summaryrefslogtreecommitdiffstats
path: root/AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c
diff options
context:
space:
mode:
Diffstat (limited to 'AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c')
-rw-r--r--AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c5117
1 files changed, 5117 insertions, 0 deletions
diff --git a/AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c b/AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c
new file mode 100644
index 0000000000..655f70d01b
--- /dev/null
+++ b/AppPkg/Applications/Python/Python-2.7.10/Modules/datetimemodule.c
@@ -0,0 +1,5117 @@
+/* C implementation for the date/time type documented at
+ * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
+ */
+
+#define PY_SSIZE_T_CLEAN
+
+#include "Python.h"
+#include "modsupport.h"
+#include "structmember.h"
+
+#include <time.h>
+
+#include "timefuncs.h"
+
+/* Differentiate between building the core module and building extension
+ * modules.
+ */
+#ifndef Py_BUILD_CORE
+#define Py_BUILD_CORE
+#endif
+#include "datetime.h"
+#undef Py_BUILD_CORE
+
+/* We require that C int be at least 32 bits, and use int virtually
+ * everywhere. In just a few cases we use a temp long, where a Python
+ * API returns a C long. In such cases, we have to ensure that the
+ * final result fits in a C int (this can be an issue on 64-bit boxes).
+ */
+#if SIZEOF_INT < 4
+# error "datetime.c requires that C int have at least 32 bits"
+#endif
+
+#define MINYEAR 1
+#define MAXYEAR 9999
+#define MAXORDINAL 3652059 /* date(9999,12,31).toordinal() */
+
+/* Nine decimal digits is easy to communicate, and leaves enough room
+ * so that two delta days can be added w/o fear of overflowing a signed
+ * 32-bit int, and with plenty of room left over to absorb any possible
+ * carries from adding seconds.
+ */
+#define MAX_DELTA_DAYS 999999999
+
+/* Rename the long macros in datetime.h to more reasonable short names. */
+#define GET_YEAR PyDateTime_GET_YEAR
+#define GET_MONTH PyDateTime_GET_MONTH
+#define GET_DAY PyDateTime_GET_DAY
+#define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
+#define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
+#define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
+#define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
+
+/* Date accessors for date and datetime. */
+#define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
+ ((o)->data[1] = ((v) & 0x00ff)))
+#define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
+#define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
+
+/* Date/Time accessors for datetime. */
+#define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
+#define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
+#define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
+#define DATE_SET_MICROSECOND(o, v) \
+ (((o)->data[7] = ((v) & 0xff0000) >> 16), \
+ ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
+ ((o)->data[9] = ((v) & 0x0000ff)))
+
+/* Time accessors for time. */
+#define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
+#define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
+#define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
+#define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
+#define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
+#define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
+#define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
+#define TIME_SET_MICROSECOND(o, v) \
+ (((o)->data[3] = ((v) & 0xff0000) >> 16), \
+ ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
+ ((o)->data[5] = ((v) & 0x0000ff)))
+
+/* Delta accessors for timedelta. */
+#define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
+#define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
+#define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
+
+#define SET_TD_DAYS(o, v) ((o)->days = (v))
+#define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
+#define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
+
+/* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
+ * p->hastzinfo.
+ */
+#define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
+
+/* M is a char or int claiming to be a valid month. The macro is equivalent
+ * to the two-sided Python test
+ * 1 <= M <= 12
+ */
+#define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
+
+/* Forward declarations. */
+static PyTypeObject PyDateTime_DateType;
+static PyTypeObject PyDateTime_DateTimeType;
+static PyTypeObject PyDateTime_DeltaType;
+static PyTypeObject PyDateTime_TimeType;
+static PyTypeObject PyDateTime_TZInfoType;
+
+/* ---------------------------------------------------------------------------
+ * Math utilities.
+ */
+
+/* k = i+j overflows iff k differs in sign from both inputs,
+ * iff k^i has sign bit set and k^j has sign bit set,
+ * iff (k^i)&(k^j) has sign bit set.
+ */
+#define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
+ ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
+
+/* Compute Python divmod(x, y), returning the quotient and storing the
+ * remainder into *r. The quotient is the floor of x/y, and that's
+ * the real point of this. C will probably truncate instead (C99
+ * requires truncation; C89 left it implementation-defined).
+ * Simplification: we *require* that y > 0 here. That's appropriate
+ * for all the uses made of it. This simplifies the code and makes
+ * the overflow case impossible (divmod(LONG_MIN, -1) is the only
+ * overflow case).
+ */
+static int
+divmod(int x, int y, int *r)
+{
+ int quo;
+
+ assert(y > 0);
+ quo = x / y;
+ *r = x - quo * y;
+ if (*r < 0) {
+ --quo;
+ *r += y;
+ }
+ assert(0 <= *r && *r < y);
+ return quo;
+}
+
+/* Round a double to the nearest long. |x| must be small enough to fit
+ * in a C long; this is not checked.
+ */
+static long
+round_to_long(double x)
+{
+ if (x >= 0.0)
+ x = floor(x + 0.5);
+ else
+ x = ceil(x - 0.5);
+ return (long)x;
+}
+
+/* ---------------------------------------------------------------------------
+ * General calendrical helper functions
+ */
+
+/* For each month ordinal in 1..12, the number of days in that month,
+ * and the number of days before that month in the same year. These
+ * are correct for non-leap years only.
+ */
+static int _days_in_month[] = {
+ 0, /* unused; this vector uses 1-based indexing */
+ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+static int _days_before_month[] = {
+ 0, /* unused; this vector uses 1-based indexing */
+ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
+};
+
+/* year -> 1 if leap year, else 0. */
+static int
+is_leap(int year)
+{
+ /* Cast year to unsigned. The result is the same either way, but
+ * C can generate faster code for unsigned mod than for signed
+ * mod (especially for % 4 -- a good compiler should just grab
+ * the last 2 bits when the LHS is unsigned).
+ */
+ const unsigned int ayear = (unsigned int)year;
+ return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
+}
+
+/* year, month -> number of days in that month in that year */
+static int
+days_in_month(int year, int month)
+{
+ assert(month >= 1);
+ assert(month <= 12);
+ if (month == 2 && is_leap(year))
+ return 29;
+ else
+ return _days_in_month[month];
+}
+
+/* year, month -> number of days in year preceeding first day of month */
+static int
+days_before_month(int year, int month)
+{
+ int days;
+
+ assert(month >= 1);
+ assert(month <= 12);
+ days = _days_before_month[month];
+ if (month > 2 && is_leap(year))
+ ++days;
+ return days;
+}
+
+/* year -> number of days before January 1st of year. Remember that we
+ * start with year 1, so days_before_year(1) == 0.
+ */
+static int
+days_before_year(int year)
+{
+ int y = year - 1;
+ /* This is incorrect if year <= 0; we really want the floor
+ * here. But so long as MINYEAR is 1, the smallest year this
+ * can see is 0 (this can happen in some normalization endcases),
+ * so we'll just special-case that.
+ */
+ assert (year >= 0);
+ if (y >= 0)
+ return y*365 + y/4 - y/100 + y/400;
+ else {
+ assert(y == -1);
+ return -366;
+ }
+}
+
+/* Number of days in 4, 100, and 400 year cycles. That these have
+ * the correct values is asserted in the module init function.
+ */
+#define DI4Y 1461 /* days_before_year(5); days in 4 years */
+#define DI100Y 36524 /* days_before_year(101); days in 100 years */
+#define DI400Y 146097 /* days_before_year(401); days in 400 years */
+
+/* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
+static void
+ord_to_ymd(int ordinal, int *year, int *month, int *day)
+{
+ int n, n1, n4, n100, n400, leapyear, preceding;
+
+ /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
+ * leap years repeats exactly every 400 years. The basic strategy is
+ * to find the closest 400-year boundary at or before ordinal, then
+ * work with the offset from that boundary to ordinal. Life is much
+ * clearer if we subtract 1 from ordinal first -- then the values
+ * of ordinal at 400-year boundaries are exactly those divisible
+ * by DI400Y:
+ *
+ * D M Y n n-1
+ * -- --- ---- ---------- ----------------
+ * 31 Dec -400 -DI400Y -DI400Y -1
+ * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
+ * ...
+ * 30 Dec 000 -1 -2
+ * 31 Dec 000 0 -1
+ * 1 Jan 001 1 0 400-year boundary
+ * 2 Jan 001 2 1
+ * 3 Jan 001 3 2
+ * ...
+ * 31 Dec 400 DI400Y DI400Y -1
+ * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
+ */
+ assert(ordinal >= 1);
+ --ordinal;
+ n400 = ordinal / DI400Y;
+ n = ordinal % DI400Y;
+ *year = n400 * 400 + 1;
+
+ /* Now n is the (non-negative) offset, in days, from January 1 of
+ * year, to the desired date. Now compute how many 100-year cycles
+ * precede n.
+ * Note that it's possible for n100 to equal 4! In that case 4 full
+ * 100-year cycles precede the desired day, which implies the
+ * desired day is December 31 at the end of a 400-year cycle.
+ */
+ n100 = n / DI100Y;
+ n = n % DI100Y;
+
+ /* Now compute how many 4-year cycles precede it. */
+ n4 = n / DI4Y;
+ n = n % DI4Y;
+
+ /* And now how many single years. Again n1 can be 4, and again
+ * meaning that the desired day is December 31 at the end of the
+ * 4-year cycle.
+ */
+ n1 = n / 365;
+ n = n % 365;
+
+ *year += n100 * 100 + n4 * 4 + n1;
+ if (n1 == 4 || n100 == 4) {
+ assert(n == 0);
+ *year -= 1;
+ *month = 12;
+ *day = 31;
+ return;
+ }
+
+ /* Now the year is correct, and n is the offset from January 1. We
+ * find the month via an estimate that's either exact or one too
+ * large.
+ */
+ leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
+ assert(leapyear == is_leap(*year));
+ *month = (n + 50) >> 5;
+ preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
+ if (preceding > n) {
+ /* estimate is too large */
+ *month -= 1;
+ preceding -= days_in_month(*year, *month);
+ }
+ n -= preceding;
+ assert(0 <= n);
+ assert(n < days_in_month(*year, *month));
+
+ *day = n + 1;
+}
+
+/* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
+static int
+ymd_to_ord(int year, int month, int day)
+{
+ return days_before_year(year) + days_before_month(year, month) + day;
+}
+
+/* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
+static int
+weekday(int year, int month, int day)
+{
+ return (ymd_to_ord(year, month, day) + 6) % 7;
+}
+
+/* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
+ * first calendar week containing a Thursday.
+ */
+static int
+iso_week1_monday(int year)
+{
+ int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
+ /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
+ int first_weekday = (first_day + 6) % 7;
+ /* ordinal of closest Monday at or before 1/1 */
+ int week1_monday = first_day - first_weekday;
+
+ if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
+ week1_monday += 7;
+ return week1_monday;
+}
+
+/* ---------------------------------------------------------------------------
+ * Range checkers.
+ */
+
+/* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
+ * If not, raise OverflowError and return -1.
+ */
+static int
+check_delta_day_range(int days)
+{
+ if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
+ return 0;
+ PyErr_Format(PyExc_OverflowError,
+ "days=%d; must have magnitude <= %d",
+ days, MAX_DELTA_DAYS);
+ return -1;
+}
+
+/* Check that date arguments are in range. Return 0 if they are. If they
+ * aren't, raise ValueError and return -1.
+ */
+static int
+check_date_args(int year, int month, int day)
+{
+
+ if (year < MINYEAR || year > MAXYEAR) {
+ PyErr_SetString(PyExc_ValueError,
+ "year is out of range");
+ return -1;
+ }
+ if (month < 1 || month > 12) {
+ PyErr_SetString(PyExc_ValueError,
+ "month must be in 1..12");
+ return -1;
+ }
+ if (day < 1 || day > days_in_month(year, month)) {
+ PyErr_SetString(PyExc_ValueError,
+ "day is out of range for month");
+ return -1;
+ }
+ return 0;
+}
+
+/* Check that time arguments are in range. Return 0 if they are. If they
+ * aren't, raise ValueError and return -1.
+ */
+static int
+check_time_args(int h, int m, int s, int us)
+{
+ if (h < 0 || h > 23) {
+ PyErr_SetString(PyExc_ValueError,
+ "hour must be in 0..23");
+ return -1;
+ }
+ if (m < 0 || m > 59) {
+ PyErr_SetString(PyExc_ValueError,
+ "minute must be in 0..59");
+ return -1;
+ }
+ if (s < 0 || s > 59) {
+ PyErr_SetString(PyExc_ValueError,
+ "second must be in 0..59");
+ return -1;
+ }
+ if (us < 0 || us > 999999) {
+ PyErr_SetString(PyExc_ValueError,
+ "microsecond must be in 0..999999");
+ return -1;
+ }
+ return 0;
+}
+
+/* ---------------------------------------------------------------------------
+ * Normalization utilities.
+ */
+
+/* One step of a mixed-radix conversion. A "hi" unit is equivalent to
+ * factor "lo" units. factor must be > 0. If *lo is less than 0, or
+ * at least factor, enough of *lo is converted into "hi" units so that
+ * 0 <= *lo < factor. The input values must be such that int overflow
+ * is impossible.
+ */
+static void
+normalize_pair(int *hi, int *lo, int factor)
+{
+ assert(factor > 0);
+ assert(lo != hi);
+ if (*lo < 0 || *lo >= factor) {
+ const int num_hi = divmod(*lo, factor, lo);
+ const int new_hi = *hi + num_hi;
+ assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
+ *hi = new_hi;
+ }
+ assert(0 <= *lo && *lo < factor);
+}
+
+/* Fiddle days (d), seconds (s), and microseconds (us) so that
+ * 0 <= *s < 24*3600
+ * 0 <= *us < 1000000
+ * The input values must be such that the internals don't overflow.
+ * The way this routine is used, we don't get close.
+ */
+static void
+normalize_d_s_us(int *d, int *s, int *us)
+{
+ if (*us < 0 || *us >= 1000000) {
+ normalize_pair(s, us, 1000000);
+ /* |s| can't be bigger than about
+ * |original s| + |original us|/1000000 now.
+ */
+
+ }
+ if (*s < 0 || *s >= 24*3600) {
+ normalize_pair(d, s, 24*3600);
+ /* |d| can't be bigger than about
+ * |original d| +
+ * (|original s| + |original us|/1000000) / (24*3600) now.
+ */
+ }
+ assert(0 <= *s && *s < 24*3600);
+ assert(0 <= *us && *us < 1000000);
+}
+
+/* Fiddle years (y), months (m), and days (d) so that
+ * 1 <= *m <= 12
+ * 1 <= *d <= days_in_month(*y, *m)
+ * The input values must be such that the internals don't overflow.
+ * The way this routine is used, we don't get close.
+ */
+static int
+normalize_y_m_d(int *y, int *m, int *d)
+{
+ int dim; /* # of days in month */
+
+ /* This gets muddy: the proper range for day can't be determined
+ * without knowing the correct month and year, but if day is, e.g.,
+ * plus or minus a million, the current month and year values make
+ * no sense (and may also be out of bounds themselves).
+ * Saying 12 months == 1 year should be non-controversial.
+ */
+ if (*m < 1 || *m > 12) {
+ --*m;
+ normalize_pair(y, m, 12);
+ ++*m;
+ /* |y| can't be bigger than about
+ * |original y| + |original m|/12 now.
+ */
+ }
+ assert(1 <= *m && *m <= 12);
+
+ /* Now only day can be out of bounds (year may also be out of bounds
+ * for a datetime object, but we don't care about that here).
+ * If day is out of bounds, what to do is arguable, but at least the
+ * method here is principled and explainable.
+ */
+ dim = days_in_month(*y, *m);
+ if (*d < 1 || *d > dim) {
+ /* Move day-1 days from the first of the month. First try to
+ * get off cheap if we're only one day out of range
+ * (adjustments for timezone alone can't be worse than that).
+ */
+ if (*d == 0) {
+ --*m;
+ if (*m > 0)
+ *d = days_in_month(*y, *m);
+ else {
+ --*y;
+ *m = 12;
+ *d = 31;
+ }
+ }
+ else if (*d == dim + 1) {
+ /* move forward a day */
+ ++*m;
+ *d = 1;
+ if (*m > 12) {
+ *m = 1;
+ ++*y;
+ }
+ }
+ else {
+ int ordinal = ymd_to_ord(*y, *m, 1) +
+ *d - 1;
+ if (ordinal < 1 || ordinal > MAXORDINAL) {
+ goto error;
+ } else {
+ ord_to_ymd(ordinal, y, m, d);
+ return 0;
+ }
+ }
+ }
+ assert(*m > 0);
+ assert(*d > 0);
+ if (MINYEAR <= *y && *y <= MAXYEAR)
+ return 0;
+ error:
+ PyErr_SetString(PyExc_OverflowError,
+ "date value out of range");
+ return -1;
+
+}
+
+/* Fiddle out-of-bounds months and days so that the result makes some kind
+ * of sense. The parameters are both inputs and outputs. Returns < 0 on
+ * failure, where failure means the adjusted year is out of bounds.
+ */
+static int
+normalize_date(int *year, int *month, int *day)
+{
+ return normalize_y_m_d(year, month, day);
+}
+
+/* Force all the datetime fields into range. The parameters are both
+ * inputs and outputs. Returns < 0 on error.
+ */
+static int
+normalize_datetime(int *year, int *month, int *day,
+ int *hour, int *minute, int *second,
+ int *microsecond)
+{
+ normalize_pair(second, microsecond, 1000000);
+ normalize_pair(minute, second, 60);
+ normalize_pair(hour, minute, 60);
+ normalize_pair(day, hour, 24);
+ return normalize_date(year, month, day);
+}
+
+/* ---------------------------------------------------------------------------
+ * Basic object allocation: tp_alloc implementations. These allocate
+ * Python objects of the right size and type, and do the Python object-
+ * initialization bit. If there's not enough memory, they return NULL after
+ * setting MemoryError. All data members remain uninitialized trash.
+ *
+ * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
+ * member is needed. This is ugly, imprecise, and possibly insecure.
+ * tp_basicsize for the time and datetime types is set to the size of the
+ * struct that has room for the tzinfo member, so subclasses in Python will
+ * allocate enough space for a tzinfo member whether or not one is actually
+ * needed. That's the "ugly and imprecise" parts. The "possibly insecure"
+ * part is that PyType_GenericAlloc() (which subclasses in Python end up
+ * using) just happens today to effectively ignore the nitems argument
+ * when tp_itemsize is 0, which it is for these type objects. If that
+ * changes, perhaps the callers of tp_alloc slots in this file should
+ * be changed to force a 0 nitems argument unless the type being allocated
+ * is a base type implemented in this file (so that tp_alloc is time_alloc
+ * or datetime_alloc below, which know about the nitems abuse).
+ */
+
+static PyObject *
+time_alloc(PyTypeObject *type, Py_ssize_t aware)
+{
+ PyObject *self;
+
+ self = (PyObject *)
+ PyObject_MALLOC(aware ?
+ sizeof(PyDateTime_Time) :
+ sizeof(_PyDateTime_BaseTime));
+ if (self == NULL)
+ return (PyObject *)PyErr_NoMemory();
+ PyObject_INIT(self, type);
+ return self;
+}
+
+static PyObject *
+datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
+{
+ PyObject *self;
+
+ self = (PyObject *)
+ PyObject_MALLOC(aware ?
+ sizeof(PyDateTime_DateTime) :
+ sizeof(_PyDateTime_BaseDateTime));
+ if (self == NULL)
+ return (PyObject *)PyErr_NoMemory();
+ PyObject_INIT(self, type);
+ return self;
+}
+
+/* ---------------------------------------------------------------------------
+ * Helpers for setting object fields. These work on pointers to the
+ * appropriate base class.
+ */
+
+/* For date and datetime. */
+static void
+set_date_fields(PyDateTime_Date *self, int y, int m, int d)
+{
+ self->hashcode = -1;
+ SET_YEAR(self, y);
+ SET_MONTH(self, m);
+ SET_DAY(self, d);
+}
+
+/* ---------------------------------------------------------------------------
+ * Create various objects, mostly without range checking.
+ */
+
+/* Create a date instance with no range checking. */
+static PyObject *
+new_date_ex(int year, int month, int day, PyTypeObject *type)
+{
+ PyDateTime_Date *self;
+
+ self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
+ if (self != NULL)
+ set_date_fields(self, year, month, day);
+ return (PyObject *) self;
+}
+
+#define new_date(year, month, day) \
+ new_date_ex(year, month, day, &PyDateTime_DateType)
+
+/* Create a datetime instance with no range checking. */
+static PyObject *
+new_datetime_ex(int year, int month, int day, int hour, int minute,
+ int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
+{
+ PyDateTime_DateTime *self;
+ char aware = tzinfo != Py_None;
+
+ self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
+ if (self != NULL) {
+ self->hastzinfo = aware;
+ set_date_fields((PyDateTime_Date *)self, year, month, day);
+ DATE_SET_HOUR(self, hour);
+ DATE_SET_MINUTE(self, minute);
+ DATE_SET_SECOND(self, second);
+ DATE_SET_MICROSECOND(self, usecond);
+ if (aware) {
+ Py_INCREF(tzinfo);
+ self->tzinfo = tzinfo;
+ }
+ }
+ return (PyObject *)self;
+}
+
+#define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
+ new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
+ &PyDateTime_DateTimeType)
+
+/* Create a time instance with no range checking. */
+static PyObject *
+new_time_ex(int hour, int minute, int second, int usecond,
+ PyObject *tzinfo, PyTypeObject *type)
+{
+ PyDateTime_Time *self;
+ char aware = tzinfo != Py_None;
+
+ self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
+ if (self != NULL) {
+ self->hastzinfo = aware;
+ self->hashcode = -1;
+ TIME_SET_HOUR(self, hour);
+ TIME_SET_MINUTE(self, minute);
+ TIME_SET_SECOND(self, second);
+ TIME_SET_MICROSECOND(self, usecond);
+ if (aware) {
+ Py_INCREF(tzinfo);
+ self->tzinfo = tzinfo;
+ }
+ }
+ return (PyObject *)self;
+}
+
+#define new_time(hh, mm, ss, us, tzinfo) \
+ new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
+
+/* Create a timedelta instance. Normalize the members iff normalize is
+ * true. Passing false is a speed optimization, if you know for sure
+ * that seconds and microseconds are already in their proper ranges. In any
+ * case, raises OverflowError and returns NULL if the normalized days is out
+ * of range).
+ */
+static PyObject *
+new_delta_ex(int days, int seconds, int microseconds, int normalize,
+ PyTypeObject *type)
+{
+ PyDateTime_Delta *self;
+
+ if (normalize)
+ normalize_d_s_us(&days, &seconds, &microseconds);
+ assert(0 <= seconds && seconds < 24*3600);
+ assert(0 <= microseconds && microseconds < 1000000);
+
+ if (check_delta_day_range(days) < 0)
+ return NULL;
+
+ self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
+ if (self != NULL) {
+ self->hashcode = -1;
+ SET_TD_DAYS(self, days);
+ SET_TD_SECONDS(self, seconds);
+ SET_TD_MICROSECONDS(self, microseconds);
+ }
+ return (PyObject *) self;
+}
+
+#define new_delta(d, s, us, normalize) \
+ new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
+
+/* ---------------------------------------------------------------------------
+ * tzinfo helpers.
+ */
+
+/* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
+ * raise TypeError and return -1.
+ */
+static int
+check_tzinfo_subclass(PyObject *p)
+{
+ if (p == Py_None || PyTZInfo_Check(p))
+ return 0;
+ PyErr_Format(PyExc_TypeError,
+ "tzinfo argument must be None or of a tzinfo subclass, "
+ "not type '%s'",
+ Py_TYPE(p)->tp_name);
+ return -1;
+}
+
+/* Return tzinfo.methname(tzinfoarg), without any checking of results.
+ * If tzinfo is None, returns None.
+ */
+static PyObject *
+call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
+{
+ PyObject *result;
+
+ assert(tzinfo && methname && tzinfoarg);
+ assert(check_tzinfo_subclass(tzinfo) >= 0);
+ if (tzinfo == Py_None) {
+ result = Py_None;
+ Py_INCREF(result);
+ }
+ else
+ result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
+ return result;
+}
+
+/* If self has a tzinfo member, return a BORROWED reference to it. Else
+ * return NULL, which is NOT AN ERROR. There are no error returns here,
+ * and the caller must not decref the result.
+ */
+static PyObject *
+get_tzinfo_member(PyObject *self)
+{
+ PyObject *tzinfo = NULL;
+
+ if (PyDateTime_Check(self) && HASTZINFO(self))
+ tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
+ else if (PyTime_Check(self) && HASTZINFO(self))
+ tzinfo = ((PyDateTime_Time *)self)->tzinfo;
+
+ return tzinfo;
+}
+
+/* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
+ * result. tzinfo must be an instance of the tzinfo class. If the method
+ * returns None, this returns 0 and sets *none to 1. If the method doesn't
+ * return None or timedelta, TypeError is raised and this returns -1. If it
+ * returnsa timedelta and the value is out of range or isn't a whole number
+ * of minutes, ValueError is raised and this returns -1.
+ * Else *none is set to 0 and the integer method result is returned.
+ */
+static int
+call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
+ int *none)
+{
+ PyObject *u;
+ int result = -1;
+
+ assert(tzinfo != NULL);
+ assert(PyTZInfo_Check(tzinfo));
+ assert(tzinfoarg != NULL);
+
+ *none = 0;
+ u = call_tzinfo_method(tzinfo, name, tzinfoarg);
+ if (u == NULL)
+ return -1;
+
+ else if (u == Py_None) {
+ result = 0;
+ *none = 1;
+ }
+ else if (PyDelta_Check(u)) {
+ const int days = GET_TD_DAYS(u);
+ if (days < -1 || days > 0)
+ result = 24*60; /* trigger ValueError below */
+ else {
+ /* next line can't overflow because we know days
+ * is -1 or 0 now
+ */
+ int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
+ result = divmod(ss, 60, &ss);
+ if (ss || GET_TD_MICROSECONDS(u)) {
+ PyErr_Format(PyExc_ValueError,
+ "tzinfo.%s() must return a "
+ "whole number of minutes",
+ name);
+ result = -1;
+ }
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "tzinfo.%s() must return None or "
+ "timedelta, not '%s'",
+ name, Py_TYPE(u)->tp_name);
+ }
+
+ Py_DECREF(u);
+ if (result < -1439 || result > 1439) {
+ PyErr_Format(PyExc_ValueError,
+ "tzinfo.%s() returned %d; must be in "
+ "-1439 .. 1439",
+ name, result);
+ result = -1;
+ }
+ return result;
+}
+
+/* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
+ * result. tzinfo must be an instance of the tzinfo class. If utcoffset()
+ * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
+ * doesn't return None or timedelta, TypeError is raised and this returns -1.
+ * If utcoffset() returns an invalid timedelta (out of range, or not a whole
+ * # of minutes), ValueError is raised and this returns -1. Else *none is
+ * set to 0 and the offset is returned (as int # of minutes east of UTC).
+ */
+static int
+call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
+{
+ return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
+}
+
+/* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
+ */
+static PyObject *
+offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
+ PyObject *result;
+
+ assert(tzinfo && name && tzinfoarg);
+ if (tzinfo == Py_None) {
+ result = Py_None;
+ Py_INCREF(result);
+ }
+ else {
+ int none;
+ int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
+ &none);
+ if (offset < 0 && PyErr_Occurred())
+ return NULL;
+ if (none) {
+ result = Py_None;
+ Py_INCREF(result);
+ }
+ else
+ result = new_delta(0, offset * 60, 0, 1);
+ }
+ return result;
+}
+
+/* Call tzinfo.dst(tzinfoarg), and extract an integer from the
+ * result. tzinfo must be an instance of the tzinfo class. If dst()
+ * returns None, call_dst returns 0 and sets *none to 1. If dst()
+ & doesn't return None or timedelta, TypeError is raised and this
+ * returns -1. If dst() returns an invalid timedelta for a UTC offset,
+ * ValueError is raised and this returns -1. Else *none is set to 0 and
+ * the offset is returned (as an int # of minutes east of UTC).
+ */
+static int
+call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
+{
+ return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
+}
+
+/* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
+ * an instance of the tzinfo class or None. If tzinfo isn't None, and
+ * tzname() doesn't return None or a string, TypeError is raised and this
+ * returns NULL.
+ */
+static PyObject *
+call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
+{
+ PyObject *result;
+
+ assert(tzinfo != NULL);
+ assert(check_tzinfo_subclass(tzinfo) >= 0);
+ assert(tzinfoarg != NULL);
+
+ if (tzinfo == Py_None) {
+ result = Py_None;
+ Py_INCREF(result);
+ }
+ else
+ result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
+
+ if (result != NULL && result != Py_None && ! PyString_Check(result)) {
+ PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
+ "return None or a string, not '%s'",
+ Py_TYPE(result)->tp_name);
+ Py_DECREF(result);
+ result = NULL;
+ }
+ return result;
+}
+
+typedef enum {
+ /* an exception has been set; the caller should pass it on */
+ OFFSET_ERROR,
+
+ /* type isn't date, datetime, or time subclass */
+ OFFSET_UNKNOWN,
+
+ /* date,
+ * datetime with !hastzinfo
+ * datetime with None tzinfo,
+ * datetime where utcoffset() returns None
+ * time with !hastzinfo
+ * time with None tzinfo,
+ * time where utcoffset() returns None
+ */
+ OFFSET_NAIVE,
+
+ /* time or datetime where utcoffset() doesn't return None */
+ OFFSET_AWARE
+} naivety;
+
+/* Classify an object as to whether it's naive or offset-aware. See
+ * the "naivety" typedef for details. If the type is aware, *offset is set
+ * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
+ * If the type is offset-naive (or unknown, or error), *offset is set to 0.
+ * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
+ */
+static naivety
+classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
+{
+ int none;
+ PyObject *tzinfo;
+
+ assert(tzinfoarg != NULL);
+ *offset = 0;
+ tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */
+ if (tzinfo == Py_None)
+ return OFFSET_NAIVE;
+ if (tzinfo == NULL) {
+ /* note that a datetime passes the PyDate_Check test */
+ return (PyTime_Check(op) || PyDate_Check(op)) ?
+ OFFSET_NAIVE : OFFSET_UNKNOWN;
+ }
+ *offset = call_utcoffset(tzinfo, tzinfoarg, &none);
+ if (*offset == -1 && PyErr_Occurred())
+ return OFFSET_ERROR;
+ return none ? OFFSET_NAIVE : OFFSET_AWARE;
+}
+
+/* Classify two objects as to whether they're naive or offset-aware.
+ * This isn't quite the same as calling classify_utcoffset() twice: for
+ * binary operations (comparison and subtraction), we generally want to
+ * ignore the tzinfo members if they're identical. This is by design,
+ * so that results match "naive" expectations when mixing objects from a
+ * single timezone. So in that case, this sets both offsets to 0 and
+ * both naiveties to OFFSET_NAIVE.
+ * The function returns 0 if everything's OK, and -1 on error.
+ */
+static int
+classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
+ PyObject *tzinfoarg1,
+ PyObject *o2, int *offset2, naivety *n2,
+ PyObject *tzinfoarg2)
+{
+ if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
+ *offset1 = *offset2 = 0;
+ *n1 = *n2 = OFFSET_NAIVE;
+ }
+ else {
+ *n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
+ if (*n1 == OFFSET_ERROR)
+ return -1;
+ *n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
+ if (*n2 == OFFSET_ERROR)
+ return -1;
+ }
+ return 0;
+}
+
+/* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
+ * stuff
+ * ", tzinfo=" + repr(tzinfo)
+ * before the closing ")".
+ */
+static PyObject *
+append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
+{
+ PyObject *temp;
+
+ assert(PyString_Check(repr));
+ assert(tzinfo);
+ if (tzinfo == Py_None)
+ return repr;
+ /* Get rid of the trailing ')'. */
+ assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')');
+ temp = PyString_FromStringAndSize(PyString_AsString(repr),
+ PyString_Size(repr) - 1);
+ Py_DECREF(repr);
+ if (temp == NULL)
+ return NULL;
+ repr = temp;
+
+ /* Append ", tzinfo=". */
+ PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo="));
+
+ /* Append repr(tzinfo). */
+ PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo));
+
+ /* Add a closing paren. */
+ PyString_ConcatAndDel(&repr, PyString_FromString(")"));
+ return repr;
+}
+
+/* ---------------------------------------------------------------------------
+ * String format helpers.
+ */
+
+static PyObject *
+format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
+{
+ static const char *DayNames[] = {
+ "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
+ };
+ static const char *MonthNames[] = {
+ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
+ };
+
+ char buffer[128];
+ int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
+
+ PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d",
+ DayNames[wday], MonthNames[GET_MONTH(date) - 1],
+ GET_DAY(date), hours, minutes, seconds,
+ GET_YEAR(date));
+ return PyString_FromString(buffer);
+}
+
+/* Add an hours & minutes UTC offset string to buf. buf has no more than
+ * buflen bytes remaining. The UTC offset is gotten by calling
+ * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
+ * *buf, and that's all. Else the returned value is checked for sanity (an
+ * integer in range), and if that's OK it's converted to an hours & minutes
+ * string of the form
+ * sign HH sep MM
+ * Returns 0 if everything is OK. If the return value from utcoffset() is
+ * bogus, an appropriate exception is set and -1 is returned.
+ */
+static int
+format_utcoffset(char *buf, size_t buflen, const char *sep,
+ PyObject *tzinfo, PyObject *tzinfoarg)
+{
+ int offset;
+ int hours;
+ int minutes;
+ char sign;
+ int none;
+
+ assert(buflen >= 1);
+
+ offset = call_utcoffset(tzinfo, tzinfoarg, &none);
+ if (offset == -1 && PyErr_Occurred())
+ return -1;
+ if (none) {
+ *buf = '\0';
+ return 0;
+ }
+ sign = '+';
+ if (offset < 0) {
+ sign = '-';
+ offset = - offset;
+ }
+ hours = divmod(offset, 60, &minutes);
+ PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
+ return 0;
+}
+
+static PyObject *
+make_freplacement(PyObject *object)
+{
+ char freplacement[64];
+ if (PyTime_Check(object))
+ sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
+ else if (PyDateTime_Check(object))
+ sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
+ else
+ sprintf(freplacement, "%06d", 0);
+
+ return PyString_FromStringAndSize(freplacement, strlen(freplacement));
+}
+
+/* I sure don't want to reproduce the strftime code from the time module,
+ * so this imports the module and calls it. All the hair is due to
+ * giving special meanings to the %z, %Z and %f format codes via a
+ * preprocessing step on the format string.
+ * tzinfoarg is the argument to pass to the object's tzinfo method, if
+ * needed.
+ */
+static PyObject *
+wrap_strftime(PyObject *object, const char *format, size_t format_len,
+ PyObject *timetuple, PyObject *tzinfoarg)
+{
+ PyObject *result = NULL; /* guilty until proved innocent */
+
+ PyObject *zreplacement = NULL; /* py string, replacement for %z */
+ PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
+ PyObject *freplacement = NULL; /* py string, replacement for %f */
+
+ const char *pin; /* pointer to next char in input format */
+ char ch; /* next char in input format */
+
+ PyObject *newfmt = NULL; /* py string, the output format */
+ char *pnew; /* pointer to available byte in output format */
+ size_t totalnew; /* number bytes total in output format buffer,
+ exclusive of trailing \0 */
+ size_t usednew; /* number bytes used so far in output format buffer */
+
+ const char *ptoappend; /* ptr to string to append to output buffer */
+ size_t ntoappend; /* # of bytes to append to output buffer */
+
+ assert(object && format && timetuple);
+
+ /* Give up if the year is before 1900.
+ * Python strftime() plays games with the year, and different
+ * games depending on whether envar PYTHON2K is set. This makes
+ * years before 1900 a nightmare, even if the platform strftime
+ * supports them (and not all do).
+ * We could get a lot farther here by avoiding Python's strftime
+ * wrapper and calling the C strftime() directly, but that isn't
+ * an option in the Python implementation of this module.
+ */
+ {
+ long year;
+ PyObject *pyyear = PySequence_GetItem(timetuple, 0);
+ if (pyyear == NULL) return NULL;
+ assert(PyInt_Check(pyyear));
+ year = PyInt_AsLong(pyyear);
+ Py_DECREF(pyyear);
+ if (year < 1900) {
+ PyErr_Format(PyExc_ValueError, "year=%ld is before "
+ "1900; the datetime strftime() "
+ "methods require year >= 1900",
+ year);
+ return NULL;
+ }
+ }
+
+ /* Scan the input format, looking for %z/%Z/%f escapes, building
+ * a new format. Since computing the replacements for those codes
+ * is expensive, don't unless they're actually used.
+ */
+ if (format_len > INT_MAX - 1) {
+ PyErr_NoMemory();
+ goto Done;
+ }
+
+ totalnew = format_len + 1; /* realistic if no %z/%Z/%f */
+ newfmt = PyString_FromStringAndSize(NULL, totalnew);
+ if (newfmt == NULL) goto Done;
+ pnew = PyString_AsString(newfmt);
+ usednew = 0;
+
+ pin = format;
+ while ((ch = *pin++) != '\0') {
+ if (ch != '%') {
+ ptoappend = pin - 1;
+ ntoappend = 1;
+ }
+ else if ((ch = *pin++) == '\0') {
+ /* There's a lone trailing %; doesn't make sense. */
+ PyErr_SetString(PyExc_ValueError, "strftime format "
+ "ends with raw %");
+ goto Done;
+ }
+ /* A % has been seen and ch is the character after it. */
+ else if (ch == 'z') {
+ if (zreplacement == NULL) {
+ /* format utcoffset */
+ char buf[100];
+ PyObject *tzinfo = get_tzinfo_member(object);
+ zreplacement = PyString_FromString("");
+ if (zreplacement == NULL) goto Done;
+ if (tzinfo != Py_None && tzinfo != NULL) {
+ assert(tzinfoarg != NULL);
+ if (format_utcoffset(buf,
+ sizeof(buf),
+ "",
+ tzinfo,
+ tzinfoarg) < 0)
+ goto Done;
+ Py_DECREF(zreplacement);
+ zreplacement = PyString_FromString(buf);
+ if (zreplacement == NULL) goto Done;
+ }
+ }
+ assert(zreplacement != NULL);
+ ptoappend = PyString_AS_STRING(zreplacement);
+ ntoappend = PyString_GET_SIZE(zreplacement);
+ }
+ else if (ch == 'Z') {
+ /* format tzname */
+ if (Zreplacement == NULL) {
+ PyObject *tzinfo = get_tzinfo_member(object);
+ Zreplacement = PyString_FromString("");
+ if (Zreplacement == NULL) goto Done;
+ if (tzinfo != Py_None && tzinfo != NULL) {
+ PyObject *temp;
+ assert(tzinfoarg != NULL);
+ temp = call_tzname(tzinfo, tzinfoarg);
+ if (temp == NULL) goto Done;
+ if (temp != Py_None) {
+ assert(PyString_Check(temp));
+ /* Since the tzname is getting
+ * stuffed into the format, we
+ * have to double any % signs
+ * so that strftime doesn't
+ * treat them as format codes.
+ */
+ Py_DECREF(Zreplacement);
+ Zreplacement = PyObject_CallMethod(
+ temp, "replace",
+ "ss", "%", "%%");
+ Py_DECREF(temp);
+ if (Zreplacement == NULL)
+ goto Done;
+ if (!PyString_Check(Zreplacement)) {
+ PyErr_SetString(PyExc_TypeError, "tzname.replace() did not return a string");
+ goto Done;
+ }
+ }
+ else
+ Py_DECREF(temp);
+ }
+ }
+ assert(Zreplacement != NULL);
+ ptoappend = PyString_AS_STRING(Zreplacement);
+ ntoappend = PyString_GET_SIZE(Zreplacement);
+ }
+ else if (ch == 'f') {
+ /* format microseconds */
+ if (freplacement == NULL) {
+ freplacement = make_freplacement(object);
+ if (freplacement == NULL)
+ goto Done;
+ }
+ assert(freplacement != NULL);
+ assert(PyString_Check(freplacement));
+ ptoappend = PyString_AS_STRING(freplacement);
+ ntoappend = PyString_GET_SIZE(freplacement);
+ }
+ else {
+ /* percent followed by neither z nor Z */
+ ptoappend = pin - 2;
+ ntoappend = 2;
+ }
+
+ /* Append the ntoappend chars starting at ptoappend to
+ * the new format.
+ */
+ assert(ptoappend != NULL);
+ assert(ntoappend >= 0);
+ if (ntoappend == 0)
+ continue;
+ while (usednew + ntoappend > totalnew) {
+ size_t bigger = totalnew << 1;
+ if ((bigger >> 1) != totalnew) { /* overflow */
+ PyErr_NoMemory();
+ goto Done;
+ }
+ if (_PyString_Resize(&newfmt, bigger) < 0)
+ goto Done;
+ totalnew = bigger;
+ pnew = PyString_AsString(newfmt) + usednew;
+ }
+ memcpy(pnew, ptoappend, ntoappend);
+ pnew += ntoappend;
+ usednew += ntoappend;
+ assert(usednew <= totalnew);
+ } /* end while() */
+
+ if (_PyString_Resize(&newfmt, usednew) < 0)
+ goto Done;
+ {
+ PyObject *time = PyImport_ImportModuleNoBlock("time");
+ if (time == NULL)
+ goto Done;
+ result = PyObject_CallMethod(time, "strftime", "OO",
+ newfmt, timetuple);
+ Py_DECREF(time);
+ }
+ Done:
+ Py_XDECREF(freplacement);
+ Py_XDECREF(zreplacement);
+ Py_XDECREF(Zreplacement);
+ Py_XDECREF(newfmt);
+ return result;
+}
+
+static char *
+isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen)
+{
+ int x;
+ x = PyOS_snprintf(buffer, bufflen,
+ "%04d-%02d-%02d",
+ GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt));
+ assert(bufflen >= x);
+ return buffer + x;
+}
+
+static char *
+isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen)
+{
+ int x;
+ int us = DATE_GET_MICROSECOND(dt);
+
+ x = PyOS_snprintf(buffer, bufflen,
+ "%02d:%02d:%02d",
+ DATE_GET_HOUR(dt),
+ DATE_GET_MINUTE(dt),
+ DATE_GET_SECOND(dt));
+ assert(bufflen >= x);
+ if (us)
+ x += PyOS_snprintf(buffer + x, bufflen - x, ".%06d", us);
+ assert(bufflen >= x);
+ return buffer + x;
+}
+
+/* ---------------------------------------------------------------------------
+ * Wrap functions from the time module. These aren't directly available
+ * from C. Perhaps they should be.
+ */
+
+/* Call time.time() and return its result (a Python float). */
+static PyObject *
+time_time(void)
+{
+ PyObject *result = NULL;
+ PyObject *time = PyImport_ImportModuleNoBlock("time");
+
+ if (time != NULL) {
+ result = PyObject_CallMethod(time, "time", "()");
+ Py_DECREF(time);
+ }
+ return result;
+}
+
+/* Build a time.struct_time. The weekday and day number are automatically
+ * computed from the y,m,d args.
+ */
+static PyObject *
+build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
+{
+ PyObject *time;
+ PyObject *result = NULL;
+
+ time = PyImport_ImportModuleNoBlock("time");
+ if (time != NULL) {
+ result = PyObject_CallMethod(time, "struct_time",
+ "((iiiiiiiii))",
+ y, m, d,
+ hh, mm, ss,
+ weekday(y, m, d),
+ days_before_month(y, m) + d,
+ dstflag);
+ Py_DECREF(time);
+ }
+ return result;
+}
+
+/* ---------------------------------------------------------------------------
+ * Miscellaneous helpers.
+ */
+
+/* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
+ * The comparisons here all most naturally compute a cmp()-like result.
+ * This little helper turns that into a bool result for rich comparisons.
+ */
+static PyObject *
+diff_to_bool(int diff, int op)
+{
+ PyObject *result;
+ int istrue;
+
+ switch (op) {
+ case Py_EQ: istrue = diff == 0; break;
+ case Py_NE: istrue = diff != 0; break;
+ case Py_LE: istrue = diff <= 0; break;
+ case Py_GE: istrue = diff >= 0; break;
+ case Py_LT: istrue = diff < 0; break;
+ case Py_GT: istrue = diff > 0; break;
+ default:
+ assert(! "op unknown");
+ istrue = 0; /* To shut up compiler */
+ }
+ result = istrue ? Py_True : Py_False;
+ Py_INCREF(result);
+ return result;
+}
+
+/* Raises a "can't compare" TypeError and returns NULL. */
+static PyObject *
+cmperror(PyObject *a, PyObject *b)
+{
+ PyErr_Format(PyExc_TypeError,
+ "can't compare %s to %s",
+ Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
+ return NULL;
+}
+
+/* ---------------------------------------------------------------------------
+ * Cached Python objects; these are set by the module init function.
+ */
+
+/* Conversion factors. */
+static PyObject *us_per_us = NULL; /* 1 */
+static PyObject *us_per_ms = NULL; /* 1000 */
+static PyObject *us_per_second = NULL; /* 1000000 */
+static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
+static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
+static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
+static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
+static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
+
+/* ---------------------------------------------------------------------------
+ * Class implementations.
+ */
+
+/*
+ * PyDateTime_Delta implementation.
+ */
+
+/* Convert a timedelta to a number of us,
+ * (24*3600*self.days + self.seconds)*1000000 + self.microseconds
+ * as a Python int or long.
+ * Doing mixed-radix arithmetic by hand instead is excruciating in C,
+ * due to ubiquitous overflow possibilities.
+ */
+static PyObject *
+delta_to_microseconds(PyDateTime_Delta *self)
+{
+ PyObject *x1 = NULL;
+ PyObject *x2 = NULL;
+ PyObject *x3 = NULL;
+ PyObject *result = NULL;
+
+ x1 = PyInt_FromLong(GET_TD_DAYS(self));
+ if (x1 == NULL)
+ goto Done;
+ x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
+ if (x2 == NULL)
+ goto Done;
+ Py_DECREF(x1);
+ x1 = NULL;
+
+ /* x2 has days in seconds */
+ x1 = PyInt_FromLong(GET_TD_SECONDS(self)); /* seconds */
+ if (x1 == NULL)
+ goto Done;
+ x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
+ if (x3 == NULL)
+ goto Done;
+ Py_DECREF(x1);
+ Py_DECREF(x2);
+ x2 = NULL;
+
+ /* x3 has days+seconds in seconds */
+ x1 = PyNumber_Multiply(x3, us_per_second); /* us */
+ if (x1 == NULL)
+ goto Done;
+ Py_DECREF(x3);
+ x3 = NULL;
+
+ /* x1 has days+seconds in us */
+ x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self));
+ if (x2 == NULL)
+ goto Done;
+ result = PyNumber_Add(x1, x2);
+
+Done:
+ Py_XDECREF(x1);
+ Py_XDECREF(x2);
+ Py_XDECREF(x3);
+ return result;
+}
+
+/* Convert a number of us (as a Python int or long) to a timedelta.
+ */
+static PyObject *
+microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
+{
+ int us;
+ int s;
+ int d;
+ long temp;
+
+ PyObject *tuple = NULL;
+ PyObject *num = NULL;
+ PyObject *result = NULL;
+
+ tuple = PyNumber_Divmod(pyus, us_per_second);
+ if (tuple == NULL)
+ goto Done;
+
+ num = PyTuple_GetItem(tuple, 1); /* us */
+ if (num == NULL)
+ goto Done;
+ temp = PyLong_AsLong(num);
+ num = NULL;
+ if (temp == -1 && PyErr_Occurred())
+ goto Done;
+ assert(0 <= temp && temp < 1000000);
+ us = (int)temp;
+ if (us < 0) {
+ /* The divisor was positive, so this must be an error. */
+ assert(PyErr_Occurred());
+ goto Done;
+ }
+
+ num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
+ if (num == NULL)
+ goto Done;
+ Py_INCREF(num);
+ Py_DECREF(tuple);
+
+ tuple = PyNumber_Divmod(num, seconds_per_day);
+ if (tuple == NULL)
+ goto Done;
+ Py_DECREF(num);
+
+ num = PyTuple_GetItem(tuple, 1); /* seconds */
+ if (num == NULL)
+ goto Done;
+ temp = PyLong_AsLong(num);
+ num = NULL;
+ if (temp == -1 && PyErr_Occurred())
+ goto Done;
+ assert(0 <= temp && temp < 24*3600);
+ s = (int)temp;
+
+ if (s < 0) {
+ /* The divisor was positive, so this must be an error. */
+ assert(PyErr_Occurred());
+ goto Done;
+ }
+
+ num = PyTuple_GetItem(tuple, 0); /* leftover days */
+ if (num == NULL)
+ goto Done;
+ Py_INCREF(num);
+ temp = PyLong_AsLong(num);
+ if (temp == -1 && PyErr_Occurred())
+ goto Done;
+ d = (int)temp;
+ if ((long)d != temp) {
+ PyErr_SetString(PyExc_OverflowError, "normalized days too "
+ "large to fit in a C int");
+ goto Done;
+ }
+ result = new_delta_ex(d, s, us, 0, type);
+
+Done:
+ Py_XDECREF(tuple);
+ Py_XDECREF(num);
+ return result;
+}
+
+#define microseconds_to_delta(pymicros) \
+ microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
+
+static PyObject *
+multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
+{
+ PyObject *pyus_in;
+ PyObject *pyus_out;
+ PyObject *result;
+
+ pyus_in = delta_to_microseconds(delta);
+ if (pyus_in == NULL)
+ return NULL;
+
+ pyus_out = PyNumber_Multiply(pyus_in, intobj);
+ Py_DECREF(pyus_in);
+ if (pyus_out == NULL)
+ return NULL;
+
+ result = microseconds_to_delta(pyus_out);
+ Py_DECREF(pyus_out);
+ return result;
+}
+
+static PyObject *
+divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
+{
+ PyObject *pyus_in;
+ PyObject *pyus_out;
+ PyObject *result;
+
+ pyus_in = delta_to_microseconds(delta);
+ if (pyus_in == NULL)
+ return NULL;
+
+ pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
+ Py_DECREF(pyus_in);
+ if (pyus_out == NULL)
+ return NULL;
+
+ result = microseconds_to_delta(pyus_out);
+ Py_DECREF(pyus_out);
+ return result;
+}
+
+static PyObject *
+delta_add(PyObject *left, PyObject *right)
+{
+ PyObject *result = Py_NotImplemented;
+
+ if (PyDelta_Check(left) && PyDelta_Check(right)) {
+ /* delta + delta */
+ /* The C-level additions can't overflow because of the
+ * invariant bounds.
+ */
+ int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
+ int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
+ int microseconds = GET_TD_MICROSECONDS(left) +
+ GET_TD_MICROSECONDS(right);
+ result = new_delta(days, seconds, microseconds, 1);
+ }
+
+ if (result == Py_NotImplemented)
+ Py_INCREF(result);
+ return result;
+}
+
+static PyObject *
+delta_negative(PyDateTime_Delta *self)
+{
+ return new_delta(-GET_TD_DAYS(self),
+ -GET_TD_SECONDS(self),
+ -GET_TD_MICROSECONDS(self),
+ 1);
+}
+
+static PyObject *
+delta_positive(PyDateTime_Delta *self)
+{
+ /* Could optimize this (by returning self) if this isn't a
+ * subclass -- but who uses unary + ? Approximately nobody.
+ */
+ return new_delta(GET_TD_DAYS(self),
+ GET_TD_SECONDS(self),
+ GET_TD_MICROSECONDS(self),
+ 0);
+}
+
+static PyObject *
+delta_abs(PyDateTime_Delta *self)
+{
+ PyObject *result;
+
+ assert(GET_TD_MICROSECONDS(self) >= 0);
+ assert(GET_TD_SECONDS(self) >= 0);
+
+ if (GET_TD_DAYS(self) < 0)
+ result = delta_negative(self);
+ else
+ result = delta_positive(self);
+
+ return result;
+}
+
+static PyObject *
+delta_subtract(PyObject *left, PyObject *right)
+{
+ PyObject *result = Py_NotImplemented;
+
+ if (PyDelta_Check(left) && PyDelta_Check(right)) {
+ /* delta - delta */
+ /* The C-level additions can't overflow because of the
+ * invariant bounds.
+ */
+ int days = GET_TD_DAYS(left) - GET_TD_DAYS(right);
+ int seconds = GET_TD_SECONDS(left) - GET_TD_SECONDS(right);
+ int microseconds = GET_TD_MICROSECONDS(left) -
+ GET_TD_MICROSECONDS(right);
+ result = new_delta(days, seconds, microseconds, 1);
+ }
+
+ if (result == Py_NotImplemented)
+ Py_INCREF(result);
+ return result;
+}
+
+/* This is more natural as a tp_compare, but doesn't work then: for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op)
+{
+ int diff = 42; /* nonsense */
+
+ if (PyDelta_Check(other)) {
+ diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
+ if (diff == 0) {
+ diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
+ if (diff == 0)
+ diff = GET_TD_MICROSECONDS(self) -
+ GET_TD_MICROSECONDS(other);
+ }
+ }
+ else if (op == Py_EQ || op == Py_NE)
+ diff = 1; /* any non-zero value will do */
+
+ else /* stop this from falling back to address comparison */
+ return cmperror((PyObject *)self, other);
+
+ return diff_to_bool(diff, op);
+}
+
+static PyObject *delta_getstate(PyDateTime_Delta *self);
+
+static long
+delta_hash(PyDateTime_Delta *self)
+{
+ if (self->hashcode == -1) {
+ PyObject *temp = delta_getstate(self);
+ if (temp != NULL) {
+ self->hashcode = PyObject_Hash(temp);
+ Py_DECREF(temp);
+ }
+ }
+ return self->hashcode;
+}
+
+static PyObject *
+delta_multiply(PyObject *left, PyObject *right)
+{
+ PyObject *result = Py_NotImplemented;
+
+ if (PyDelta_Check(left)) {
+ /* delta * ??? */
+ if (PyInt_Check(right) || PyLong_Check(right))
+ result = multiply_int_timedelta(right,
+ (PyDateTime_Delta *) left);
+ }
+ else if (PyInt_Check(left) || PyLong_Check(left))
+ result = multiply_int_timedelta(left,
+ (PyDateTime_Delta *) right);
+
+ if (result == Py_NotImplemented)
+ Py_INCREF(result);
+ return result;
+}
+
+static PyObject *
+delta_divide(PyObject *left, PyObject *right)
+{
+ PyObject *result = Py_NotImplemented;
+
+ if (PyDelta_Check(left)) {
+ /* delta * ??? */
+ if (PyInt_Check(right) || PyLong_Check(right))
+ result = divide_timedelta_int(
+ (PyDateTime_Delta *)left,
+ right);
+ }
+
+ if (result == Py_NotImplemented)
+ Py_INCREF(result);
+ return result;
+}
+
+/* Fold in the value of the tag ("seconds", "weeks", etc) component of a
+ * timedelta constructor. sofar is the # of microseconds accounted for
+ * so far, and there are factor microseconds per current unit, the number
+ * of which is given by num. num * factor is added to sofar in a
+ * numerically careful way, and that's the result. Any fractional
+ * microseconds left over (this can happen if num is a float type) are
+ * added into *leftover.
+ * Note that there are many ways this can give an error (NULL) return.
+ */
+static PyObject *
+accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
+ double *leftover)
+{
+ PyObject *prod;
+ PyObject *sum;
+
+ assert(num != NULL);
+
+ if (PyInt_Check(num) || PyLong_Check(num)) {
+ prod = PyNumber_Multiply(num, factor);
+ if (prod == NULL)
+ return NULL;
+ sum = PyNumber_Add(sofar, prod);
+ Py_DECREF(prod);
+ return sum;
+ }
+
+ if (PyFloat_Check(num)) {
+ double dnum;
+ double fracpart;
+ double intpart;
+ PyObject *x;
+ PyObject *y;
+
+ /* The Plan: decompose num into an integer part and a
+ * fractional part, num = intpart + fracpart.
+ * Then num * factor ==
+ * intpart * factor + fracpart * factor
+ * and the LHS can be computed exactly in long arithmetic.
+ * The RHS is again broken into an int part and frac part.
+ * and the frac part is added into *leftover.
+ */
+ dnum = PyFloat_AsDouble(num);
+ if (dnum == -1.0 && PyErr_Occurred())
+ return NULL;
+ fracpart = modf(dnum, &intpart);
+ x = PyLong_FromDouble(intpart);
+ if (x == NULL)
+ return NULL;
+
+ prod = PyNumber_Multiply(x, factor);
+ Py_DECREF(x);
+ if (prod == NULL)
+ return NULL;
+
+ sum = PyNumber_Add(sofar, prod);
+ Py_DECREF(prod);
+ if (sum == NULL)
+ return NULL;
+
+ if (fracpart == 0.0)
+ return sum;
+ /* So far we've lost no information. Dealing with the
+ * fractional part requires float arithmetic, and may
+ * lose a little info.
+ */
+ assert(PyInt_Check(factor) || PyLong_Check(factor));
+ if (PyInt_Check(factor))
+ dnum = (double)PyInt_AsLong(factor);
+ else
+ dnum = PyLong_AsDouble(factor);
+
+ dnum *= fracpart;
+ fracpart = modf(dnum, &intpart);
+ x = PyLong_FromDouble(intpart);
+ if (x == NULL) {
+ Py_DECREF(sum);
+ return NULL;
+ }
+
+ y = PyNumber_Add(sum, x);
+ Py_DECREF(sum);
+ Py_DECREF(x);
+ *leftover += fracpart;
+ return y;
+ }
+
+ PyErr_Format(PyExc_TypeError,
+ "unsupported type for timedelta %s component: %s",
+ tag, Py_TYPE(num)->tp_name);
+ return NULL;
+}
+
+static PyObject *
+delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+ PyObject *self = NULL;
+
+ /* Argument objects. */
+ PyObject *day = NULL;
+ PyObject *second = NULL;
+ PyObject *us = NULL;
+ PyObject *ms = NULL;
+ PyObject *minute = NULL;
+ PyObject *hour = NULL;
+ PyObject *week = NULL;
+
+ PyObject *x = NULL; /* running sum of microseconds */
+ PyObject *y = NULL; /* temp sum of microseconds */
+ double leftover_us = 0.0;
+
+ static char *keywords[] = {
+ "days", "seconds", "microseconds", "milliseconds",
+ "minutes", "hours", "weeks", NULL
+ };
+
+ if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
+ keywords,
+ &day, &second, &us,
+ &ms, &minute, &hour, &week) == 0)
+ goto Done;
+
+ x = PyInt_FromLong(0);
+ if (x == NULL)
+ goto Done;
+
+#define CLEANUP \
+ Py_DECREF(x); \
+ x = y; \
+ if (x == NULL) \
+ goto Done
+
+ if (us) {
+ y = accum("microseconds", x, us, us_per_us, &leftover_us);
+ CLEANUP;
+ }
+ if (ms) {
+ y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
+ CLEANUP;
+ }
+ if (second) {
+ y = accum("seconds", x, second, us_per_second, &leftover_us);
+ CLEANUP;
+ }
+ if (minute) {
+ y = accum("minutes", x, minute, us_per_minute, &leftover_us);
+ CLEANUP;
+ }
+ if (hour) {
+ y = accum("hours", x, hour, us_per_hour, &leftover_us);
+ CLEANUP;
+ }
+ if (day) {
+ y = accum("days", x, day, us_per_day, &leftover_us);
+ CLEANUP;
+ }
+ if (week) {
+ y = accum("weeks", x, week, us_per_week, &leftover_us);
+ CLEANUP;
+ }
+ if (leftover_us) {
+ /* Round to nearest whole # of us, and add into x. */
+ PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
+ if (temp == NULL) {
+ Py_DECREF(x);
+ goto Done;
+ }
+ y = PyNumber_Add(x, temp);
+ Py_DECREF(temp);
+ CLEANUP;
+ }
+
+ self = microseconds_to_delta_ex(x, type);
+ Py_DECREF(x);
+Done:
+ return self;
+
+#undef CLEANUP
+}
+
+static int
+delta_nonzero(PyDateTime_Delta *self)
+{
+ return (GET_TD_DAYS(self) != 0
+ || GET_TD_SECONDS(self) != 0
+ || GET_TD_MICROSECONDS(self) != 0);
+}
+
+static PyObject *
+delta_repr(PyDateTime_Delta *self)
+{
+ if (GET_TD_MICROSECONDS(self) != 0)
+ return PyString_FromFormat("%s(%d, %d, %d)",
+ Py_TYPE(self)->tp_name,
+ GET_TD_DAYS(self),
+ GET_TD_SECONDS(self),
+ GET_TD_MICROSECONDS(self));
+ if (GET_TD_SECONDS(self) != 0)
+ return PyString_FromFormat("%s(%d, %d)",
+ Py_TYPE(self)->tp_name,
+ GET_TD_DAYS(self),
+ GET_TD_SECONDS(self));
+
+ return PyString_FromFormat("%s(%d)",
+ Py_TYPE(self)->tp_name,
+ GET_TD_DAYS(self));
+}
+
+static PyObject *
+delta_str(PyDateTime_Delta *self)
+{
+ int days = GET_TD_DAYS(self);
+ int seconds = GET_TD_SECONDS(self);
+ int us = GET_TD_MICROSECONDS(self);
+ int hours;
+ int minutes;
+ char buf[100];
+ char *pbuf = buf;
+ size_t buflen = sizeof(buf);
+ int n;
+
+ minutes = divmod(seconds, 60, &seconds);
+ hours = divmod(minutes, 60, &minutes);
+
+ if (days) {
+ n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days,
+ (days == 1 || days == -1) ? "" : "s");
+ if (n < 0 || (size_t)n >= buflen)
+ goto Fail;
+ pbuf += n;
+ buflen -= (size_t)n;
+ }
+
+ n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d",
+ hours, minutes, seconds);
+ if (n < 0 || (size_t)n >= buflen)
+ goto Fail;
+ pbuf += n;
+ buflen -= (size_t)n;
+
+ if (us) {
+ n = PyOS_snprintf(pbuf, buflen, ".%06d", us);
+ if (n < 0 || (size_t)n >= buflen)
+ goto Fail;
+ pbuf += n;
+ }
+
+ return PyString_FromStringAndSize(buf, pbuf - buf);
+
+ Fail:
+ PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf");
+ return NULL;
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* __getstate__ isn't exposed */
+static PyObject *
+delta_getstate(PyDateTime_Delta *self)
+{
+ return Py_BuildValue("iii", GET_TD_DAYS(self),
+ GET_TD_SECONDS(self),
+ GET_TD_MICROSECONDS(self));
+}
+
+static PyObject *
+delta_total_seconds(PyObject *self)
+{
+ PyObject *total_seconds;
+ PyObject *total_microseconds;
+ PyObject *one_million;
+
+ total_microseconds = delta_to_microseconds((PyDateTime_Delta *)self);
+ if (total_microseconds == NULL)
+ return NULL;
+
+ one_million = PyLong_FromLong(1000000L);
+ if (one_million == NULL) {
+ Py_DECREF(total_microseconds);
+ return NULL;
+ }
+
+ total_seconds = PyNumber_TrueDivide(total_microseconds, one_million);
+
+ Py_DECREF(total_microseconds);
+ Py_DECREF(one_million);
+ return total_seconds;
+}
+
+static PyObject *
+delta_reduce(PyDateTime_Delta* self)
+{
+ return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
+}
+
+#define OFFSET(field) offsetof(PyDateTime_Delta, field)
+
+static PyMemberDef delta_members[] = {
+
+ {"days", T_INT, OFFSET(days), READONLY,
+ PyDoc_STR("Number of days.")},
+
+ {"seconds", T_INT, OFFSET(seconds), READONLY,
+ PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
+
+ {"microseconds", T_INT, OFFSET(microseconds), READONLY,
+ PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
+ {NULL}
+};
+
+static PyMethodDef delta_methods[] = {
+ {"total_seconds", (PyCFunction)delta_total_seconds, METH_NOARGS,
+ PyDoc_STR("Total seconds in the duration.")},
+
+ {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
+ PyDoc_STR("__reduce__() -> (cls, state)")},
+
+ {NULL, NULL},
+};
+
+static char delta_doc[] =
+PyDoc_STR("Difference between two datetime values.");
+
+static PyNumberMethods delta_as_number = {
+ delta_add, /* nb_add */
+ delta_subtract, /* nb_subtract */
+ delta_multiply, /* nb_multiply */
+ delta_divide, /* nb_divide */
+ 0, /* nb_remainder */
+ 0, /* nb_divmod */
+ 0, /* nb_power */
+ (unaryfunc)delta_negative, /* nb_negative */
+ (unaryfunc)delta_positive, /* nb_positive */
+ (unaryfunc)delta_abs, /* nb_absolute */
+ (inquiry)delta_nonzero, /* nb_nonzero */
+ 0, /*nb_invert*/
+ 0, /*nb_lshift*/
+ 0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ 0, /*nb_coerce*/
+ 0, /*nb_int*/
+ 0, /*nb_long*/
+ 0, /*nb_float*/
+ 0, /*nb_oct*/
+ 0, /*nb_hex*/
+ 0, /*nb_inplace_add*/
+ 0, /*nb_inplace_subtract*/
+ 0, /*nb_inplace_multiply*/
+ 0, /*nb_inplace_divide*/
+ 0, /*nb_inplace_remainder*/
+ 0, /*nb_inplace_power*/
+ 0, /*nb_inplace_lshift*/
+ 0, /*nb_inplace_rshift*/
+ 0, /*nb_inplace_and*/
+ 0, /*nb_inplace_xor*/
+ 0, /*nb_inplace_or*/
+ delta_divide, /* nb_floor_divide */
+ 0, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+};
+
+static PyTypeObject PyDateTime_DeltaType = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "datetime.timedelta", /* tp_name */
+ sizeof(PyDateTime_Delta), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ 0, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)delta_repr, /* tp_repr */
+ &delta_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)delta_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)delta_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ delta_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ (richcmpfunc)delta_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ delta_methods, /* tp_methods */
+ delta_members, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ delta_new, /* tp_new */
+ 0, /* tp_free */
+};
+
+/*
+ * PyDateTime_Date implementation.
+ */
+
+/* Accessor properties. */
+
+static PyObject *
+date_year(PyDateTime_Date *self, void *unused)
+{
+ return PyInt_FromLong(GET_YEAR(self));
+}
+
+static PyObject *
+date_month(PyDateTime_Date *self, void *unused)
+{
+ return PyInt_FromLong(GET_MONTH(self));
+}
+
+static PyObject *
+date_day(PyDateTime_Date *self, void *unused)
+{
+ return PyInt_FromLong(GET_DAY(self));
+}
+
+static PyGetSetDef date_getset[] = {
+ {"year", (getter)date_year},
+ {"month", (getter)date_month},
+ {"day", (getter)date_day},
+ {NULL}
+};
+
+/* Constructors. */
+
+static char *date_kws[] = {"year", "month", "day", NULL};
+
+static PyObject *
+date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+ PyObject *self = NULL;
+ PyObject *state;
+ int year;
+ int month;
+ int day;
+
+ /* Check for invocation from pickle with __getstate__ state */
+ if (PyTuple_GET_SIZE(args) == 1 &&
+ PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+ PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
+ MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
+ {
+ PyDateTime_Date *me;
+
+ me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
+ if (me != NULL) {
+ char *pdata = PyString_AS_STRING(state);
+ memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
+ me->hashcode = -1;
+ }
+ return (PyObject *)me;
+ }
+
+ if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
+ &year, &month, &day)) {
+ if (check_date_args(year, month, day) < 0)
+ return NULL;
+ self = new_date_ex(year, month, day, type);
+ }
+ return self;
+}
+
+/* Return new date from localtime(t). */
+static PyObject *
+date_local_from_time_t(PyObject *cls, double ts)
+{
+ struct tm *tm;
+ time_t t;
+ PyObject *result = NULL;
+
+ t = _PyTime_DoubleToTimet(ts);
+ if (t == (time_t)-1 && PyErr_Occurred())
+ return NULL;
+ tm = localtime(&t);
+ if (tm)
+ result = PyObject_CallFunction(cls, "iii",
+ tm->tm_year + 1900,
+ tm->tm_mon + 1,
+ tm->tm_mday);
+ else
+ PyErr_SetString(PyExc_ValueError,
+ "timestamp out of range for "
+ "platform localtime() function");
+ return result;
+}
+
+/* Return new date from current time.
+ * We say this is equivalent to fromtimestamp(time.time()), and the
+ * only way to be sure of that is to *call* time.time(). That's not
+ * generally the same as calling C's time.
+ */
+static PyObject *
+date_today(PyObject *cls, PyObject *dummy)
+{
+ PyObject *time;
+ PyObject *result;
+
+ time = time_time();
+ if (time == NULL)
+ return NULL;
+
+ /* Note well: today() is a class method, so this may not call
+ * date.fromtimestamp. For example, it may call
+ * datetime.fromtimestamp. That's why we need all the accuracy
+ * time.time() delivers; if someone were gonzo about optimization,
+ * date.today() could get away with plain C time().
+ */
+ result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
+ Py_DECREF(time);
+ return result;
+}
+
+/* Return new date from given timestamp (Python timestamp -- a double). */
+static PyObject *
+date_fromtimestamp(PyObject *cls, PyObject *args)
+{
+ double timestamp;
+ PyObject *result = NULL;
+
+ if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
+ result = date_local_from_time_t(cls, timestamp);
+ return result;
+}
+
+/* Return new date from proleptic Gregorian ordinal. Raises ValueError if
+ * the ordinal is out of range.
+ */
+static PyObject *
+date_fromordinal(PyObject *cls, PyObject *args)
+{
+ PyObject *result = NULL;
+ int ordinal;
+
+ if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
+ int year;
+ int month;
+ int day;
+
+ if (ordinal < 1)
+ PyErr_SetString(PyExc_ValueError, "ordinal must be "
+ ">= 1");
+ else {
+ ord_to_ymd(ordinal, &year, &month, &day);
+ result = PyObject_CallFunction(cls, "iii",
+ year, month, day);
+ }
+ }
+ return result;
+}
+
+/*
+ * Date arithmetic.
+ */
+
+/* date + timedelta -> date. If arg negate is true, subtract the timedelta
+ * instead.
+ */
+static PyObject *
+add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
+{
+ PyObject *result = NULL;
+ int year = GET_YEAR(date);
+ int month = GET_MONTH(date);
+ int deltadays = GET_TD_DAYS(delta);
+ /* C-level overflow is impossible because |deltadays| < 1e9. */
+ int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
+
+ if (normalize_date(&year, &month, &day) >= 0)
+ result = new_date(year, month, day);
+ return result;
+}
+
+static PyObject *
+date_add(PyObject *left, PyObject *right)
+{
+ if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+ if (PyDate_Check(left)) {
+ /* date + ??? */
+ if (PyDelta_Check(right))
+ /* date + delta */
+ return add_date_timedelta((PyDateTime_Date *) left,
+ (PyDateTime_Delta *) right,
+ 0);
+ }
+ else {
+ /* ??? + date
+ * 'right' must be one of us, or we wouldn't have been called
+ */
+ if (PyDelta_Check(left))
+ /* delta + date */
+ return add_date_timedelta((PyDateTime_Date *) right,
+ (PyDateTime_Delta *) left,
+ 0);
+ }
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+}
+
+static PyObject *
+date_subtract(PyObject *left, PyObject *right)
+{
+ if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+ if (PyDate_Check(left)) {
+ if (PyDate_Check(right)) {
+ /* date - date */
+ int left_ord = ymd_to_ord(GET_YEAR(left),
+ GET_MONTH(left),
+ GET_DAY(left));
+ int right_ord = ymd_to_ord(GET_YEAR(right),
+ GET_MONTH(right),
+ GET_DAY(right));
+ return new_delta(left_ord - right_ord, 0, 0, 0);
+ }
+ if (PyDelta_Check(right)) {
+ /* date - delta */
+ return add_date_timedelta((PyDateTime_Date *) left,
+ (PyDateTime_Delta *) right,
+ 1);
+ }
+ }
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+}
+
+
+/* Various ways to turn a date into a string. */
+
+static PyObject *
+date_repr(PyDateTime_Date *self)
+{
+ char buffer[1028];
+ const char *type_name;
+
+ type_name = Py_TYPE(self)->tp_name;
+ PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)",
+ type_name,
+ GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+ return PyString_FromString(buffer);
+}
+
+static PyObject *
+date_isoformat(PyDateTime_Date *self)
+{
+ char buffer[128];
+
+ isoformat_date(self, buffer, sizeof(buffer));
+ return PyString_FromString(buffer);
+}
+
+/* str() calls the appropriate isoformat() method. */
+static PyObject *
+date_str(PyDateTime_Date *self)
+{
+ return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
+}
+
+
+static PyObject *
+date_ctime(PyDateTime_Date *self)
+{
+ return format_ctime(self, 0, 0, 0);
+}
+
+static PyObject *
+date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
+{
+ /* This method can be inherited, and needs to call the
+ * timetuple() method appropriate to self's class.
+ */
+ PyObject *result;
+ PyObject *tuple;
+ const char *format;
+ Py_ssize_t format_len;
+ static char *keywords[] = {"format", NULL};
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "s#:strftime", keywords,
+ &format, &format_len))
+ return NULL;
+
+ tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
+ if (tuple == NULL)
+ return NULL;
+ result = wrap_strftime((PyObject *)self, format, format_len, tuple,
+ (PyObject *)self);
+ Py_DECREF(tuple);
+ return result;
+}
+
+static PyObject *
+date_format(PyDateTime_Date *self, PyObject *args)
+{
+ PyObject *format;
+
+ if (!PyArg_ParseTuple(args, "O:__format__", &format))
+ return NULL;
+
+ /* Check for str or unicode */
+ if (PyString_Check(format)) {
+ /* If format is zero length, return str(self) */
+ if (PyString_GET_SIZE(format) == 0)
+ return PyObject_Str((PyObject *)self);
+ } else if (PyUnicode_Check(format)) {
+ /* If format is zero length, return str(self) */
+ if (PyUnicode_GET_SIZE(format) == 0)
+ return PyObject_Unicode((PyObject *)self);
+ } else {
+ PyErr_Format(PyExc_ValueError,
+ "__format__ expects str or unicode, not %.200s",
+ Py_TYPE(format)->tp_name);
+ return NULL;
+ }
+ return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
+}
+
+/* ISO methods. */
+
+static PyObject *
+date_isoweekday(PyDateTime_Date *self)
+{
+ int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+ return PyInt_FromLong(dow + 1);
+}
+
+static PyObject *
+date_isocalendar(PyDateTime_Date *self)
+{
+ int year = GET_YEAR(self);
+ int week1_monday = iso_week1_monday(year);
+ int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
+ int week;
+ int day;
+
+ week = divmod(today - week1_monday, 7, &day);
+ if (week < 0) {
+ --year;
+ week1_monday = iso_week1_monday(year);
+ week = divmod(today - week1_monday, 7, &day);
+ }
+ else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
+ ++year;
+ week = 0;
+ }
+ return Py_BuildValue("iii", year, week + 1, day + 1);
+}
+
+/* Miscellaneous methods. */
+
+/* This is more natural as a tp_compare, but doesn't work then: for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+date_richcompare(PyDateTime_Date *self, PyObject *other, int op)
+{
+ int diff = 42; /* nonsense */
+
+ if (PyDate_Check(other))
+ diff = memcmp(self->data, ((PyDateTime_Date *)other)->data,
+ _PyDateTime_DATE_DATASIZE);
+
+ else if (PyObject_HasAttrString(other, "timetuple")) {
+ /* A hook for other kinds of date objects. */
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+ else if (op == Py_EQ || op == Py_NE)
+ diff = 1; /* any non-zero value will do */
+
+ else /* stop this from falling back to address comparison */
+ return cmperror((PyObject *)self, other);
+
+ return diff_to_bool(diff, op);
+}
+
+static PyObject *
+date_timetuple(PyDateTime_Date *self)
+{
+ return build_struct_time(GET_YEAR(self),
+ GET_MONTH(self),
+ GET_DAY(self),
+ 0, 0, 0, -1);
+}
+
+static PyObject *
+date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
+{
+ PyObject *clone;
+ PyObject *tuple;
+ int year = GET_YEAR(self);
+ int month = GET_MONTH(self);
+ int day = GET_DAY(self);
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
+ &year, &month, &day))
+ return NULL;
+ tuple = Py_BuildValue("iii", year, month, day);
+ if (tuple == NULL)
+ return NULL;
+ clone = date_new(Py_TYPE(self), tuple, NULL);
+ Py_DECREF(tuple);
+ return clone;
+}
+
+static PyObject *date_getstate(PyDateTime_Date *self);
+
+static long
+date_hash(PyDateTime_Date *self)
+{
+ if (self->hashcode == -1) {
+ PyObject *temp = date_getstate(self);
+ if (temp != NULL) {
+ self->hashcode = PyObject_Hash(temp);
+ Py_DECREF(temp);
+ }
+ }
+ return self->hashcode;
+}
+
+static PyObject *
+date_toordinal(PyDateTime_Date *self)
+{
+ return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
+ GET_DAY(self)));
+}
+
+static PyObject *
+date_weekday(PyDateTime_Date *self)
+{
+ int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+ return PyInt_FromLong(dow);
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* __getstate__ isn't exposed */
+static PyObject *
+date_getstate(PyDateTime_Date *self)
+{
+ return Py_BuildValue(
+ "(N)",
+ PyString_FromStringAndSize((char *)self->data,
+ _PyDateTime_DATE_DATASIZE));
+}
+
+static PyObject *
+date_reduce(PyDateTime_Date *self, PyObject *arg)
+{
+ return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
+}
+
+static PyMethodDef date_methods[] = {
+
+ /* Class methods: */
+
+ {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
+ METH_CLASS,
+ PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
+ "time.time()).")},
+
+ {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
+ METH_CLASS,
+ PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
+ "ordinal.")},
+
+ {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
+ PyDoc_STR("Current date or datetime: same as "
+ "self.__class__.fromtimestamp(time.time()).")},
+
+ /* Instance methods: */
+
+ {"ctime", (PyCFunction)date_ctime, METH_NOARGS,
+ PyDoc_STR("Return ctime() style string.")},
+
+ {"strftime", (PyCFunction)date_strftime, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("format -> strftime() style string.")},
+
+ {"__format__", (PyCFunction)date_format, METH_VARARGS,
+ PyDoc_STR("Formats self with strftime.")},
+
+ {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
+ PyDoc_STR("Return time tuple, compatible with time.localtime().")},
+
+ {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
+ PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
+ "weekday.")},
+
+ {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
+ PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
+
+ {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
+ PyDoc_STR("Return the day of the week represented by the date.\n"
+ "Monday == 1 ... Sunday == 7")},
+
+ {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
+ PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
+ "1 is day 1.")},
+
+ {"weekday", (PyCFunction)date_weekday, METH_NOARGS,
+ PyDoc_STR("Return the day of the week represented by the date.\n"
+ "Monday == 0 ... Sunday == 6")},
+
+ {"replace", (PyCFunction)date_replace, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("Return date with new specified fields.")},
+
+ {"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
+ PyDoc_STR("__reduce__() -> (cls, state)")},
+
+ {NULL, NULL}
+};
+
+static char date_doc[] =
+PyDoc_STR("date(year, month, day) --> date object");
+
+static PyNumberMethods date_as_number = {
+ date_add, /* nb_add */
+ date_subtract, /* nb_subtract */
+ 0, /* nb_multiply */
+ 0, /* nb_divide */
+ 0, /* nb_remainder */
+ 0, /* nb_divmod */
+ 0, /* nb_power */
+ 0, /* nb_negative */
+ 0, /* nb_positive */
+ 0, /* nb_absolute */
+ 0, /* nb_nonzero */
+};
+
+static PyTypeObject PyDateTime_DateType = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "datetime.date", /* tp_name */
+ sizeof(PyDateTime_Date), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ 0, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)date_repr, /* tp_repr */
+ &date_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)date_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)date_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ date_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ (richcmpfunc)date_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ date_methods, /* tp_methods */
+ 0, /* tp_members */
+ date_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ date_new, /* tp_new */
+ 0, /* tp_free */
+};
+
+/*
+ * PyDateTime_TZInfo implementation.
+ */
+
+/* This is a pure abstract base class, so doesn't do anything beyond
+ * raising NotImplemented exceptions. Real tzinfo classes need
+ * to derive from this. This is mostly for clarity, and for efficiency in
+ * datetime and time constructors (their tzinfo arguments need to
+ * be subclasses of this tzinfo class, which is easy and quick to check).
+ *
+ * Note: For reasons having to do with pickling of subclasses, we have
+ * to allow tzinfo objects to be instantiated. This wasn't an issue
+ * in the Python implementation (__init__() could raise NotImplementedError
+ * there without ill effect), but doing so in the C implementation hit a
+ * brick wall.
+ */
+
+static PyObject *
+tzinfo_nogo(const char* methodname)
+{
+ PyErr_Format(PyExc_NotImplementedError,
+ "a tzinfo subclass must implement %s()",
+ methodname);
+ return NULL;
+}
+
+/* Methods. A subclass must implement these. */
+
+static PyObject *
+tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
+{
+ return tzinfo_nogo("tzname");
+}
+
+static PyObject *
+tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
+{
+ return tzinfo_nogo("utcoffset");
+}
+
+static PyObject *
+tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
+{
+ return tzinfo_nogo("dst");
+}
+
+static PyObject *
+tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
+{
+ int y, m, d, hh, mm, ss, us;
+
+ PyObject *result;
+ int off, dst;
+ int none;
+ int delta;
+
+ if (! PyDateTime_Check(dt)) {
+ PyErr_SetString(PyExc_TypeError,
+ "fromutc: argument must be a datetime");
+ return NULL;
+ }
+ if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
+ PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
+ "is not self");
+ return NULL;
+ }
+
+ off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
+ if (off == -1 && PyErr_Occurred())
+ return NULL;
+ if (none) {
+ PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
+ "utcoffset() result required");
+ return NULL;
+ }
+
+ dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
+ if (dst == -1 && PyErr_Occurred())
+ return NULL;
+ if (none) {
+ PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
+ "dst() result required");
+ return NULL;
+ }
+
+ y = GET_YEAR(dt);
+ m = GET_MONTH(dt);
+ d = GET_DAY(dt);
+ hh = DATE_GET_HOUR(dt);
+ mm = DATE_GET_MINUTE(dt);
+ ss = DATE_GET_SECOND(dt);
+ us = DATE_GET_MICROSECOND(dt);
+
+ delta = off - dst;
+ mm += delta;
+ if ((mm < 0 || mm >= 60) &&
+ normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+ return NULL;
+ result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
+ if (result == NULL)
+ return result;
+
+ dst = call_dst(dt->tzinfo, result, &none);
+ if (dst == -1 && PyErr_Occurred())
+ goto Fail;
+ if (none)
+ goto Inconsistent;
+ if (dst == 0)
+ return result;
+
+ mm += dst;
+ if ((mm < 0 || mm >= 60) &&
+ normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+ goto Fail;
+ Py_DECREF(result);
+ result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
+ return result;
+
+Inconsistent:
+ PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
+ "inconsistent results; cannot convert");
+
+ /* fall thru to failure */
+Fail:
+ Py_DECREF(result);
+ return NULL;
+}
+
+/*
+ * Pickle support. This is solely so that tzinfo subclasses can use
+ * pickling -- tzinfo itself is supposed to be uninstantiable.
+ */
+
+static PyObject *
+tzinfo_reduce(PyObject *self)
+{
+ PyObject *args, *state, *tmp;
+ PyObject *getinitargs, *getstate;
+
+ tmp = PyTuple_New(0);
+ if (tmp == NULL)
+ return NULL;
+
+ getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
+ if (getinitargs != NULL) {
+ args = PyObject_CallObject(getinitargs, tmp);
+ Py_DECREF(getinitargs);
+ if (args == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Clear();
+ args = tmp;
+ Py_INCREF(args);
+ }
+
+ getstate = PyObject_GetAttrString(self, "__getstate__");
+ if (getstate != NULL) {
+ state = PyObject_CallObject(getstate, tmp);
+ Py_DECREF(getstate);
+ if (state == NULL) {
+ Py_DECREF(args);
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ }
+ else {
+ PyObject **dictptr;
+ PyErr_Clear();
+ state = Py_None;
+ dictptr = _PyObject_GetDictPtr(self);
+ if (dictptr && *dictptr && PyDict_Size(*dictptr))
+ state = *dictptr;
+ Py_INCREF(state);
+ }
+
+ Py_DECREF(tmp);
+
+ if (state == Py_None) {
+ Py_DECREF(state);
+ return Py_BuildValue("(ON)", Py_TYPE(self), args);
+ }
+ else
+ return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
+}
+
+static PyMethodDef tzinfo_methods[] = {
+
+ {"tzname", (PyCFunction)tzinfo_tzname, METH_O,
+ PyDoc_STR("datetime -> string name of time zone.")},
+
+ {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
+ PyDoc_STR("datetime -> minutes east of UTC (negative for "
+ "west of UTC).")},
+
+ {"dst", (PyCFunction)tzinfo_dst, METH_O,
+ PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
+
+ {"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
+ PyDoc_STR("datetime in UTC -> datetime in local time.")},
+
+ {"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS,
+ PyDoc_STR("-> (cls, state)")},
+
+ {NULL, NULL}
+};
+
+static char tzinfo_doc[] =
+PyDoc_STR("Abstract base class for time zone info objects.");
+
+statichere PyTypeObject PyDateTime_TZInfoType = {
+ PyObject_HEAD_INIT(NULL)
+ 0, /* ob_size */
+ "datetime.tzinfo", /* tp_name */
+ sizeof(PyDateTime_TZInfo), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ 0, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ tzinfo_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ tzinfo_methods, /* tp_methods */
+ 0, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
+ 0, /* tp_free */
+};
+
+/*
+ * PyDateTime_Time implementation.
+ */
+
+/* Accessor properties.
+ */
+
+static PyObject *
+time_hour(PyDateTime_Time *self, void *unused)
+{
+ return PyInt_FromLong(TIME_GET_HOUR(self));
+}
+
+static PyObject *
+time_minute(PyDateTime_Time *self, void *unused)
+{
+ return PyInt_FromLong(TIME_GET_MINUTE(self));
+}
+
+/* The name time_second conflicted with some platform header file. */
+static PyObject *
+py_time_second(PyDateTime_Time *self, void *unused)
+{
+ return PyInt_FromLong(TIME_GET_SECOND(self));
+}
+
+static PyObject *
+time_microsecond(PyDateTime_Time *self, void *unused)
+{
+ return PyInt_FromLong(TIME_GET_MICROSECOND(self));
+}
+
+static PyObject *
+time_tzinfo(PyDateTime_Time *self, void *unused)
+{
+ PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
+ Py_INCREF(result);
+ return result;
+}
+
+static PyGetSetDef time_getset[] = {
+ {"hour", (getter)time_hour},
+ {"minute", (getter)time_minute},
+ {"second", (getter)py_time_second},
+ {"microsecond", (getter)time_microsecond},
+ {"tzinfo", (getter)time_tzinfo},
+ {NULL}
+};
+
+/*
+ * Constructors.
+ */
+
+static char *time_kws[] = {"hour", "minute", "second", "microsecond",
+ "tzinfo", NULL};
+
+static PyObject *
+time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+ PyObject *self = NULL;
+ PyObject *state;
+ int hour = 0;
+ int minute = 0;
+ int second = 0;
+ int usecond = 0;
+ PyObject *tzinfo = Py_None;
+
+ /* Check for invocation from pickle with __getstate__ state */
+ if (PyTuple_GET_SIZE(args) >= 1 &&
+ PyTuple_GET_SIZE(args) <= 2 &&
+ PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+ PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
+ ((unsigned char) (PyString_AS_STRING(state)[0])) < 24)
+ {
+ PyDateTime_Time *me;
+ char aware;
+
+ if (PyTuple_GET_SIZE(args) == 2) {
+ tzinfo = PyTuple_GET_ITEM(args, 1);
+ if (check_tzinfo_subclass(tzinfo) < 0) {
+ PyErr_SetString(PyExc_TypeError, "bad "
+ "tzinfo state arg");
+ return NULL;
+ }
+ }
+ aware = (char)(tzinfo != Py_None);
+ me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
+ if (me != NULL) {
+ char *pdata = PyString_AS_STRING(state);
+
+ memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
+ me->hashcode = -1;
+ me->hastzinfo = aware;
+ if (aware) {
+ Py_INCREF(tzinfo);
+ me->tzinfo = tzinfo;
+ }
+ }
+ return (PyObject *)me;
+ }
+
+ if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
+ &hour, &minute, &second, &usecond,
+ &tzinfo)) {
+ if (check_time_args(hour, minute, second, usecond) < 0)
+ return NULL;
+ if (check_tzinfo_subclass(tzinfo) < 0)
+ return NULL;
+ self = new_time_ex(hour, minute, second, usecond, tzinfo,
+ type);
+ }
+ return self;
+}
+
+/*
+ * Destructor.
+ */
+
+static void
+time_dealloc(PyDateTime_Time *self)
+{
+ if (HASTZINFO(self)) {
+ Py_XDECREF(self->tzinfo);
+ }
+ Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+/*
+ * Indirect access to tzinfo methods.
+ */
+
+/* These are all METH_NOARGS, so don't need to check the arglist. */
+static PyObject *
+time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
+ return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+ "utcoffset", Py_None);
+}
+
+static PyObject *
+time_dst(PyDateTime_Time *self, PyObject *unused) {
+ return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+ "dst", Py_None);
+}
+
+static PyObject *
+time_tzname(PyDateTime_Time *self, PyObject *unused) {
+ return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
+ Py_None);
+}
+
+/*
+ * Various ways to turn a time into a string.
+ */
+
+static PyObject *
+time_repr(PyDateTime_Time *self)
+{
+ char buffer[100];
+ const char *type_name = Py_TYPE(self)->tp_name;
+ int h = TIME_GET_HOUR(self);
+ int m = TIME_GET_MINUTE(self);
+ int s = TIME_GET_SECOND(self);
+ int us = TIME_GET_MICROSECOND(self);
+ PyObject *result = NULL;
+
+ if (us)
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d, %d, %d)", type_name, h, m, s, us);
+ else if (s)
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d, %d)", type_name, h, m, s);
+ else
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d)", type_name, h, m);
+ result = PyString_FromString(buffer);
+ if (result != NULL && HASTZINFO(self))
+ result = append_keyword_tzinfo(result, self->tzinfo);
+ return result;
+}
+
+static PyObject *
+time_str(PyDateTime_Time *self)
+{
+ return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
+}
+
+static PyObject *
+time_isoformat(PyDateTime_Time *self, PyObject *unused)
+{
+ char buf[100];
+ PyObject *result;
+ /* Reuse the time format code from the datetime type. */
+ PyDateTime_DateTime datetime;
+ PyDateTime_DateTime *pdatetime = &datetime;
+
+ /* Copy over just the time bytes. */
+ memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE,
+ self->data,
+ _PyDateTime_TIME_DATASIZE);
+
+ isoformat_time(pdatetime, buf, sizeof(buf));
+ result = PyString_FromString(buf);
+ if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
+ return result;
+
+ /* We need to append the UTC offset. */
+ if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
+ Py_None) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ PyString_ConcatAndDel(&result, PyString_FromString(buf));
+ return result;
+}
+
+static PyObject *
+time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
+{
+ PyObject *result;
+ PyObject *tuple;
+ const char *format;
+ Py_ssize_t format_len;
+ static char *keywords[] = {"format", NULL};
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "s#:strftime", keywords,
+ &format, &format_len))
+ return NULL;
+
+ /* Python's strftime does insane things with the year part of the
+ * timetuple. The year is forced to (the otherwise nonsensical)
+ * 1900 to worm around that.
+ */
+ tuple = Py_BuildValue("iiiiiiiii",
+ 1900, 1, 1, /* year, month, day */
+ TIME_GET_HOUR(self),
+ TIME_GET_MINUTE(self),
+ TIME_GET_SECOND(self),
+ 0, 1, -1); /* weekday, daynum, dst */
+ if (tuple == NULL)
+ return NULL;
+ assert(PyTuple_Size(tuple) == 9);
+ result = wrap_strftime((PyObject *)self, format, format_len, tuple,
+ Py_None);
+ Py_DECREF(tuple);
+ return result;
+}
+
+/*
+ * Miscellaneous methods.
+ */
+
+/* This is more natural as a tp_compare, but doesn't work then: for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+time_richcompare(PyDateTime_Time *self, PyObject *other, int op)
+{
+ int diff;
+ naivety n1, n2;
+ int offset1, offset2;
+
+ if (! PyTime_Check(other)) {
+ if (op == Py_EQ || op == Py_NE) {
+ PyObject *result = op == Py_EQ ? Py_False : Py_True;
+ Py_INCREF(result);
+ return result;
+ }
+ /* Stop this from falling back to address comparison. */
+ return cmperror((PyObject *)self, other);
+ }
+ if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, Py_None,
+ other, &offset2, &n2, Py_None) < 0)
+ return NULL;
+ assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+ /* If they're both naive, or both aware and have the same offsets,
+ * we get off cheap. Note that if they're both naive, offset1 ==
+ * offset2 == 0 at this point.
+ */
+ if (n1 == n2 && offset1 == offset2) {
+ diff = memcmp(self->data, ((PyDateTime_Time *)other)->data,
+ _PyDateTime_TIME_DATASIZE);
+ return diff_to_bool(diff, op);
+ }
+
+ if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
+ assert(offset1 != offset2); /* else last "if" handled it */
+ /* Convert everything except microseconds to seconds. These
+ * can't overflow (no more than the # of seconds in 2 days).
+ */
+ offset1 = TIME_GET_HOUR(self) * 3600 +
+ (TIME_GET_MINUTE(self) - offset1) * 60 +
+ TIME_GET_SECOND(self);
+ offset2 = TIME_GET_HOUR(other) * 3600 +
+ (TIME_GET_MINUTE(other) - offset2) * 60 +
+ TIME_GET_SECOND(other);
+ diff = offset1 - offset2;
+ if (diff == 0)
+ diff = TIME_GET_MICROSECOND(self) -
+ TIME_GET_MICROSECOND(other);
+ return diff_to_bool(diff, op);
+ }
+
+ assert(n1 != n2);
+ PyErr_SetString(PyExc_TypeError,
+ "can't compare offset-naive and "
+ "offset-aware times");
+ return NULL;
+}
+
+static long
+time_hash(PyDateTime_Time *self)
+{
+ if (self->hashcode == -1) {
+ naivety n;
+ int offset;
+ PyObject *temp;
+
+ n = classify_utcoffset((PyObject *)self, Py_None, &offset);
+ assert(n != OFFSET_UNKNOWN);
+ if (n == OFFSET_ERROR)
+ return -1;
+
+ /* Reduce this to a hash of another object. */
+ if (offset == 0)
+ temp = PyString_FromStringAndSize((char *)self->data,
+ _PyDateTime_TIME_DATASIZE);
+ else {
+ int hour;
+ int minute;
+
+ assert(n == OFFSET_AWARE);
+ assert(HASTZINFO(self));
+ hour = divmod(TIME_GET_HOUR(self) * 60 +
+ TIME_GET_MINUTE(self) - offset,
+ 60,
+ &minute);
+ if (0 <= hour && hour < 24)
+ temp = new_time(hour, minute,
+ TIME_GET_SECOND(self),
+ TIME_GET_MICROSECOND(self),
+ Py_None);
+ else
+ temp = Py_BuildValue("iiii",
+ hour, minute,
+ TIME_GET_SECOND(self),
+ TIME_GET_MICROSECOND(self));
+ }
+ if (temp != NULL) {
+ self->hashcode = PyObject_Hash(temp);
+ Py_DECREF(temp);
+ }
+ }
+ return self->hashcode;
+}
+
+static PyObject *
+time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
+{
+ PyObject *clone;
+ PyObject *tuple;
+ int hh = TIME_GET_HOUR(self);
+ int mm = TIME_GET_MINUTE(self);
+ int ss = TIME_GET_SECOND(self);
+ int us = TIME_GET_MICROSECOND(self);
+ PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
+ time_kws,
+ &hh, &mm, &ss, &us, &tzinfo))
+ return NULL;
+ tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
+ if (tuple == NULL)
+ return NULL;
+ clone = time_new(Py_TYPE(self), tuple, NULL);
+ Py_DECREF(tuple);
+ return clone;
+}
+
+static int
+time_nonzero(PyDateTime_Time *self)
+{
+ int offset;
+ int none;
+
+ if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
+ /* Since utcoffset is in whole minutes, nothing can
+ * alter the conclusion that this is nonzero.
+ */
+ return 1;
+ }
+ offset = 0;
+ if (HASTZINFO(self) && self->tzinfo != Py_None) {
+ offset = call_utcoffset(self->tzinfo, Py_None, &none);
+ if (offset == -1 && PyErr_Occurred())
+ return -1;
+ }
+ return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* Let basestate be the non-tzinfo data string.
+ * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
+ * So it's a tuple in any (non-error) case.
+ * __getstate__ isn't exposed.
+ */
+static PyObject *
+time_getstate(PyDateTime_Time *self)
+{
+ PyObject *basestate;
+ PyObject *result = NULL;
+
+ basestate = PyString_FromStringAndSize((char *)self->data,
+ _PyDateTime_TIME_DATASIZE);
+ if (basestate != NULL) {
+ if (! HASTZINFO(self) || self->tzinfo == Py_None)
+ result = PyTuple_Pack(1, basestate);
+ else
+ result = PyTuple_Pack(2, basestate, self->tzinfo);
+ Py_DECREF(basestate);
+ }
+ return result;
+}
+
+static PyObject *
+time_reduce(PyDateTime_Time *self, PyObject *arg)
+{
+ return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
+}
+
+static PyMethodDef time_methods[] = {
+
+ {"isoformat", (PyCFunction)time_isoformat, METH_NOARGS,
+ PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
+ "[+HH:MM].")},
+
+ {"strftime", (PyCFunction)time_strftime, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("format -> strftime() style string.")},
+
+ {"__format__", (PyCFunction)date_format, METH_VARARGS,
+ PyDoc_STR("Formats self with strftime.")},
+
+ {"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
+
+ {"tzname", (PyCFunction)time_tzname, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.tzname(self).")},
+
+ {"dst", (PyCFunction)time_dst, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.dst(self).")},
+
+ {"replace", (PyCFunction)time_replace, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("Return time with new specified fields.")},
+
+ {"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
+ PyDoc_STR("__reduce__() -> (cls, state)")},
+
+ {NULL, NULL}
+};
+
+static char time_doc[] =
+PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
+\n\
+All arguments are optional. tzinfo may be None, or an instance of\n\
+a tzinfo subclass. The remaining arguments may be ints or longs.\n");
+
+static PyNumberMethods time_as_number = {
+ 0, /* nb_add */
+ 0, /* nb_subtract */
+ 0, /* nb_multiply */
+ 0, /* nb_divide */
+ 0, /* nb_remainder */
+ 0, /* nb_divmod */
+ 0, /* nb_power */
+ 0, /* nb_negative */
+ 0, /* nb_positive */
+ 0, /* nb_absolute */
+ (inquiry)time_nonzero, /* nb_nonzero */
+};
+
+statichere PyTypeObject PyDateTime_TimeType = {
+ PyObject_HEAD_INIT(NULL)
+ 0, /* ob_size */
+ "datetime.time", /* tp_name */
+ sizeof(PyDateTime_Time), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)time_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)time_repr, /* tp_repr */
+ &time_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)time_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)time_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ time_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ (richcmpfunc)time_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ time_methods, /* tp_methods */
+ 0, /* tp_members */
+ time_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ time_alloc, /* tp_alloc */
+ time_new, /* tp_new */
+ 0, /* tp_free */
+};
+
+/*
+ * PyDateTime_DateTime implementation.
+ */
+
+/* Accessor properties. Properties for day, month, and year are inherited
+ * from date.
+ */
+
+static PyObject *
+datetime_hour(PyDateTime_DateTime *self, void *unused)
+{
+ return PyInt_FromLong(DATE_GET_HOUR(self));
+}
+
+static PyObject *
+datetime_minute(PyDateTime_DateTime *self, void *unused)
+{
+ return PyInt_FromLong(DATE_GET_MINUTE(self));
+}
+
+static PyObject *
+datetime_second(PyDateTime_DateTime *self, void *unused)
+{
+ return PyInt_FromLong(DATE_GET_SECOND(self));
+}
+
+static PyObject *
+datetime_microsecond(PyDateTime_DateTime *self, void *unused)
+{
+ return PyInt_FromLong(DATE_GET_MICROSECOND(self));
+}
+
+static PyObject *
+datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
+{
+ PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
+ Py_INCREF(result);
+ return result;
+}
+
+static PyGetSetDef datetime_getset[] = {
+ {"hour", (getter)datetime_hour},
+ {"minute", (getter)datetime_minute},
+ {"second", (getter)datetime_second},
+ {"microsecond", (getter)datetime_microsecond},
+ {"tzinfo", (getter)datetime_tzinfo},
+ {NULL}
+};
+
+/*
+ * Constructors.
+ */
+
+static char *datetime_kws[] = {
+ "year", "month", "day", "hour", "minute", "second",
+ "microsecond", "tzinfo", NULL
+};
+
+static PyObject *
+datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+ PyObject *self = NULL;
+ PyObject *state;
+ int year;
+ int month;
+ int day;
+ int hour = 0;
+ int minute = 0;
+ int second = 0;
+ int usecond = 0;
+ PyObject *tzinfo = Py_None;
+
+ /* Check for invocation from pickle with __getstate__ state */
+ if (PyTuple_GET_SIZE(args) >= 1 &&
+ PyTuple_GET_SIZE(args) <= 2 &&
+ PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+ PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
+ MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
+ {
+ PyDateTime_DateTime *me;
+ char aware;
+
+ if (PyTuple_GET_SIZE(args) == 2) {
+ tzinfo = PyTuple_GET_ITEM(args, 1);
+ if (check_tzinfo_subclass(tzinfo) < 0) {
+ PyErr_SetString(PyExc_TypeError, "bad "
+ "tzinfo state arg");
+ return NULL;
+ }
+ }
+ aware = (char)(tzinfo != Py_None);
+ me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
+ if (me != NULL) {
+ char *pdata = PyString_AS_STRING(state);
+
+ memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
+ me->hashcode = -1;
+ me->hastzinfo = aware;
+ if (aware) {
+ Py_INCREF(tzinfo);
+ me->tzinfo = tzinfo;
+ }
+ }
+ return (PyObject *)me;
+ }
+
+ if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
+ &year, &month, &day, &hour, &minute,
+ &second, &usecond, &tzinfo)) {
+ if (check_date_args(year, month, day) < 0)
+ return NULL;
+ if (check_time_args(hour, minute, second, usecond) < 0)
+ return NULL;
+ if (check_tzinfo_subclass(tzinfo) < 0)
+ return NULL;
+ self = new_datetime_ex(year, month, day,
+ hour, minute, second, usecond,
+ tzinfo, type);
+ }
+ return self;
+}
+
+/* TM_FUNC is the shared type of localtime() and gmtime(). */
+typedef struct tm *(*TM_FUNC)(const time_t *timer);
+
+/* Internal helper.
+ * Build datetime from a time_t and a distinct count of microseconds.
+ * Pass localtime or gmtime for f, to control the interpretation of timet.
+ */
+static PyObject *
+datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
+ PyObject *tzinfo)
+{
+ struct tm *tm;
+ PyObject *result = NULL;
+
+ tm = f(&timet);
+ if (tm) {
+ /* The platform localtime/gmtime may insert leap seconds,
+ * indicated by tm->tm_sec > 59. We don't care about them,
+ * except to the extent that passing them on to the datetime
+ * constructor would raise ValueError for a reason that
+ * made no sense to the user.
+ */
+ if (tm->tm_sec > 59)
+ tm->tm_sec = 59;
+ result = PyObject_CallFunction(cls, "iiiiiiiO",
+ tm->tm_year + 1900,
+ tm->tm_mon + 1,
+ tm->tm_mday,
+ tm->tm_hour,
+ tm->tm_min,
+ tm->tm_sec,
+ us,
+ tzinfo);
+ }
+ else
+ PyErr_SetString(PyExc_ValueError,
+ "timestamp out of range for "
+ "platform localtime()/gmtime() function");
+ return result;
+}
+
+/* Internal helper.
+ * Build datetime from a Python timestamp. Pass localtime or gmtime for f,
+ * to control the interpretation of the timestamp. Since a double doesn't
+ * have enough bits to cover a datetime's full range of precision, it's
+ * better to call datetime_from_timet_and_us provided you have a way
+ * to get that much precision (e.g., C time() isn't good enough).
+ */
+static PyObject *
+datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
+ PyObject *tzinfo)
+{
+ time_t timet;
+ double fraction;
+ int us;
+
+ timet = _PyTime_DoubleToTimet(timestamp);
+ if (timet == (time_t)-1 && PyErr_Occurred())
+ return NULL;
+ fraction = timestamp - (double)timet;
+ us = (int)round_to_long(fraction * 1e6);
+ if (us < 0) {
+ /* Truncation towards zero is not what we wanted
+ for negative numbers (Python's mod semantics) */
+ timet -= 1;
+ us += 1000000;
+ }
+ /* If timestamp is less than one microsecond smaller than a
+ * full second, round up. Otherwise, ValueErrors are raised
+ * for some floats. */
+ if (us == 1000000) {
+ timet += 1;
+ us = 0;
+ }
+ return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
+}
+
+/* Internal helper.
+ * Build most accurate possible datetime for current time. Pass localtime or
+ * gmtime for f as appropriate.
+ */
+static PyObject *
+datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
+{
+#ifdef HAVE_GETTIMEOFDAY
+ struct timeval t;
+
+#ifdef GETTIMEOFDAY_NO_TZ
+ gettimeofday(&t);
+#else
+ gettimeofday(&t, (struct timezone *)NULL);
+#endif
+ return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
+ tzinfo);
+
+#else /* ! HAVE_GETTIMEOFDAY */
+ /* No flavor of gettimeofday exists on this platform. Python's
+ * time.time() does a lot of other platform tricks to get the
+ * best time it can on the platform, and we're not going to do
+ * better than that (if we could, the better code would belong
+ * in time.time()!) We're limited by the precision of a double,
+ * though.
+ */
+ PyObject *time;
+ double dtime;
+
+ time = time_time();
+ if (time == NULL)
+ return NULL;
+ dtime = PyFloat_AsDouble(time);
+ Py_DECREF(time);
+ if (dtime == -1.0 && PyErr_Occurred())
+ return NULL;
+ return datetime_from_timestamp(cls, f, dtime, tzinfo);
+#endif /* ! HAVE_GETTIMEOFDAY */
+}
+
+/* Return best possible local time -- this isn't constrained by the
+ * precision of a timestamp.
+ */
+static PyObject *
+datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
+{
+ PyObject *self;
+ PyObject *tzinfo = Py_None;
+ static char *keywords[] = {"tz", NULL};
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
+ &tzinfo))
+ return NULL;
+ if (check_tzinfo_subclass(tzinfo) < 0)
+ return NULL;
+
+ self = datetime_best_possible(cls,
+ tzinfo == Py_None ? localtime : gmtime,
+ tzinfo);
+ if (self != NULL && tzinfo != Py_None) {
+ /* Convert UTC to tzinfo's zone. */
+ PyObject *temp = self;
+ self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
+ Py_DECREF(temp);
+ }
+ return self;
+}
+
+/* Return best possible UTC time -- this isn't constrained by the
+ * precision of a timestamp.
+ */
+static PyObject *
+datetime_utcnow(PyObject *cls, PyObject *dummy)
+{
+ return datetime_best_possible(cls, gmtime, Py_None);
+}
+
+/* Return new local datetime from timestamp (Python timestamp -- a double). */
+static PyObject *
+datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
+{
+ PyObject *self;
+ double timestamp;
+ PyObject *tzinfo = Py_None;
+ static char *keywords[] = {"timestamp", "tz", NULL};
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
+ keywords, &timestamp, &tzinfo))
+ return NULL;
+ if (check_tzinfo_subclass(tzinfo) < 0)
+ return NULL;
+
+ self = datetime_from_timestamp(cls,
+ tzinfo == Py_None ? localtime : gmtime,
+ timestamp,
+ tzinfo);
+ if (self != NULL && tzinfo != Py_None) {
+ /* Convert UTC to tzinfo's zone. */
+ PyObject *temp = self;
+ self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
+ Py_DECREF(temp);
+ }
+ return self;
+}
+
+/* Return new UTC datetime from timestamp (Python timestamp -- a double). */
+static PyObject *
+datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
+{
+ double timestamp;
+ PyObject *result = NULL;
+
+ if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
+ result = datetime_from_timestamp(cls, gmtime, timestamp,
+ Py_None);
+ return result;
+}
+
+/* Return new datetime from time.strptime(). */
+static PyObject *
+datetime_strptime(PyObject *cls, PyObject *args)
+{
+ static PyObject *module = NULL;
+ PyObject *result = NULL, *obj, *st = NULL, *frac = NULL;
+ const char *string, *format;
+
+ if (!PyArg_ParseTuple(args, "ss:strptime", &string, &format))
+ return NULL;
+
+ if (module == NULL &&
+ (module = PyImport_ImportModuleNoBlock("_strptime")) == NULL)
+ return NULL;
+
+ /* _strptime._strptime returns a two-element tuple. The first
+ element is a time.struct_time object. The second is the
+ microseconds (which are not defined for time.struct_time). */
+ obj = PyObject_CallMethod(module, "_strptime", "ss", string, format);
+ if (obj != NULL) {
+ int i, good_timetuple = 1;
+ long int ia[7];
+ if (PySequence_Check(obj) && PySequence_Size(obj) == 2) {
+ st = PySequence_GetItem(obj, 0);
+ frac = PySequence_GetItem(obj, 1);
+ if (st == NULL || frac == NULL)
+ good_timetuple = 0;
+ /* copy y/m/d/h/m/s values out of the
+ time.struct_time */
+ if (good_timetuple &&
+ PySequence_Check(st) &&
+ PySequence_Size(st) >= 6) {
+ for (i=0; i < 6; i++) {
+ PyObject *p = PySequence_GetItem(st, i);
+ if (p == NULL) {
+ good_timetuple = 0;
+ break;
+ }
+ if (PyInt_Check(p))
+ ia[i] = PyInt_AsLong(p);
+ else
+ good_timetuple = 0;
+ Py_DECREF(p);
+ }
+ }
+ else
+ good_timetuple = 0;
+ /* follow that up with a little dose of microseconds */
+ if (good_timetuple && PyInt_Check(frac))
+ ia[6] = PyInt_AsLong(frac);
+ else
+ good_timetuple = 0;
+ }
+ else
+ good_timetuple = 0;
+ if (good_timetuple)
+ result = PyObject_CallFunction(cls, "iiiiiii",
+ ia[0], ia[1], ia[2],
+ ia[3], ia[4], ia[5],
+ ia[6]);
+ else
+ PyErr_SetString(PyExc_ValueError,
+ "unexpected value from _strptime._strptime");
+ }
+ Py_XDECREF(obj);
+ Py_XDECREF(st);
+ Py_XDECREF(frac);
+ return result;
+}
+
+/* Return new datetime from date/datetime and time arguments. */
+static PyObject *
+datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
+{
+ static char *keywords[] = {"date", "time", NULL};
+ PyObject *date;
+ PyObject *time;
+ PyObject *result = NULL;
+
+ if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
+ &PyDateTime_DateType, &date,
+ &PyDateTime_TimeType, &time)) {
+ PyObject *tzinfo = Py_None;
+
+ if (HASTZINFO(time))
+ tzinfo = ((PyDateTime_Time *)time)->tzinfo;
+ result = PyObject_CallFunction(cls, "iiiiiiiO",
+ GET_YEAR(date),
+ GET_MONTH(date),
+ GET_DAY(date),
+ TIME_GET_HOUR(time),
+ TIME_GET_MINUTE(time),
+ TIME_GET_SECOND(time),
+ TIME_GET_MICROSECOND(time),
+ tzinfo);
+ }
+ return result;
+}
+
+/*
+ * Destructor.
+ */
+
+static void
+datetime_dealloc(PyDateTime_DateTime *self)
+{
+ if (HASTZINFO(self)) {
+ Py_XDECREF(self->tzinfo);
+ }
+ Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+/*
+ * Indirect access to tzinfo methods.
+ */
+
+/* These are all METH_NOARGS, so don't need to check the arglist. */
+static PyObject *
+datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
+ return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+ "utcoffset", (PyObject *)self);
+}
+
+static PyObject *
+datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
+ return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+ "dst", (PyObject *)self);
+}
+
+static PyObject *
+datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
+ return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
+ (PyObject *)self);
+}
+
+/*
+ * datetime arithmetic.
+ */
+
+/* factor must be 1 (to add) or -1 (to subtract). The result inherits
+ * the tzinfo state of date.
+ */
+static PyObject *
+add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
+ int factor)
+{
+ /* Note that the C-level additions can't overflow, because of
+ * invariant bounds on the member values.
+ */
+ int year = GET_YEAR(date);
+ int month = GET_MONTH(date);
+ int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
+ int hour = DATE_GET_HOUR(date);
+ int minute = DATE_GET_MINUTE(date);
+ int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
+ int microsecond = DATE_GET_MICROSECOND(date) +
+ GET_TD_MICROSECONDS(delta) * factor;
+
+ assert(factor == 1 || factor == -1);
+ if (normalize_datetime(&year, &month, &day,
+ &hour, &minute, &second, &microsecond) < 0)
+ return NULL;
+ else
+ return new_datetime(year, month, day,
+ hour, minute, second, microsecond,
+ HASTZINFO(date) ? date->tzinfo : Py_None);
+}
+
+static PyObject *
+datetime_add(PyObject *left, PyObject *right)
+{
+ if (PyDateTime_Check(left)) {
+ /* datetime + ??? */
+ if (PyDelta_Check(right))
+ /* datetime + delta */
+ return add_datetime_timedelta(
+ (PyDateTime_DateTime *)left,
+ (PyDateTime_Delta *)right,
+ 1);
+ }
+ else if (PyDelta_Check(left)) {
+ /* delta + datetime */
+ return add_datetime_timedelta((PyDateTime_DateTime *) right,
+ (PyDateTime_Delta *) left,
+ 1);
+ }
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+}
+
+static PyObject *
+datetime_subtract(PyObject *left, PyObject *right)
+{
+ PyObject *result = Py_NotImplemented;
+
+ if (PyDateTime_Check(left)) {
+ /* datetime - ??? */
+ if (PyDateTime_Check(right)) {
+ /* datetime - datetime */
+ naivety n1, n2;
+ int offset1, offset2;
+ int delta_d, delta_s, delta_us;
+
+ if (classify_two_utcoffsets(left, &offset1, &n1, left,
+ right, &offset2, &n2,
+ right) < 0)
+ return NULL;
+ assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+ if (n1 != n2) {
+ PyErr_SetString(PyExc_TypeError,
+ "can't subtract offset-naive and "
+ "offset-aware datetimes");
+ return NULL;
+ }
+ delta_d = ymd_to_ord(GET_YEAR(left),
+ GET_MONTH(left),
+ GET_DAY(left)) -
+ ymd_to_ord(GET_YEAR(right),
+ GET_MONTH(right),
+ GET_DAY(right));
+ /* These can't overflow, since the values are
+ * normalized. At most this gives the number of
+ * seconds in one day.
+ */
+ delta_s = (DATE_GET_HOUR(left) -
+ DATE_GET_HOUR(right)) * 3600 +
+ (DATE_GET_MINUTE(left) -
+ DATE_GET_MINUTE(right)) * 60 +
+ (DATE_GET_SECOND(left) -
+ DATE_GET_SECOND(right));
+ delta_us = DATE_GET_MICROSECOND(left) -
+ DATE_GET_MICROSECOND(right);
+ /* (left - offset1) - (right - offset2) =
+ * (left - right) + (offset2 - offset1)
+ */
+ delta_s += (offset2 - offset1) * 60;
+ result = new_delta(delta_d, delta_s, delta_us, 1);
+ }
+ else if (PyDelta_Check(right)) {
+ /* datetime - delta */
+ result = add_datetime_timedelta(
+ (PyDateTime_DateTime *)left,
+ (PyDateTime_Delta *)right,
+ -1);
+ }
+ }
+
+ if (result == Py_NotImplemented)
+ Py_INCREF(result);
+ return result;
+}
+
+/* Various ways to turn a datetime into a string. */
+
+static PyObject *
+datetime_repr(PyDateTime_DateTime *self)
+{
+ char buffer[1000];
+ const char *type_name = Py_TYPE(self)->tp_name;
+ PyObject *baserepr;
+
+ if (DATE_GET_MICROSECOND(self)) {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d, %d, %d, %d, %d, %d)",
+ type_name,
+ GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+ DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self),
+ DATE_GET_MICROSECOND(self));
+ }
+ else if (DATE_GET_SECOND(self)) {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d, %d, %d, %d, %d)",
+ type_name,
+ GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+ DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self));
+ }
+ else {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "%s(%d, %d, %d, %d, %d)",
+ type_name,
+ GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+ DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
+ }
+ baserepr = PyString_FromString(buffer);
+ if (baserepr == NULL || ! HASTZINFO(self))
+ return baserepr;
+ return append_keyword_tzinfo(baserepr, self->tzinfo);
+}
+
+static PyObject *
+datetime_str(PyDateTime_DateTime *self)
+{
+ return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
+}
+
+static PyObject *
+datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+ char sep = 'T';
+ static char *keywords[] = {"sep", NULL};
+ char buffer[100];
+ char *cp;
+ PyObject *result;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords,
+ &sep))
+ return NULL;
+ cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer));
+ assert(cp != NULL);
+ *cp++ = sep;
+ cp = isoformat_time(self, cp, sizeof(buffer) - (cp - buffer));
+ result = PyString_FromStringAndSize(buffer, cp - buffer);
+ if (result == NULL || ! HASTZINFO(self))
+ return result;
+
+ /* We need to append the UTC offset. */
+ if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
+ (PyObject *)self) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ PyString_ConcatAndDel(&result, PyString_FromString(buffer));
+ return result;
+}
+
+static PyObject *
+datetime_ctime(PyDateTime_DateTime *self)
+{
+ return format_ctime((PyDateTime_Date *)self,
+ DATE_GET_HOUR(self),
+ DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self));
+}
+
+/* Miscellaneous methods. */
+
+/* This is more natural as a tp_compare, but doesn't work then: for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op)
+{
+ int diff;
+ naivety n1, n2;
+ int offset1, offset2;
+
+ if (! PyDateTime_Check(other)) {
+ /* If other has a "timetuple" attr, that's an advertised
+ * hook for other classes to ask to get comparison control.
+ * However, date instances have a timetuple attr, and we
+ * don't want to allow that comparison. Because datetime
+ * is a subclass of date, when mixing date and datetime
+ * in a comparison, Python gives datetime the first shot
+ * (it's the more specific subtype). So we can stop that
+ * combination here reliably.
+ */
+ if (PyObject_HasAttrString(other, "timetuple") &&
+ ! PyDate_Check(other)) {
+ /* A hook for other kinds of datetime objects. */
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+ if (op == Py_EQ || op == Py_NE) {
+ PyObject *result = op == Py_EQ ? Py_False : Py_True;
+ Py_INCREF(result);
+ return result;
+ }
+ /* Stop this from falling back to address comparison. */
+ return cmperror((PyObject *)self, other);
+ }
+
+ if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1,
+ (PyObject *)self,
+ other, &offset2, &n2,
+ other) < 0)
+ return NULL;
+ assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+ /* If they're both naive, or both aware and have the same offsets,
+ * we get off cheap. Note that if they're both naive, offset1 ==
+ * offset2 == 0 at this point.
+ */
+ if (n1 == n2 && offset1 == offset2) {
+ diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data,
+ _PyDateTime_DATETIME_DATASIZE);
+ return diff_to_bool(diff, op);
+ }
+
+ if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
+ PyDateTime_Delta *delta;
+
+ assert(offset1 != offset2); /* else last "if" handled it */
+ delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
+ other);
+ if (delta == NULL)
+ return NULL;
+ diff = GET_TD_DAYS(delta);
+ if (diff == 0)
+ diff = GET_TD_SECONDS(delta) |
+ GET_TD_MICROSECONDS(delta);
+ Py_DECREF(delta);
+ return diff_to_bool(diff, op);
+ }
+
+ assert(n1 != n2);
+ PyErr_SetString(PyExc_TypeError,
+ "can't compare offset-naive and "
+ "offset-aware datetimes");
+ return NULL;
+}
+
+static long
+datetime_hash(PyDateTime_DateTime *self)
+{
+ if (self->hashcode == -1) {
+ naivety n;
+ int offset;
+ PyObject *temp;
+
+ n = classify_utcoffset((PyObject *)self, (PyObject *)self,
+ &offset);
+ assert(n != OFFSET_UNKNOWN);
+ if (n == OFFSET_ERROR)
+ return -1;
+
+ /* Reduce this to a hash of another object. */
+ if (n == OFFSET_NAIVE)
+ temp = PyString_FromStringAndSize(
+ (char *)self->data,
+ _PyDateTime_DATETIME_DATASIZE);
+ else {
+ int days;
+ int seconds;
+
+ assert(n == OFFSET_AWARE);
+ assert(HASTZINFO(self));
+ days = ymd_to_ord(GET_YEAR(self),
+ GET_MONTH(self),
+ GET_DAY(self));
+ seconds = DATE_GET_HOUR(self) * 3600 +
+ (DATE_GET_MINUTE(self) - offset) * 60 +
+ DATE_GET_SECOND(self);
+ temp = new_delta(days,
+ seconds,
+ DATE_GET_MICROSECOND(self),
+ 1);
+ }
+ if (temp != NULL) {
+ self->hashcode = PyObject_Hash(temp);
+ Py_DECREF(temp);
+ }
+ }
+ return self->hashcode;
+}
+
+static PyObject *
+datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+ PyObject *clone;
+ PyObject *tuple;
+ int y = GET_YEAR(self);
+ int m = GET_MONTH(self);
+ int d = GET_DAY(self);
+ int hh = DATE_GET_HOUR(self);
+ int mm = DATE_GET_MINUTE(self);
+ int ss = DATE_GET_SECOND(self);
+ int us = DATE_GET_MICROSECOND(self);
+ PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
+ datetime_kws,
+ &y, &m, &d, &hh, &mm, &ss, &us,
+ &tzinfo))
+ return NULL;
+ tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
+ if (tuple == NULL)
+ return NULL;
+ clone = datetime_new(Py_TYPE(self), tuple, NULL);
+ Py_DECREF(tuple);
+ return clone;
+}
+
+static PyObject *
+datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+ int y, m, d, hh, mm, ss, us;
+ PyObject *result;
+ int offset, none;
+
+ PyObject *tzinfo;
+ static char *keywords[] = {"tz", NULL};
+
+ if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
+ &PyDateTime_TZInfoType, &tzinfo))
+ return NULL;
+
+ if (!HASTZINFO(self) || self->tzinfo == Py_None)
+ goto NeedAware;
+
+ /* Conversion to self's own time zone is a NOP. */
+ if (self->tzinfo == tzinfo) {
+ Py_INCREF(self);
+ return (PyObject *)self;
+ }
+
+ /* Convert self to UTC. */
+ offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
+ if (offset == -1 && PyErr_Occurred())
+ return NULL;
+ if (none)
+ goto NeedAware;
+
+ y = GET_YEAR(self);
+ m = GET_MONTH(self);
+ d = GET_DAY(self);
+ hh = DATE_GET_HOUR(self);
+ mm = DATE_GET_MINUTE(self);
+ ss = DATE_GET_SECOND(self);
+ us = DATE_GET_MICROSECOND(self);
+
+ mm -= offset;
+ if ((mm < 0 || mm >= 60) &&
+ normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+ return NULL;
+
+ /* Attach new tzinfo and let fromutc() do the rest. */
+ result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
+ if (result != NULL) {
+ PyObject *temp = result;
+
+ result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
+ Py_DECREF(temp);
+ }
+ return result;
+
+NeedAware:
+ PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
+ "a naive datetime");
+ return NULL;
+}
+
+static PyObject *
+datetime_timetuple(PyDateTime_DateTime *self)
+{
+ int dstflag = -1;
+
+ if (HASTZINFO(self) && self->tzinfo != Py_None) {
+ int none;
+
+ dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
+ if (dstflag == -1 && PyErr_Occurred())
+ return NULL;
+
+ if (none)
+ dstflag = -1;
+ else if (dstflag != 0)
+ dstflag = 1;
+
+ }
+ return build_struct_time(GET_YEAR(self),
+ GET_MONTH(self),
+ GET_DAY(self),
+ DATE_GET_HOUR(self),
+ DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self),
+ dstflag);
+}
+
+static PyObject *
+datetime_getdate(PyDateTime_DateTime *self)
+{
+ return new_date(GET_YEAR(self),
+ GET_MONTH(self),
+ GET_DAY(self));
+}
+
+static PyObject *
+datetime_gettime(PyDateTime_DateTime *self)
+{
+ return new_time(DATE_GET_HOUR(self),
+ DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self),
+ DATE_GET_MICROSECOND(self),
+ Py_None);
+}
+
+static PyObject *
+datetime_gettimetz(PyDateTime_DateTime *self)
+{
+ return new_time(DATE_GET_HOUR(self),
+ DATE_GET_MINUTE(self),
+ DATE_GET_SECOND(self),
+ DATE_GET_MICROSECOND(self),
+ HASTZINFO(self) ? self->tzinfo : Py_None);
+}
+
+static PyObject *
+datetime_utctimetuple(PyDateTime_DateTime *self)
+{
+ int y = GET_YEAR(self);
+ int m = GET_MONTH(self);
+ int d = GET_DAY(self);
+ int hh = DATE_GET_HOUR(self);
+ int mm = DATE_GET_MINUTE(self);
+ int ss = DATE_GET_SECOND(self);
+ int us = 0; /* microseconds are ignored in a timetuple */
+ int offset = 0;
+
+ if (HASTZINFO(self) && self->tzinfo != Py_None) {
+ int none;
+
+ offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
+ if (offset == -1 && PyErr_Occurred())
+ return NULL;
+ }
+ /* Even if offset is 0, don't call timetuple() -- tm_isdst should be
+ * 0 in a UTC timetuple regardless of what dst() says.
+ */
+ if (offset) {
+ /* Subtract offset minutes & normalize. */
+ int stat;
+
+ mm -= offset;
+ stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
+ if (stat < 0) {
+ /* At the edges, it's possible we overflowed
+ * beyond MINYEAR or MAXYEAR.
+ */
+ if (PyErr_ExceptionMatches(PyExc_OverflowError))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ }
+ return build_struct_time(y, m, d, hh, mm, ss, 0);
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* Let basestate be the non-tzinfo data string.
+ * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
+ * So it's a tuple in any (non-error) case.
+ * __getstate__ isn't exposed.
+ */
+static PyObject *
+datetime_getstate(PyDateTime_DateTime *self)
+{
+ PyObject *basestate;
+ PyObject *result = NULL;
+
+ basestate = PyString_FromStringAndSize((char *)self->data,
+ _PyDateTime_DATETIME_DATASIZE);
+ if (basestate != NULL) {
+ if (! HASTZINFO(self) || self->tzinfo == Py_None)
+ result = PyTuple_Pack(1, basestate);
+ else
+ result = PyTuple_Pack(2, basestate, self->tzinfo);
+ Py_DECREF(basestate);
+ }
+ return result;
+}
+
+static PyObject *
+datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
+{
+ return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
+}
+
+static PyMethodDef datetime_methods[] = {
+
+ /* Class methods: */
+
+ {"now", (PyCFunction)datetime_now,
+ METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+ PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
+
+ {"utcnow", (PyCFunction)datetime_utcnow,
+ METH_NOARGS | METH_CLASS,
+ PyDoc_STR("Return a new datetime representing UTC day and time.")},
+
+ {"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
+ METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+ PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
+
+ {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
+ METH_VARARGS | METH_CLASS,
+ PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
+ "(like time.time()).")},
+
+ {"strptime", (PyCFunction)datetime_strptime,
+ METH_VARARGS | METH_CLASS,
+ PyDoc_STR("string, format -> new datetime parsed from a string "
+ "(like time.strptime()).")},
+
+ {"combine", (PyCFunction)datetime_combine,
+ METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+ PyDoc_STR("date, time -> datetime with same date and time fields")},
+
+ /* Instance methods: */
+
+ {"date", (PyCFunction)datetime_getdate, METH_NOARGS,
+ PyDoc_STR("Return date object with same year, month and day.")},
+
+ {"time", (PyCFunction)datetime_gettime, METH_NOARGS,
+ PyDoc_STR("Return time object with same time but with tzinfo=None.")},
+
+ {"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
+ PyDoc_STR("Return time object with same time and tzinfo.")},
+
+ {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
+ PyDoc_STR("Return ctime() style string.")},
+
+ {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
+ PyDoc_STR("Return time tuple, compatible with time.localtime().")},
+
+ {"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
+ PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
+
+ {"isoformat", (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("[sep] -> string in ISO 8601 format, "
+ "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
+ "sep is used to separate the year from the time, and "
+ "defaults to 'T'.")},
+
+ {"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
+
+ {"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.tzname(self).")},
+
+ {"dst", (PyCFunction)datetime_dst, METH_NOARGS,
+ PyDoc_STR("Return self.tzinfo.dst(self).")},
+
+ {"replace", (PyCFunction)datetime_replace, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("Return datetime with new specified fields.")},
+
+ {"astimezone", (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
+ PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
+
+ {"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
+ PyDoc_STR("__reduce__() -> (cls, state)")},
+
+ {NULL, NULL}
+};
+
+static char datetime_doc[] =
+PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
+\n\
+The year, month and day arguments are required. tzinfo may be None, or an\n\
+instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
+
+static PyNumberMethods datetime_as_number = {
+ datetime_add, /* nb_add */
+ datetime_subtract, /* nb_subtract */
+ 0, /* nb_multiply */
+ 0, /* nb_divide */
+ 0, /* nb_remainder */
+ 0, /* nb_divmod */
+ 0, /* nb_power */
+ 0, /* nb_negative */
+ 0, /* nb_positive */
+ 0, /* nb_absolute */
+ 0, /* nb_nonzero */
+};
+
+statichere PyTypeObject PyDateTime_DateTimeType = {
+ PyObject_HEAD_INIT(NULL)
+ 0, /* ob_size */
+ "datetime.datetime", /* tp_name */
+ sizeof(PyDateTime_DateTime), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ (destructor)datetime_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)datetime_repr, /* tp_repr */
+ &datetime_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)datetime_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)datetime_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+ Py_TPFLAGS_BASETYPE, /* tp_flags */
+ datetime_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ (richcmpfunc)datetime_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ datetime_methods, /* tp_methods */
+ 0, /* tp_members */
+ datetime_getset, /* tp_getset */
+ &PyDateTime_DateType, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ datetime_alloc, /* tp_alloc */
+ datetime_new, /* tp_new */
+ 0, /* tp_free */
+};
+
+/* ---------------------------------------------------------------------------
+ * Module methods and initialization.
+ */
+
+static PyMethodDef module_methods[] = {
+ {NULL, NULL}
+};
+
+/* C API. Clients get at this via PyDateTime_IMPORT, defined in
+ * datetime.h.
+ */
+static PyDateTime_CAPI CAPI = {
+ &PyDateTime_DateType,
+ &PyDateTime_DateTimeType,
+ &PyDateTime_TimeType,
+ &PyDateTime_DeltaType,
+ &PyDateTime_TZInfoType,
+ new_date_ex,
+ new_datetime_ex,
+ new_time_ex,
+ new_delta_ex,
+ datetime_fromtimestamp,
+ date_fromtimestamp
+};
+
+
+PyMODINIT_FUNC
+initdatetime(void)
+{
+ PyObject *m; /* a module object */
+ PyObject *d; /* its dict */
+ PyObject *x;
+
+ m = Py_InitModule3("datetime", module_methods,
+ "Fast implementation of the datetime type.");
+ if (m == NULL)
+ return;
+
+ if (PyType_Ready(&PyDateTime_DateType) < 0)
+ return;
+ if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
+ return;
+ if (PyType_Ready(&PyDateTime_DeltaType) < 0)
+ return;
+ if (PyType_Ready(&PyDateTime_TimeType) < 0)
+ return;
+ if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
+ return;
+
+ /* timedelta values */
+ d = PyDateTime_DeltaType.tp_dict;
+
+ x = new_delta(0, 0, 1, 0);
+ if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
+ if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
+ if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ /* date values */
+ d = PyDateTime_DateType.tp_dict;
+
+ x = new_date(1, 1, 1);
+ if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_date(MAXYEAR, 12, 31);
+ if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_delta(1, 0, 0, 0);
+ if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ /* time values */
+ d = PyDateTime_TimeType.tp_dict;
+
+ x = new_time(0, 0, 0, 0, Py_None);
+ if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_time(23, 59, 59, 999999, Py_None);
+ if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_delta(0, 0, 1, 0);
+ if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ /* datetime values */
+ d = PyDateTime_DateTimeType.tp_dict;
+
+ x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
+ if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
+ if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ x = new_delta(0, 0, 1, 0);
+ if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+ return;
+ Py_DECREF(x);
+
+ /* module initialization */
+ PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
+ PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
+
+ Py_INCREF(&PyDateTime_DateType);
+ PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
+
+ Py_INCREF(&PyDateTime_DateTimeType);
+ PyModule_AddObject(m, "datetime",
+ (PyObject *)&PyDateTime_DateTimeType);
+
+ Py_INCREF(&PyDateTime_TimeType);
+ PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
+
+ Py_INCREF(&PyDateTime_DeltaType);
+ PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
+
+ Py_INCREF(&PyDateTime_TZInfoType);
+ PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
+
+ x = PyCapsule_New(&CAPI, PyDateTime_CAPSULE_NAME, NULL);
+ if (x == NULL)
+ return;
+ PyModule_AddObject(m, "datetime_CAPI", x);
+
+ /* A 4-year cycle has an extra leap day over what we'd get from
+ * pasting together 4 single years.
+ */
+ assert(DI4Y == 4 * 365 + 1);
+ assert(DI4Y == days_before_year(4+1));
+
+ /* Similarly, a 400-year cycle has an extra leap day over what we'd
+ * get from pasting together 4 100-year cycles.
+ */
+ assert(DI400Y == 4 * DI100Y + 1);
+ assert(DI400Y == days_before_year(400+1));
+
+ /* OTOH, a 100-year cycle has one fewer leap day than we'd get from
+ * pasting together 25 4-year cycles.
+ */
+ assert(DI100Y == 25 * DI4Y - 1);
+ assert(DI100Y == days_before_year(100+1));
+
+ us_per_us = PyInt_FromLong(1);
+ us_per_ms = PyInt_FromLong(1000);
+ us_per_second = PyInt_FromLong(1000000);
+ us_per_minute = PyInt_FromLong(60000000);
+ seconds_per_day = PyInt_FromLong(24 * 3600);
+ if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
+ us_per_minute == NULL || seconds_per_day == NULL)
+ return;
+
+ /* The rest are too big for 32-bit ints, but even
+ * us_per_week fits in 40 bits, so doubles should be exact.
+ */
+ us_per_hour = PyLong_FromDouble(3600000000.0);
+ us_per_day = PyLong_FromDouble(86400000000.0);
+ us_per_week = PyLong_FromDouble(604800000000.0);
+ if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
+ return;
+}
+
+/* ---------------------------------------------------------------------------
+Some time zone algebra. For a datetime x, let
+ x.n = x stripped of its timezone -- its naive time.
+ x.o = x.utcoffset(), and assuming that doesn't raise an exception or
+ return None
+ x.d = x.dst(), and assuming that doesn't raise an exception or
+ return None
+ x.s = x's standard offset, x.o - x.d
+
+Now some derived rules, where k is a duration (timedelta).
+
+1. x.o = x.s + x.d
+ This follows from the definition of x.s.
+
+2. If x and y have the same tzinfo member, x.s = y.s.
+ This is actually a requirement, an assumption we need to make about
+ sane tzinfo classes.
+
+3. The naive UTC time corresponding to x is x.n - x.o.
+ This is again a requirement for a sane tzinfo class.
+
+4. (x+k).s = x.s
+ This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
+
+5. (x+k).n = x.n + k
+ Again follows from how arithmetic is defined.
+
+Now we can explain tz.fromutc(x). Let's assume it's an interesting case
+(meaning that the various tzinfo methods exist, and don't blow up or return
+None when called).
+
+The function wants to return a datetime y with timezone tz, equivalent to x.
+x is already in UTC.
+
+By #3, we want
+
+ y.n - y.o = x.n [1]
+
+The algorithm starts by attaching tz to x.n, and calling that y. So
+x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
+becomes true; in effect, we want to solve [2] for k:
+
+ (y+k).n - (y+k).o = x.n [2]
+
+By #1, this is the same as
+
+ (y+k).n - ((y+k).s + (y+k).d) = x.n [3]
+
+By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
+Substituting that into [3],
+
+ x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
+ k - (y+k).s - (y+k).d = 0; rearranging,
+ k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
+ k = y.s - (y+k).d
+
+On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
+approximate k by ignoring the (y+k).d term at first. Note that k can't be
+very large, since all offset-returning methods return a duration of magnitude
+less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
+be 0, so ignoring it has no consequence then.
+
+In any case, the new value is
+
+ z = y + y.s [4]
+
+It's helpful to step back at look at [4] from a higher level: it's simply
+mapping from UTC to tz's standard time.
+
+At this point, if
+
+ z.n - z.o = x.n [5]
+
+we have an equivalent time, and are almost done. The insecurity here is
+at the start of daylight time. Picture US Eastern for concreteness. The wall
+time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
+sense then. The docs ask that an Eastern tzinfo class consider such a time to
+be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
+on the day DST starts. We want to return the 1:MM EST spelling because that's
+the only spelling that makes sense on the local wall clock.
+
+In fact, if [5] holds at this point, we do have the standard-time spelling,
+but that takes a bit of proof. We first prove a stronger result. What's the
+difference between the LHS and RHS of [5]? Let
+
+ diff = x.n - (z.n - z.o) [6]
+
+Now
+ z.n = by [4]
+ (y + y.s).n = by #5
+ y.n + y.s = since y.n = x.n
+ x.n + y.s = since z and y are have the same tzinfo member,
+ y.s = z.s by #2
+ x.n + z.s
+
+Plugging that back into [6] gives
+
+ diff =
+ x.n - ((x.n + z.s) - z.o) = expanding
+ x.n - x.n - z.s + z.o = cancelling
+ - z.s + z.o = by #2
+ z.d
+
+So diff = z.d.
+
+If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
+spelling we wanted in the endcase described above. We're done. Contrarily,
+if z.d = 0, then we have a UTC equivalent, and are also done.
+
+If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
+add to z (in effect, z is in tz's standard time, and we need to shift the
+local clock into tz's daylight time).
+
+Let
+
+ z' = z + z.d = z + diff [7]
+
+and we can again ask whether
+
+ z'.n - z'.o = x.n [8]
+
+If so, we're done. If not, the tzinfo class is insane, according to the
+assumptions we've made. This also requires a bit of proof. As before, let's
+compute the difference between the LHS and RHS of [8] (and skipping some of
+the justifications for the kinds of substitutions we've done several times
+already):
+
+ diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
+ x.n - (z.n + diff - z'.o) = replacing diff via [6]
+ x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
+ x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
+ - z.n + z.n - z.o + z'.o = cancel z.n
+ - z.o + z'.o = #1 twice
+ -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
+ z'.d - z.d
+
+So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
+we've found the UTC-equivalent so are done. In fact, we stop with [7] and
+return z', not bothering to compute z'.d.
+
+How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
+a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
+would have to change the result dst() returns: we start in DST, and moving
+a little further into it takes us out of DST.
+
+There isn't a sane case where this can happen. The closest it gets is at
+the end of DST, where there's an hour in UTC with no spelling in a hybrid
+tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
+that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
+UTC) because the docs insist on that, but 0:MM is taken as being in daylight
+time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
+clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
+standard time. Since that's what the local clock *does*, we want to map both
+UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
+in local time, but so it goes -- it's the way the local clock works.
+
+When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
+so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
+z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
+(correctly) concludes that z' is not UTC-equivalent to x.
+
+Because we know z.d said z was in daylight time (else [5] would have held and
+we would have stopped then), and we know z.d != z'.d (else [8] would have held
+and we would have stopped then), and there are only 2 possible values dst() can
+return in Eastern, it follows that z'.d must be 0 (which it is in the example,
+but the reasoning doesn't depend on the example -- it depends on there being
+two possible dst() outcomes, one zero and the other non-zero). Therefore
+z' must be in standard time, and is the spelling we want in this case.
+
+Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
+concerned (because it takes z' as being in standard time rather than the
+daylight time we intend here), but returning it gives the real-life "local
+clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
+tz.
+
+When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
+the 1:MM standard time spelling we want.
+
+So how can this break? One of the assumptions must be violated. Two
+possibilities:
+
+1) [2] effectively says that y.s is invariant across all y belong to a given
+ time zone. This isn't true if, for political reasons or continental drift,
+ a region decides to change its base offset from UTC.
+
+2) There may be versions of "double daylight" time where the tail end of
+ the analysis gives up a step too early. I haven't thought about that
+ enough to say.
+
+In any case, it's clear that the default fromutc() is strong enough to handle
+"almost all" time zones: so long as the standard offset is invariant, it
+doesn't matter if daylight time transition points change from year to year, or
+if daylight time is skipped in some years; it doesn't matter how large or
+small dst() may get within its bounds; and it doesn't even matter if some
+perverse time zone returns a negative dst()). So a breaking case must be
+pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
+--------------------------------------------------------------------------- */