+ The input significand must be normalized or smaller. If the input
+significand is not normalized, `zExp' must be 0; in that case, the result
+returned is a subnormal number, and it must not require rounding. In the
+usual case that the input significand is normalized, `zExp' must be 1 less
+than the ``true'' floating-point exponent. The handling of underflow and
+overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64
+ roundAndPackFloat64(
+ flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ increment = ( (sbits32) zSig2 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ if ( 0x7FD <= (bits16) zExp ) {
+ if ( ( 0x7FD < zExp )
+ || ( ( zExp == 0x7FD )
+ && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
+ && increment
+ )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
+ }
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ! increment
+ || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
+ shift64ExtraRightJamming(
+ zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+ zExp = 0;
+ if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
+ if ( roundNearestEven ) {
+ increment = ( (sbits32) zSig2 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ }
+ if ( zSig2 ) set_float_exception_inexact_flag();
+ if ( increment ) {
+ add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+ zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+ }
+ else {
+ if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+ }
+ return packFloat64( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand formed by the concatenation of `zSig0' and `zSig1', and
+returns the proper double-precision floating-point value corresponding
+to the abstract input. This routine is just like `roundAndPackFloat64'
+except that the input significand has fewer bits and does not have to be
+normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
+point exponent.
+-------------------------------------------------------------------------------
+*/
+static float64
+ normalizeRoundAndPackFloat64(
+ flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
+{
+ int8 shiftCount;
+ bits32 zSig2;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 32;
+ }
+ shiftCount = countLeadingZeros32( zSig0 ) - 11;
+ if ( 0 <= shiftCount ) {
+ zSig2 = 0;
+ shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ }
+ else {
+ shift64ExtraRightJamming(
+ zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+ }
+ zExp -= shiftCount;
+ return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a' to
+the single-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 int32_to_float32( int32 a )
+{
+ flag zSign;
+
+ if ( a == 0 ) return 0;
+ if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat32(zSign, 0x9C, (uint32)(zSign ? - a : a));
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a' to
+the double-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 int32_to_float64( int32 a )
+{
+ flag zSign;
+ bits32 absA;
+ int8 shiftCount;
+ bits32 zSig0, zSig1;
+
+ if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) - 11;
+ if ( 0 <= shiftCount ) {
+ zSig0 = absA<<shiftCount;
+ zSig1 = 0;
+ }
+ else {
+ shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
+ }
+ return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig, aSigExtra;
+ int32 z;
+ int8 roundingMode;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x96;
+ if ( 0 <= shiftCount ) {
+ if ( 0x9E <= aExp ) {
+ if ( a != 0xCF000000 ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
+ return 0x7FFFFFFF;
+ }
+ }
+ return (sbits32) 0x80000000;
+ }
+ z = ( aSig | 0x00800000 )<<shiftCount;
+ if ( aSign ) z = - z;
+ }
+ else {
+ if ( aExp < 0x7E ) {
+ aSigExtra = aExp | aSig;
+ z = 0;
+ }
+ else {
+ aSig |= 0x00800000;
+ aSigExtra = aSig<<( shiftCount & 31 );
+ z = aSig>>( - shiftCount );
+ }
+ if ( aSigExtra ) set_float_exception_inexact_flag();
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ if ( (sbits32) aSigExtra < 0 ) {
+ ++z;
+ if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
+ }
+ if ( aSign ) z = - z;
+ }
+ else {
+ aSigExtra = ( aSigExtra != 0 );
+ if ( aSign ) {
+ z += ( roundingMode == float_round_down ) & aSigExtra;
+ z = - z;
+ }
+ else {
+ z += ( roundingMode == float_round_up ) & aSigExtra;
+ }
+ }
+ }
+ return z;
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32_round_to_zero( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x9E;
+ if ( 0 <= shiftCount ) {
+ if ( a != 0xCF000000 ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+ }
+ return (sbits32) 0x80000000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) set_float_exception_inexact_flag();
+ return 0;
+ }
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+ set_float_exception_inexact_flag();
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the double-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float32_to_float64( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig, zSig0, zSig1;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
+ return packFloat64( aSign, 0x7FF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
+ return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Rounds the single-precision floating-point value `a' to an integer,
+and returns the result as a single-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_round_to_int( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float32 z;
+
+ aExp = extractFloat32Exp( a );
+ if ( 0x96 <= aExp ) {
+ if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+ return propagateFloat32NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp <= 0x7E ) {
+ if ( (bits32) ( a<<1 ) == 0 ) return a;
+ set_float_exception_inexact_flag();
+ aSign = extractFloat32Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+ return packFloat32( aSign, 0x7F, 0 );
+ }
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_down:
+ return aSign ? 0xBF800000 : 0;
+ case float_round_up:
+ return aSign ? 0x80000000 : 0x3F800000;
+ }
+ return packFloat32( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x96 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z += lastBitMask>>1;
+ if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z += roundBitsMask;
+ }
+ }
+ z &= ~ roundBitsMask;
+ if ( z != a ) set_float_exception_inexact_flag();
+ return z;
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the single-precision
+floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 6;
+ bSig <<= 6;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x20000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x20000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+ zSig = 0x40000000 + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= 0x20000000;
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (sbits32) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the single-
+precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 7;
+ bSig <<= 7;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign ^ 1, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x40000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ bSig |= 0x40000000;
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x40000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ aSig |= 0x40000000;
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the single-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_add( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sub( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_mul( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig0, zSig1;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x7F;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ mul32To64( aSig, bSig, &zSig0, &zSig1 );
+ zSig0 |= ( zSig1 != 0 );
+ if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
+ zSig0 <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the single-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_div( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x7D;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = estimateDiv64To32( aSig, 0, bSig );
+ if ( ( zSig & 0x3F ) <= 2 ) {
+ mul32To64( bSig, zSig, &term0, &term1 );
+ sub64( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits32) rem0 < 0 ) {
+ --zSig;
+ add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig |= ( rem1 != 0 );
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the single-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_rem( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits32 aSig, bSig, q, allZero, alternateASig;
+ sbits32 sigMean;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig = ( aSig | 0x00800000 )<<8;
+ bSig = ( bSig | 0x00800000 )<<8;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ expDiff -= 32;
+ while ( 0 < expDiff ) {
+ q = estimateDiv64To32( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ aSig = - ( ( bSig>>2 ) * q );
+ expDiff -= 30;
+ }
+ expDiff += 32;
+ if ( 0 < expDiff ) {
+ q = estimateDiv64To32( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 32 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (sbits32) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (sbits32) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
+
+}
+#endif
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the single-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sqrt( float32 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits32 aSig, zSig, rem0, rem1, term0, term1;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, 0 );
+ if ( ! aSign ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return 0;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+ aSig = ( aSig | 0x00800000 )<<8;
+ zSig = estimateSqrt32( aExp, aSig ) + 2;
+ if ( ( zSig & 0x7F ) <= 5 ) {
+ if ( zSig < 2 ) {
+ zSig = 0x7FFFFFFF;
+ goto roundAndPack;
+ }
+ else {
+ aSig >>= aExp & 1;
+ mul32To64( zSig, zSig, &term0, &term1 );
+ sub64( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits32) rem0 < 0 ) {
+ --zSig;
+ shortShift64Left( 0, zSig, 1, &term0, &term1 );
+ term1 |= 1;
+ add64( rem0, rem1, term0, term1, &rem0, &rem1 );
+ }
+ zSig |= ( ( rem0 | rem1 ) != 0 );
+ }
+ }
+ shift32RightJamming( zSig, 1, &zSig );
+ roundAndPack:
+ return roundAndPackFloat32( 0, zExp, zSig );
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+or equal to the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq_signaling( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+ int16 aExp, bExp;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig0, aSig1, absZ, aSigExtra;
+ int32 z;
+ int8 roundingMode;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ shiftCount = aExp - 0x413;
+ if ( 0 <= shiftCount ) {
+ if ( 0x41E < aExp ) {
+ if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+ goto invalid;
+ }
+ shortShift64Left(
+ aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
+ if ( 0x80000000 < absZ ) goto invalid;
+ }
+ else {
+ aSig1 = ( aSig1 != 0 );
+ if ( aExp < 0x3FE ) {
+ aSigExtra = aExp | aSig0 | aSig1;
+ absZ = 0;
+ }
+ else {
+ aSig0 |= 0x00100000;
+ aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
+ absZ = aSig0>>( - shiftCount );
+ }
+ }
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ if ( (sbits32) aSigExtra < 0 ) {
+ ++absZ;
+ if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
+ }
+ z = aSign ? - absZ : absZ;
+ }
+ else {
+ aSigExtra = ( aSigExtra != 0 );
+ if ( aSign ) {
+ z = - ( absZ
+ + ( ( roundingMode == float_round_down ) & aSigExtra ) );
+ }
+ else {
+ z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
+ }
+ }
+ if ( ( aSign ^ ( z < 0 ) ) && z ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( aSigExtra ) set_float_exception_inexact_flag();
+ return z;
+
+}
+#endif /* !SOFTFLOAT_FOR_GCC */
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic, except that the conversion is always rounded toward zero.
+If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+the conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig0, aSig1, absZ, aSigExtra;
+ int32 z;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ shiftCount = aExp - 0x413;
+ if ( 0 <= shiftCount ) {
+ if ( 0x41E < aExp ) {
+ if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+ goto invalid;
+ }
+ shortShift64Left(
+ aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
+ }
+ else {
+ if ( aExp < 0x3FF ) {
+ if ( aExp | aSig0 | aSig1 ) {
+ set_float_exception_inexact_flag();
+ }
+ return 0;
+ }
+ aSig0 |= 0x00100000;
+ aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
+ absZ = aSig0>>( - shiftCount );
+ }
+ z = aSign ? - absZ : absZ;
+ if ( ( aSign ^ ( z < 0 ) ) && z ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( aSigExtra ) set_float_exception_inexact_flag();
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the single-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float64_to_float32( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig0, aSig1, zSig;
+ bits32 allZero;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat32( float64ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
+ if ( aExp ) zSig |= 0x40000000;
+ return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Rounds the double-precision floating-point value `a' to an integer,
+and returns the result as a double-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_round_to_int( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float64 z;
+
+ aExp = extractFloat64Exp( a );
+ if ( 0x413 <= aExp ) {
+ if ( 0x433 <= aExp ) {
+ if ( ( aExp == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
+ return propagateFloat64NaN( a, a );
+ }
+ return a;
+ }
+ lastBitMask = 1;
+ lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ if ( lastBitMask ) {
+ add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else {
+ if ( (sbits32) z.low < 0 ) {
+ ++z.high;
+ if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
+ }
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat64Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ }
+ else {
+ if ( aExp <= 0x3FE ) {
+ if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+ set_float_exception_inexact_flag();
+ aSign = extractFloat64Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FE )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
+ ) {
+ return packFloat64( aSign, 0x3FF, 0, 0 );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ? packFloat64( 1, 0x3FF, 0, 0 )
+ : packFloat64( 0, 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloat64( 1, 0, 0, 0 )
+ : packFloat64( 0, 0x3FF, 0, 0 );
+ }
+ return packFloat64( aSign, 0, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x413 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z.low = 0;
+ z.high = a.high;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z.high += lastBitMask>>1;
+ if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+ z.high &= ~ lastBitMask;
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat64Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ z.high |= ( a.low != 0 );
+ z.high += roundBitsMask;
+ }
+ }
+ z.high &= ~ roundBitsMask;
+ }
+ if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+ set_float_exception_inexact_flag();
+ }
+ return z;
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the double-precision
+floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ int16 expDiff;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ bSig1 = extractFloat64Frac1( b );
+ bSig0 = extractFloat64Frac0( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= 0x00100000;
+ }
+ shift64ExtraRightJamming(
+ bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= 0x00100000;
+ }
+ shift64ExtraRightJamming(
+ aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat64NaN( a, b );
+ }
+ return a;
+ }
+ add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
+ zSig2 = 0;
+ zSig0 |= 0x00200000;
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ aSig0 |= 0x00100000;
+ add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ --zExp;
+ if ( zSig0 < 0x00200000 ) goto roundAndPack;
+ ++zExp;
+ shiftRight1:
+ shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+ return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the double-
+precision floating-point values `a' and `b'. If `zSign' is 1, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+ int16 expDiff;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ bSig1 = extractFloat64Frac1( b );
+ bSig0 = extractFloat64Frac0( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
+ shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat64NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig0 < aSig0 ) goto aBigger;
+ if ( aSig0 < bSig0 ) goto bBigger;
+ if ( bSig1 < aSig1 ) goto aBigger;
+ if ( aSig1 < bSig1 ) goto bBigger;
+ return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= 0x40000000;
+ }
+ shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ bSig0 |= 0x40000000;
+ bBigger:
+ sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= 0x40000000;
+ }
+ shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+ aSig0 |= 0x40000000;
+ aBigger:
+ sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the double-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_add( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sub( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_mul( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig1 = extractFloat64Frac1( b );
+ bSig0 = extractFloat64Frac0( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ zExp = aExp + bExp - 0x400;
+ aSig0 |= 0x00100000;
+ shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+ add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zSig2 |= ( zSig3 != 0 );
+ if ( 0x00200000 <= zSig0 ) {
+ shift64ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ ++zExp;
+ }
+ return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the double-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_div( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig1 = extractFloat64Frac1( b );
+ bSig0 = extractFloat64Frac0( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ goto invalid;
+ }
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat64( zSign, 0x7FF, 0, 0 );
+ }
+ normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = aExp - bExp + 0x3FD;
+ shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
+ shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
+ if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
+ shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
+ mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+ sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+ while ( (sbits32) rem0 < 0 ) {
+ --zSig0;
+ add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+ }
+ zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
+ if ( ( zSig1 & 0x3FF ) <= 4 ) {
+ mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+ sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits32) rem1 < 0 ) {
+ --zSig1;
+ add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the double-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_rem( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+ bits32 allZero, alternateASig0, alternateASig1, sigMean1;
+ sbits32 sigMean0;
+ float64 z;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig1 = extractFloat64Frac1( b );
+ bSig0 = extractFloat64Frac0( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ if ( aExp == 0x7FF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return a;
+ normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ expDiff = aExp - bExp;
+ if ( expDiff < -1 ) return a;
+ shortShift64Left(
+ aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
+ shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
+ q = le64( bSig0, bSig1, aSig0, aSig1 );
+ if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ expDiff -= 32;
+ while ( 0 < expDiff ) {
+ q = estimateDiv64To32( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
+ shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
+ shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
+ sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+ expDiff -= 29;
+ }
+ if ( -32 < expDiff ) {
+ q = estimateDiv64To32( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ q >>= - expDiff;
+ shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
+ expDiff += 24;
+ if ( expDiff < 0 ) {
+ shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ }
+ else {
+ shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+ }
+ mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
+ sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+ }
+ else {
+ shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
+ shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
+ }
+ do {
+ alternateASig0 = aSig0;
+ alternateASig1 = aSig1;
+ ++q;
+ sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ } while ( 0 <= (sbits32) aSig0 );
+ add64(
+ aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
+ if ( ( sigMean0 < 0 )
+ || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ }
+ zSign = ( (sbits32) aSig0 < 0 );
+ if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+ return
+ normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
+
+}
+#endif
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the double-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sqrt( float64 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+ bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float64 z;
+
+ aSig1 = extractFloat64Frac1( a );
+ aSig0 = extractFloat64Frac0( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+ aSig0 |= 0x00100000;
+ shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
+ zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
+ if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
+ doubleZSig0 = zSig0 + zSig0;
+ shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
+ mul32To64( zSig0, zSig0, &term0, &term1 );
+ sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits32) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & 0x1FF ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul32To64( doubleZSig0, zSig1, &term1, &term2 );
+ sub64( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul32To64( zSig1, zSig1, &term2, &term3 );
+ sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits32) rem1 < 0 ) {
+ --zSig1;
+ shortShift64Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
+
+}
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) ||
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+or equal to the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-Point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign )
+ return aSign ||
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
+ 0 );
+ return ( a == b ) ||
+ ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign )
+ return aSign &&
+ ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
+ 0 );
+ return ( a != b ) &&
+ ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
+
+}
+
+#ifndef SOFTFLOAT_FOR_GCC
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to
+the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq_signaling( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-Point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF )
+ && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF )
+ && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+#endif