summaryrefslogtreecommitdiffstats
path: root/AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c
diff options
context:
space:
mode:
Diffstat (limited to 'AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c')
-rw-r--r--AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c3044
1 files changed, 3044 insertions, 0 deletions
diff --git a/AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c b/AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c
new file mode 100644
index 0000000000..26325240fe
--- /dev/null
+++ b/AppPkg/Applications/Python/Python-2.7.2/Objects/listobject.c
@@ -0,0 +1,3044 @@
+/* List object implementation */
+
+#include "Python.h"
+
+#ifdef STDC_HEADERS
+#include <stddef.h>
+#else
+#include <sys/types.h> /* For size_t */
+#endif
+
+/* Ensure ob_item has room for at least newsize elements, and set
+ * ob_size to newsize. If newsize > ob_size on entry, the content
+ * of the new slots at exit is undefined heap trash; it's the caller's
+ * responsibility to overwrite them with sane values.
+ * The number of allocated elements may grow, shrink, or stay the same.
+ * Failure is impossible if newsize <= self.allocated on entry, although
+ * that partly relies on an assumption that the system realloc() never
+ * fails when passed a number of bytes <= the number of bytes last
+ * allocated (the C standard doesn't guarantee this, but it's hard to
+ * imagine a realloc implementation where it wouldn't be true).
+ * Note that self->ob_item may change, and even if newsize is less
+ * than ob_size on entry.
+ */
+static int
+list_resize(PyListObject *self, Py_ssize_t newsize)
+{
+ PyObject **items;
+ size_t new_allocated;
+ Py_ssize_t allocated = self->allocated;
+
+ /* Bypass realloc() when a previous overallocation is large enough
+ to accommodate the newsize. If the newsize falls lower than half
+ the allocated size, then proceed with the realloc() to shrink the list.
+ */
+ if (allocated >= newsize && newsize >= (allocated >> 1)) {
+ assert(self->ob_item != NULL || newsize == 0);
+ Py_SIZE(self) = newsize;
+ return 0;
+ }
+
+ /* This over-allocates proportional to the list size, making room
+ * for additional growth. The over-allocation is mild, but is
+ * enough to give linear-time amortized behavior over a long
+ * sequence of appends() in the presence of a poorly-performing
+ * system realloc().
+ * The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
+ */
+ new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6);
+
+ /* check for integer overflow */
+ if (new_allocated > PY_SIZE_MAX - newsize) {
+ PyErr_NoMemory();
+ return -1;
+ } else {
+ new_allocated += newsize;
+ }
+
+ if (newsize == 0)
+ new_allocated = 0;
+ items = self->ob_item;
+ if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *)))
+ PyMem_RESIZE(items, PyObject *, new_allocated);
+ else
+ items = NULL;
+ if (items == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ self->ob_item = items;
+ Py_SIZE(self) = newsize;
+ self->allocated = new_allocated;
+ return 0;
+}
+
+/* Debug statistic to compare allocations with reuse through the free list */
+#undef SHOW_ALLOC_COUNT
+#ifdef SHOW_ALLOC_COUNT
+static size_t count_alloc = 0;
+static size_t count_reuse = 0;
+
+static void
+show_alloc(void)
+{
+ fprintf(stderr, "List allocations: %" PY_FORMAT_SIZE_T "d\n",
+ count_alloc);
+ fprintf(stderr, "List reuse through freelist: %" PY_FORMAT_SIZE_T
+ "d\n", count_reuse);
+ fprintf(stderr, "%.2f%% reuse rate\n\n",
+ (100.0*count_reuse/(count_alloc+count_reuse)));
+}
+#endif
+
+/* Empty list reuse scheme to save calls to malloc and free */
+#ifndef PyList_MAXFREELIST
+#define PyList_MAXFREELIST 80
+#endif
+static PyListObject *free_list[PyList_MAXFREELIST];
+static int numfree = 0;
+
+void
+PyList_Fini(void)
+{
+ PyListObject *op;
+
+ while (numfree) {
+ op = free_list[--numfree];
+ assert(PyList_CheckExact(op));
+ PyObject_GC_Del(op);
+ }
+}
+
+PyObject *
+PyList_New(Py_ssize_t size)
+{
+ PyListObject *op;
+ size_t nbytes;
+#ifdef SHOW_ALLOC_COUNT
+ static int initialized = 0;
+ if (!initialized) {
+ Py_AtExit(show_alloc);
+ initialized = 1;
+ }
+#endif
+
+ if (size < 0) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ /* Check for overflow without an actual overflow,
+ * which can cause compiler to optimise out */
+ if ((size_t)size > PY_SIZE_MAX / sizeof(PyObject *))
+ return PyErr_NoMemory();
+ nbytes = size * sizeof(PyObject *);
+ if (numfree) {
+ numfree--;
+ op = free_list[numfree];
+ _Py_NewReference((PyObject *)op);
+#ifdef SHOW_ALLOC_COUNT
+ count_reuse++;
+#endif
+ } else {
+ op = PyObject_GC_New(PyListObject, &PyList_Type);
+ if (op == NULL)
+ return NULL;
+#ifdef SHOW_ALLOC_COUNT
+ count_alloc++;
+#endif
+ }
+ if (size <= 0)
+ op->ob_item = NULL;
+ else {
+ op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
+ if (op->ob_item == NULL) {
+ Py_DECREF(op);
+ return PyErr_NoMemory();
+ }
+ memset(op->ob_item, 0, nbytes);
+ }
+ Py_SIZE(op) = size;
+ op->allocated = size;
+ _PyObject_GC_TRACK(op);
+ return (PyObject *) op;
+}
+
+Py_ssize_t
+PyList_Size(PyObject *op)
+{
+ if (!PyList_Check(op)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ else
+ return Py_SIZE(op);
+}
+
+static PyObject *indexerr = NULL;
+
+PyObject *
+PyList_GetItem(PyObject *op, Py_ssize_t i)
+{
+ if (!PyList_Check(op)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ if (i < 0 || i >= Py_SIZE(op)) {
+ if (indexerr == NULL) {
+ indexerr = PyString_FromString(
+ "list index out of range");
+ if (indexerr == NULL)
+ return NULL;
+ }
+ PyErr_SetObject(PyExc_IndexError, indexerr);
+ return NULL;
+ }
+ return ((PyListObject *)op) -> ob_item[i];
+}
+
+int
+PyList_SetItem(register PyObject *op, register Py_ssize_t i,
+ register PyObject *newitem)
+{
+ register PyObject *olditem;
+ register PyObject **p;
+ if (!PyList_Check(op)) {
+ Py_XDECREF(newitem);
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ if (i < 0 || i >= Py_SIZE(op)) {
+ Py_XDECREF(newitem);
+ PyErr_SetString(PyExc_IndexError,
+ "list assignment index out of range");
+ return -1;
+ }
+ p = ((PyListObject *)op) -> ob_item + i;
+ olditem = *p;
+ *p = newitem;
+ Py_XDECREF(olditem);
+ return 0;
+}
+
+static int
+ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
+{
+ Py_ssize_t i, n = Py_SIZE(self);
+ PyObject **items;
+ if (v == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ if (n == PY_SSIZE_T_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot add more objects to list");
+ return -1;
+ }
+
+ if (list_resize(self, n+1) == -1)
+ return -1;
+
+ if (where < 0) {
+ where += n;
+ if (where < 0)
+ where = 0;
+ }
+ if (where > n)
+ where = n;
+ items = self->ob_item;
+ for (i = n; --i >= where; )
+ items[i+1] = items[i];
+ Py_INCREF(v);
+ items[where] = v;
+ return 0;
+}
+
+int
+PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
+{
+ if (!PyList_Check(op)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ return ins1((PyListObject *)op, where, newitem);
+}
+
+static int
+app1(PyListObject *self, PyObject *v)
+{
+ Py_ssize_t n = PyList_GET_SIZE(self);
+
+ assert (v != NULL);
+ if (n == PY_SSIZE_T_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot add more objects to list");
+ return -1;
+ }
+
+ if (list_resize(self, n+1) == -1)
+ return -1;
+
+ Py_INCREF(v);
+ PyList_SET_ITEM(self, n, v);
+ return 0;
+}
+
+int
+PyList_Append(PyObject *op, PyObject *newitem)
+{
+ if (PyList_Check(op) && (newitem != NULL))
+ return app1((PyListObject *)op, newitem);
+ PyErr_BadInternalCall();
+ return -1;
+}
+
+/* Methods */
+
+static void
+list_dealloc(PyListObject *op)
+{
+ Py_ssize_t i;
+ PyObject_GC_UnTrack(op);
+ Py_TRASHCAN_SAFE_BEGIN(op)
+ if (op->ob_item != NULL) {
+ /* Do it backwards, for Christian Tismer.
+ There's a simple test case where somehow this reduces
+ thrashing when a *very* large list is created and
+ immediately deleted. */
+ i = Py_SIZE(op);
+ while (--i >= 0) {
+ Py_XDECREF(op->ob_item[i]);
+ }
+ PyMem_FREE(op->ob_item);
+ }
+ if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
+ free_list[numfree++] = op;
+ else
+ Py_TYPE(op)->tp_free((PyObject *)op);
+ Py_TRASHCAN_SAFE_END(op)
+}
+
+static int
+list_print(PyListObject *op, FILE *fp, int flags)
+{
+ int rc;
+ Py_ssize_t i;
+ PyObject *item;
+
+ rc = Py_ReprEnter((PyObject*)op);
+ if (rc != 0) {
+ if (rc < 0)
+ return rc;
+ Py_BEGIN_ALLOW_THREADS
+ fprintf(fp, "[...]");
+ Py_END_ALLOW_THREADS
+ return 0;
+ }
+ Py_BEGIN_ALLOW_THREADS
+ fprintf(fp, "[");
+ Py_END_ALLOW_THREADS
+ for (i = 0; i < Py_SIZE(op); i++) {
+ item = op->ob_item[i];
+ Py_INCREF(item);
+ if (i > 0) {
+ Py_BEGIN_ALLOW_THREADS
+ fprintf(fp, ", ");
+ Py_END_ALLOW_THREADS
+ }
+ if (PyObject_Print(item, fp, 0) != 0) {
+ Py_DECREF(item);
+ Py_ReprLeave((PyObject *)op);
+ return -1;
+ }
+ Py_DECREF(item);
+ }
+ Py_BEGIN_ALLOW_THREADS
+ fprintf(fp, "]");
+ Py_END_ALLOW_THREADS
+ Py_ReprLeave((PyObject *)op);
+ return 0;
+}
+
+static PyObject *
+list_repr(PyListObject *v)
+{
+ Py_ssize_t i;
+ PyObject *s, *temp;
+ PyObject *pieces = NULL, *result = NULL;
+
+ i = Py_ReprEnter((PyObject*)v);
+ if (i != 0) {
+ return i > 0 ? PyString_FromString("[...]") : NULL;
+ }
+
+ if (Py_SIZE(v) == 0) {
+ result = PyString_FromString("[]");
+ goto Done;
+ }
+
+ pieces = PyList_New(0);
+ if (pieces == NULL)
+ goto Done;
+
+ /* Do repr() on each element. Note that this may mutate the list,
+ so must refetch the list size on each iteration. */
+ for (i = 0; i < Py_SIZE(v); ++i) {
+ int status;
+ if (Py_EnterRecursiveCall(" while getting the repr of a list"))
+ goto Done;
+ s = PyObject_Repr(v->ob_item[i]);
+ Py_LeaveRecursiveCall();
+ if (s == NULL)
+ goto Done;
+ status = PyList_Append(pieces, s);
+ Py_DECREF(s); /* append created a new ref */
+ if (status < 0)
+ goto Done;
+ }
+
+ /* Add "[]" decorations to the first and last items. */
+ assert(PyList_GET_SIZE(pieces) > 0);
+ s = PyString_FromString("[");
+ if (s == NULL)
+ goto Done;
+ temp = PyList_GET_ITEM(pieces, 0);
+ PyString_ConcatAndDel(&s, temp);
+ PyList_SET_ITEM(pieces, 0, s);
+ if (s == NULL)
+ goto Done;
+
+ s = PyString_FromString("]");
+ if (s == NULL)
+ goto Done;
+ temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
+ PyString_ConcatAndDel(&temp, s);
+ PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
+ if (temp == NULL)
+ goto Done;
+
+ /* Paste them all together with ", " between. */
+ s = PyString_FromString(", ");
+ if (s == NULL)
+ goto Done;
+ result = _PyString_Join(s, pieces);
+ Py_DECREF(s);
+
+Done:
+ Py_XDECREF(pieces);
+ Py_ReprLeave((PyObject *)v);
+ return result;
+}
+
+static Py_ssize_t
+list_length(PyListObject *a)
+{
+ return Py_SIZE(a);
+}
+
+static int
+list_contains(PyListObject *a, PyObject *el)
+{
+ Py_ssize_t i;
+ int cmp;
+
+ for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
+ cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
+ Py_EQ);
+ return cmp;
+}
+
+static PyObject *
+list_item(PyListObject *a, Py_ssize_t i)
+{
+ if (i < 0 || i >= Py_SIZE(a)) {
+ if (indexerr == NULL) {
+ indexerr = PyString_FromString(
+ "list index out of range");
+ if (indexerr == NULL)
+ return NULL;
+ }
+ PyErr_SetObject(PyExc_IndexError, indexerr);
+ return NULL;
+ }
+ Py_INCREF(a->ob_item[i]);
+ return a->ob_item[i];
+}
+
+static PyObject *
+list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
+{
+ PyListObject *np;
+ PyObject **src, **dest;
+ Py_ssize_t i, len;
+ if (ilow < 0)
+ ilow = 0;
+ else if (ilow > Py_SIZE(a))
+ ilow = Py_SIZE(a);
+ if (ihigh < ilow)
+ ihigh = ilow;
+ else if (ihigh > Py_SIZE(a))
+ ihigh = Py_SIZE(a);
+ len = ihigh - ilow;
+ np = (PyListObject *) PyList_New(len);
+ if (np == NULL)
+ return NULL;
+
+ src = a->ob_item + ilow;
+ dest = np->ob_item;
+ for (i = 0; i < len; i++) {
+ PyObject *v = src[i];
+ Py_INCREF(v);
+ dest[i] = v;
+ }
+ return (PyObject *)np;
+}
+
+PyObject *
+PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
+{
+ if (!PyList_Check(a)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ return list_slice((PyListObject *)a, ilow, ihigh);
+}
+
+static PyObject *
+list_concat(PyListObject *a, PyObject *bb)
+{
+ Py_ssize_t size;
+ Py_ssize_t i;
+ PyObject **src, **dest;
+ PyListObject *np;
+ if (!PyList_Check(bb)) {
+ PyErr_Format(PyExc_TypeError,
+ "can only concatenate list (not \"%.200s\") to list",
+ bb->ob_type->tp_name);
+ return NULL;
+ }
+#define b ((PyListObject *)bb)
+ size = Py_SIZE(a) + Py_SIZE(b);
+ if (size < 0)
+ return PyErr_NoMemory();
+ np = (PyListObject *) PyList_New(size);
+ if (np == NULL) {
+ return NULL;
+ }
+ src = a->ob_item;
+ dest = np->ob_item;
+ for (i = 0; i < Py_SIZE(a); i++) {
+ PyObject *v = src[i];
+ Py_INCREF(v);
+ dest[i] = v;
+ }
+ src = b->ob_item;
+ dest = np->ob_item + Py_SIZE(a);
+ for (i = 0; i < Py_SIZE(b); i++) {
+ PyObject *v = src[i];
+ Py_INCREF(v);
+ dest[i] = v;
+ }
+ return (PyObject *)np;
+#undef b
+}
+
+static PyObject *
+list_repeat(PyListObject *a, Py_ssize_t n)
+{
+ Py_ssize_t i, j;
+ Py_ssize_t size;
+ PyListObject *np;
+ PyObject **p, **items;
+ PyObject *elem;
+ if (n < 0)
+ n = 0;
+ size = Py_SIZE(a) * n;
+ if (n && size/n != Py_SIZE(a))
+ return PyErr_NoMemory();
+ if (size == 0)
+ return PyList_New(0);
+ np = (PyListObject *) PyList_New(size);
+ if (np == NULL)
+ return NULL;
+
+ items = np->ob_item;
+ if (Py_SIZE(a) == 1) {
+ elem = a->ob_item[0];
+ for (i = 0; i < n; i++) {
+ items[i] = elem;
+ Py_INCREF(elem);
+ }
+ return (PyObject *) np;
+ }
+ p = np->ob_item;
+ items = a->ob_item;
+ for (i = 0; i < n; i++) {
+ for (j = 0; j < Py_SIZE(a); j++) {
+ *p = items[j];
+ Py_INCREF(*p);
+ p++;
+ }
+ }
+ return (PyObject *) np;
+}
+
+static int
+list_clear(PyListObject *a)
+{
+ Py_ssize_t i;
+ PyObject **item = a->ob_item;
+ if (item != NULL) {
+ /* Because XDECREF can recursively invoke operations on
+ this list, we make it empty first. */
+ i = Py_SIZE(a);
+ Py_SIZE(a) = 0;
+ a->ob_item = NULL;
+ a->allocated = 0;
+ while (--i >= 0) {
+ Py_XDECREF(item[i]);
+ }
+ PyMem_FREE(item);
+ }
+ /* Never fails; the return value can be ignored.
+ Note that there is no guarantee that the list is actually empty
+ at this point, because XDECREF may have populated it again! */
+ return 0;
+}
+
+/* a[ilow:ihigh] = v if v != NULL.
+ * del a[ilow:ihigh] if v == NULL.
+ *
+ * Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's
+ * guaranteed the call cannot fail.
+ */
+static int
+list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
+{
+ /* Because [X]DECREF can recursively invoke list operations on
+ this list, we must postpone all [X]DECREF activity until
+ after the list is back in its canonical shape. Therefore
+ we must allocate an additional array, 'recycle', into which
+ we temporarily copy the items that are deleted from the
+ list. :-( */
+ PyObject *recycle_on_stack[8];
+ PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
+ PyObject **item;
+ PyObject **vitem = NULL;
+ PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
+ Py_ssize_t n; /* # of elements in replacement list */
+ Py_ssize_t norig; /* # of elements in list getting replaced */
+ Py_ssize_t d; /* Change in size */
+ Py_ssize_t k;
+ size_t s;
+ int result = -1; /* guilty until proved innocent */
+#define b ((PyListObject *)v)
+ if (v == NULL)
+ n = 0;
+ else {
+ if (a == b) {
+ /* Special case "a[i:j] = a" -- copy b first */
+ v = list_slice(b, 0, Py_SIZE(b));
+ if (v == NULL)
+ return result;
+ result = list_ass_slice(a, ilow, ihigh, v);
+ Py_DECREF(v);
+ return result;
+ }
+ v_as_SF = PySequence_Fast(v, "can only assign an iterable");
+ if(v_as_SF == NULL)
+ goto Error;
+ n = PySequence_Fast_GET_SIZE(v_as_SF);
+ vitem = PySequence_Fast_ITEMS(v_as_SF);
+ }
+ if (ilow < 0)
+ ilow = 0;
+ else if (ilow > Py_SIZE(a))
+ ilow = Py_SIZE(a);
+
+ if (ihigh < ilow)
+ ihigh = ilow;
+ else if (ihigh > Py_SIZE(a))
+ ihigh = Py_SIZE(a);
+
+ norig = ihigh - ilow;
+ assert(norig >= 0);
+ d = n - norig;
+ if (Py_SIZE(a) + d == 0) {
+ Py_XDECREF(v_as_SF);
+ return list_clear(a);
+ }
+ item = a->ob_item;
+ /* recycle the items that we are about to remove */
+ s = norig * sizeof(PyObject *);
+ if (s > sizeof(recycle_on_stack)) {
+ recycle = (PyObject **)PyMem_MALLOC(s);
+ if (recycle == NULL) {
+ PyErr_NoMemory();
+ goto Error;
+ }
+ }
+ memcpy(recycle, &item[ilow], s);
+
+ if (d < 0) { /* Delete -d items */
+ memmove(&item[ihigh+d], &item[ihigh],
+ (Py_SIZE(a) - ihigh)*sizeof(PyObject *));
+ list_resize(a, Py_SIZE(a) + d);
+ item = a->ob_item;
+ }
+ else if (d > 0) { /* Insert d items */
+ k = Py_SIZE(a);
+ if (list_resize(a, k+d) < 0)
+ goto Error;
+ item = a->ob_item;
+ memmove(&item[ihigh+d], &item[ihigh],
+ (k - ihigh)*sizeof(PyObject *));
+ }
+ for (k = 0; k < n; k++, ilow++) {
+ PyObject *w = vitem[k];
+ Py_XINCREF(w);
+ item[ilow] = w;
+ }
+ for (k = norig - 1; k >= 0; --k)
+ Py_XDECREF(recycle[k]);
+ result = 0;
+ Error:
+ if (recycle != recycle_on_stack)
+ PyMem_FREE(recycle);
+ Py_XDECREF(v_as_SF);
+ return result;
+#undef b
+}
+
+int
+PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
+{
+ if (!PyList_Check(a)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
+}
+
+static PyObject *
+list_inplace_repeat(PyListObject *self, Py_ssize_t n)
+{
+ PyObject **items;
+ Py_ssize_t size, i, j, p;
+
+
+ size = PyList_GET_SIZE(self);
+ if (size == 0 || n == 1) {
+ Py_INCREF(self);
+ return (PyObject *)self;
+ }
+
+ if (n < 1) {
+ (void)list_clear(self);
+ Py_INCREF(self);
+ return (PyObject *)self;
+ }
+
+ if (size > PY_SSIZE_T_MAX / n) {
+ return PyErr_NoMemory();
+ }
+
+ if (list_resize(self, size*n) == -1)
+ return NULL;
+
+ p = size;
+ items = self->ob_item;
+ for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
+ for (j = 0; j < size; j++) {
+ PyObject *o = items[j];
+ Py_INCREF(o);
+ items[p++] = o;
+ }
+ }
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+static int
+list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v)
+{
+ PyObject *old_value;
+ if (i < 0 || i >= Py_SIZE(a)) {
+ PyErr_SetString(PyExc_IndexError,
+ "list assignment index out of range");
+ return -1;
+ }
+ if (v == NULL)
+ return list_ass_slice(a, i, i+1, v);
+ Py_INCREF(v);
+ old_value = a->ob_item[i];
+ a->ob_item[i] = v;
+ Py_DECREF(old_value);
+ return 0;
+}
+
+static PyObject *
+listinsert(PyListObject *self, PyObject *args)
+{
+ Py_ssize_t i;
+ PyObject *v;
+ if (!PyArg_ParseTuple(args, "nO:insert", &i, &v))
+ return NULL;
+ if (ins1(self, i, v) == 0)
+ Py_RETURN_NONE;
+ return NULL;
+}
+
+static PyObject *
+listappend(PyListObject *self, PyObject *v)
+{
+ if (app1(self, v) == 0)
+ Py_RETURN_NONE;
+ return NULL;
+}
+
+static PyObject *
+listextend(PyListObject *self, PyObject *b)
+{
+ PyObject *it; /* iter(v) */
+ Py_ssize_t m; /* size of self */
+ Py_ssize_t n; /* guess for size of b */
+ Py_ssize_t mn; /* m + n */
+ Py_ssize_t i;
+ PyObject *(*iternext)(PyObject *);
+
+ /* Special cases:
+ 1) lists and tuples which can use PySequence_Fast ops
+ 2) extending self to self requires making a copy first
+ */
+ if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) {
+ PyObject **src, **dest;
+ b = PySequence_Fast(b, "argument must be iterable");
+ if (!b)
+ return NULL;
+ n = PySequence_Fast_GET_SIZE(b);
+ if (n == 0) {
+ /* short circuit when b is empty */
+ Py_DECREF(b);
+ Py_RETURN_NONE;
+ }
+ m = Py_SIZE(self);
+ if (list_resize(self, m + n) == -1) {
+ Py_DECREF(b);
+ return NULL;
+ }
+ /* note that we may still have self == b here for the
+ * situation a.extend(a), but the following code works
+ * in that case too. Just make sure to resize self
+ * before calling PySequence_Fast_ITEMS.
+ */
+ /* populate the end of self with b's items */
+ src = PySequence_Fast_ITEMS(b);
+ dest = self->ob_item + m;
+ for (i = 0; i < n; i++) {
+ PyObject *o = src[i];
+ Py_INCREF(o);
+ dest[i] = o;
+ }
+ Py_DECREF(b);
+ Py_RETURN_NONE;
+ }
+
+ it = PyObject_GetIter(b);
+ if (it == NULL)
+ return NULL;
+ iternext = *it->ob_type->tp_iternext;
+
+ /* Guess a result list size. */
+ n = _PyObject_LengthHint(b, 8);
+ if (n == -1) {
+ Py_DECREF(it);
+ return NULL;
+ }
+ m = Py_SIZE(self);
+ mn = m + n;
+ if (mn >= m) {
+ /* Make room. */
+ if (list_resize(self, mn) == -1)
+ goto error;
+ /* Make the list sane again. */
+ Py_SIZE(self) = m;
+ }
+ /* Else m + n overflowed; on the chance that n lied, and there really
+ * is enough room, ignore it. If n was telling the truth, we'll
+ * eventually run out of memory during the loop.
+ */
+
+ /* Run iterator to exhaustion. */
+ for (;;) {
+ PyObject *item = iternext(it);
+ if (item == NULL) {
+ if (PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_StopIteration))
+ PyErr_Clear();
+ else
+ goto error;
+ }
+ break;
+ }
+ if (Py_SIZE(self) < self->allocated) {
+ /* steals ref */
+ PyList_SET_ITEM(self, Py_SIZE(self), item);
+ ++Py_SIZE(self);
+ }
+ else {
+ int status = app1(self, item);
+ Py_DECREF(item); /* append creates a new ref */
+ if (status < 0)
+ goto error;
+ }
+ }
+
+ /* Cut back result list if initial guess was too large. */
+ if (Py_SIZE(self) < self->allocated)
+ list_resize(self, Py_SIZE(self)); /* shrinking can't fail */
+
+ Py_DECREF(it);
+ Py_RETURN_NONE;
+
+ error:
+ Py_DECREF(it);
+ return NULL;
+}
+
+PyObject *
+_PyList_Extend(PyListObject *self, PyObject *b)
+{
+ return listextend(self, b);
+}
+
+static PyObject *
+list_inplace_concat(PyListObject *self, PyObject *other)
+{
+ PyObject *result;
+
+ result = listextend(self, other);
+ if (result == NULL)
+ return result;
+ Py_DECREF(result);
+ Py_INCREF(self);
+ return (PyObject *)self;
+}
+
+static PyObject *
+listpop(PyListObject *self, PyObject *args)
+{
+ Py_ssize_t i = -1;
+ PyObject *v;
+ int status;
+
+ if (!PyArg_ParseTuple(args, "|n:pop", &i))
+ return NULL;
+
+ if (Py_SIZE(self) == 0) {
+ /* Special-case most common failure cause */
+ PyErr_SetString(PyExc_IndexError, "pop from empty list");
+ return NULL;
+ }
+ if (i < 0)
+ i += Py_SIZE(self);
+ if (i < 0 || i >= Py_SIZE(self)) {
+ PyErr_SetString(PyExc_IndexError, "pop index out of range");
+ return NULL;
+ }
+ v = self->ob_item[i];
+ if (i == Py_SIZE(self) - 1) {
+ status = list_resize(self, Py_SIZE(self) - 1);
+ assert(status >= 0);
+ return v; /* and v now owns the reference the list had */
+ }
+ Py_INCREF(v);
+ status = list_ass_slice(self, i, i+1, (PyObject *)NULL);
+ assert(status >= 0);
+ /* Use status, so that in a release build compilers don't
+ * complain about the unused name.
+ */
+ (void) status;
+
+ return v;
+}
+
+/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
+static void
+reverse_slice(PyObject **lo, PyObject **hi)
+{
+ assert(lo && hi);
+
+ --hi;
+ while (lo < hi) {
+ PyObject *t = *lo;
+ *lo = *hi;
+ *hi = t;
+ ++lo;
+ --hi;
+ }
+}
+
+/* Lots of code for an adaptive, stable, natural mergesort. There are many
+ * pieces to this algorithm; read listsort.txt for overviews and details.
+ */
+
+/* Comparison function. Takes care of calling a user-supplied
+ * comparison function (any callable Python object), which must not be
+ * NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
+ * with Py_LT if you know it's NULL).
+ * Returns -1 on error, 1 if x < y, 0 if x >= y.
+ */
+static int
+islt(PyObject *x, PyObject *y, PyObject *compare)
+{
+ PyObject *res;
+ PyObject *args;
+ Py_ssize_t i;
+
+ assert(compare != NULL);
+ /* Call the user's comparison function and translate the 3-way
+ * result into true or false (or error).
+ */
+ args = PyTuple_New(2);
+ if (args == NULL)
+ return -1;
+ Py_INCREF(x);
+ Py_INCREF(y);
+ PyTuple_SET_ITEM(args, 0, x);
+ PyTuple_SET_ITEM(args, 1, y);
+ res = PyObject_Call(compare, args, NULL);
+ Py_DECREF(args);
+ if (res == NULL)
+ return -1;
+ if (!PyInt_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "comparison function must return int, not %.200s",
+ res->ob_type->tp_name);
+ Py_DECREF(res);
+ return -1;
+ }
+ i = PyInt_AsLong(res);
+ Py_DECREF(res);
+ return i < 0;
+}
+
+/* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
+ * islt. This avoids a layer of function call in the usual case, and
+ * sorting does many comparisons.
+ * Returns -1 on error, 1 if x < y, 0 if x >= y.
+ */
+#define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ? \
+ PyObject_RichCompareBool(X, Y, Py_LT) : \
+ islt(X, Y, COMPARE))
+
+/* Compare X to Y via "<". Goto "fail" if the comparison raises an
+ error. Else "k" is set to true iff X<Y, and an "if (k)" block is
+ started. It makes more sense in context <wink>. X and Y are PyObject*s.
+*/
+#define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail; \
+ if (k)
+
+/* binarysort is the best method for sorting small arrays: it does
+ few compares, but can do data movement quadratic in the number of
+ elements.
+ [lo, hi) is a contiguous slice of a list, and is sorted via
+ binary insertion. This sort is stable.
+ On entry, must have lo <= start <= hi, and that [lo, start) is already
+ sorted (pass start == lo if you don't know!).
+ If islt() complains return -1, else 0.
+ Even in case of error, the output slice will be some permutation of
+ the input (nothing is lost or duplicated).
+*/
+static int
+binarysort(PyObject **lo, PyObject **hi, PyObject **start, PyObject *compare)
+ /* compare -- comparison function object, or NULL for default */
+{
+ register Py_ssize_t k;
+ register PyObject **l, **p, **r;
+ register PyObject *pivot;
+
+ assert(lo <= start && start <= hi);
+ /* assert [lo, start) is sorted */
+ if (lo == start)
+ ++start;
+ for (; start < hi; ++start) {
+ /* set l to where *start belongs */
+ l = lo;
+ r = start;
+ pivot = *r;
+ /* Invariants:
+ * pivot >= all in [lo, l).
+ * pivot < all in [r, start).
+ * The second is vacuously true at the start.
+ */
+ assert(l < r);
+ do {
+ p = l + ((r - l) >> 1);
+ IFLT(pivot, *p)
+ r = p;
+ else
+ l = p+1;
+ } while (l < r);
+ assert(l == r);
+ /* The invariants still hold, so pivot >= all in [lo, l) and
+ pivot < all in [l, start), so pivot belongs at l. Note
+ that if there are elements equal to pivot, l points to the
+ first slot after them -- that's why this sort is stable.
+ Slide over to make room.
+ Caution: using memmove is much slower under MSVC 5;
+ we're not usually moving many slots. */
+ for (p = start; p > l; --p)
+ *p = *(p-1);
+ *l = pivot;
+ }
+ return 0;
+
+ fail:
+ return -1;
+}
+
+/*
+Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
+is required on entry. "A run" is the longest ascending sequence, with
+
+ lo[0] <= lo[1] <= lo[2] <= ...
+
+or the longest descending sequence, with
+
+ lo[0] > lo[1] > lo[2] > ...
+
+Boolean *descending is set to 0 in the former case, or to 1 in the latter.
+For its intended use in a stable mergesort, the strictness of the defn of
+"descending" is needed so that the caller can safely reverse a descending
+sequence without violating stability (strict > ensures there are no equal
+elements to get out of order).
+
+Returns -1 in case of error.
+*/
+static Py_ssize_t
+count_run(PyObject **lo, PyObject **hi, PyObject *compare, int *descending)
+{
+ Py_ssize_t k;
+ Py_ssize_t n;
+
+ assert(lo < hi);
+ *descending = 0;
+ ++lo;
+ if (lo == hi)
+ return 1;
+
+ n = 2;
+ IFLT(*lo, *(lo-1)) {
+ *descending = 1;
+ for (lo = lo+1; lo < hi; ++lo, ++n) {
+ IFLT(*lo, *(lo-1))
+ ;
+ else
+ break;
+ }
+ }
+ else {
+ for (lo = lo+1; lo < hi; ++lo, ++n) {
+ IFLT(*lo, *(lo-1))
+ break;
+ }
+ }
+
+ return n;
+fail:
+ return -1;
+}
+
+/*
+Locate the proper position of key in a sorted vector; if the vector contains
+an element equal to key, return the position immediately to the left of
+the leftmost equal element. [gallop_right() does the same except returns
+the position to the right of the rightmost equal element (if any).]
+
+"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
+
+"hint" is an index at which to begin the search, 0 <= hint < n. The closer
+hint is to the final result, the faster this runs.
+
+The return value is the int k in 0..n such that
+
+ a[k-1] < key <= a[k]
+
+pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
+key belongs at index k; or, IOW, the first k elements of a should precede
+key, and the last n-k should follow key.
+
+Returns -1 on error. See listsort.txt for info on the method.
+*/
+static Py_ssize_t
+gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint, PyObject *compare)
+{
+ Py_ssize_t ofs;
+ Py_ssize_t lastofs;
+ Py_ssize_t k;
+
+ assert(key && a && n > 0 && hint >= 0 && hint < n);
+
+ a += hint;
+ lastofs = 0;
+ ofs = 1;
+ IFLT(*a, key) {
+ /* a[hint] < key -- gallop right, until
+ * a[hint + lastofs] < key <= a[hint + ofs]
+ */
+ const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
+ while (ofs < maxofs) {
+ IFLT(a[ofs], key) {
+ lastofs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) /* int overflow */
+ ofs = maxofs;
+ }
+ else /* key <= a[hint + ofs] */
+ break;
+ }
+ if (ofs > maxofs)
+ ofs = maxofs;
+ /* Translate back to offsets relative to &a[0]. */
+ lastofs += hint;
+ ofs += hint;
+ }
+ else {
+ /* key <= a[hint] -- gallop left, until
+ * a[hint - ofs] < key <= a[hint - lastofs]
+ */
+ const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
+ while (ofs < maxofs) {
+ IFLT(*(a-ofs), key)
+ break;
+ /* key <= a[hint - ofs] */
+ lastofs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) /* int overflow */
+ ofs = maxofs;
+ }
+ if (ofs > maxofs)
+ ofs = maxofs;
+ /* Translate back to positive offsets relative to &a[0]. */
+ k = lastofs;
+ lastofs = hint - ofs;
+ ofs = hint - k;
+ }
+ a -= hint;
+
+ assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
+ /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
+ * right of lastofs but no farther right than ofs. Do a binary
+ * search, with invariant a[lastofs-1] < key <= a[ofs].
+ */
+ ++lastofs;
+ while (lastofs < ofs) {
+ Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
+
+ IFLT(a[m], key)
+ lastofs = m+1; /* a[m] < key */
+ else
+ ofs = m; /* key <= a[m] */
+ }
+ assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */
+ return ofs;
+
+fail:
+ return -1;
+}
+
+/*
+Exactly like gallop_left(), except that if key already exists in a[0:n],
+finds the position immediately to the right of the rightmost equal value.
+
+The return value is the int k in 0..n such that
+
+ a[k-1] <= key < a[k]
+
+or -1 if error.
+
+The code duplication is massive, but this is enough different given that
+we're sticking to "<" comparisons that it's much harder to follow if
+written as one routine with yet another "left or right?" flag.
+*/
+static Py_ssize_t
+gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint, PyObject *compare)
+{
+ Py_ssize_t ofs;
+ Py_ssize_t lastofs;
+ Py_ssize_t k;
+
+ assert(key && a && n > 0 && hint >= 0 && hint < n);
+
+ a += hint;
+ lastofs = 0;
+ ofs = 1;
+ IFLT(key, *a) {
+ /* key < a[hint] -- gallop left, until
+ * a[hint - ofs] <= key < a[hint - lastofs]
+ */
+ const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
+ while (ofs < maxofs) {
+ IFLT(key, *(a-ofs)) {
+ lastofs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) /* int overflow */
+ ofs = maxofs;
+ }
+ else /* a[hint - ofs] <= key */
+ break;
+ }
+ if (ofs > maxofs)
+ ofs = maxofs;
+ /* Translate back to positive offsets relative to &a[0]. */
+ k = lastofs;
+ lastofs = hint - ofs;
+ ofs = hint - k;
+ }
+ else {
+ /* a[hint] <= key -- gallop right, until
+ * a[hint + lastofs] <= key < a[hint + ofs]
+ */
+ const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
+ while (ofs < maxofs) {
+ IFLT(key, a[ofs])
+ break;
+ /* a[hint + ofs] <= key */
+ lastofs = ofs;
+ ofs = (ofs << 1) + 1;
+ if (ofs <= 0) /* int overflow */
+ ofs = maxofs;
+ }
+ if (ofs > maxofs)
+ ofs = maxofs;
+ /* Translate back to offsets relative to &a[0]. */
+ lastofs += hint;
+ ofs += hint;
+ }
+ a -= hint;
+
+ assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
+ /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
+ * right of lastofs but no farther right than ofs. Do a binary
+ * search, with invariant a[lastofs-1] <= key < a[ofs].
+ */
+ ++lastofs;
+ while (lastofs < ofs) {
+ Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
+
+ IFLT(key, a[m])
+ ofs = m; /* key < a[m] */
+ else
+ lastofs = m+1; /* a[m] <= key */
+ }
+ assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */
+ return ofs;
+
+fail:
+ return -1;
+}
+
+/* The maximum number of entries in a MergeState's pending-runs stack.
+ * This is enough to sort arrays of size up to about
+ * 32 * phi ** MAX_MERGE_PENDING
+ * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
+ * with 2**64 elements.
+ */
+#define MAX_MERGE_PENDING 85
+
+/* When we get into galloping mode, we stay there until both runs win less
+ * often than MIN_GALLOP consecutive times. See listsort.txt for more info.
+ */
+#define MIN_GALLOP 7
+
+/* Avoid malloc for small temp arrays. */
+#define MERGESTATE_TEMP_SIZE 256
+
+/* One MergeState exists on the stack per invocation of mergesort. It's just
+ * a convenient way to pass state around among the helper functions.
+ */
+struct s_slice {
+ PyObject **base;
+ Py_ssize_t len;
+};
+
+typedef struct s_MergeState {
+ /* The user-supplied comparison function. or NULL if none given. */
+ PyObject *compare;
+
+ /* This controls when we get *into* galloping mode. It's initialized
+ * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
+ * random data, and lower for highly structured data.
+ */
+ Py_ssize_t min_gallop;
+
+ /* 'a' is temp storage to help with merges. It contains room for
+ * alloced entries.
+ */
+ PyObject **a; /* may point to temparray below */
+ Py_ssize_t alloced;
+
+ /* A stack of n pending runs yet to be merged. Run #i starts at
+ * address base[i] and extends for len[i] elements. It's always
+ * true (so long as the indices are in bounds) that
+ *
+ * pending[i].base + pending[i].len == pending[i+1].base
+ *
+ * so we could cut the storage for this, but it's a minor amount,
+ * and keeping all the info explicit simplifies the code.
+ */
+ int n;
+ struct s_slice pending[MAX_MERGE_PENDING];
+
+ /* 'a' points to this when possible, rather than muck with malloc. */
+ PyObject *temparray[MERGESTATE_TEMP_SIZE];
+} MergeState;
+
+/* Conceptually a MergeState's constructor. */
+static void
+merge_init(MergeState *ms, PyObject *compare)
+{
+ assert(ms != NULL);
+ ms->compare = compare;
+ ms->a = ms->temparray;
+ ms->alloced = MERGESTATE_TEMP_SIZE;
+ ms->n = 0;
+ ms->min_gallop = MIN_GALLOP;
+}
+
+/* Free all the temp memory owned by the MergeState. This must be called
+ * when you're done with a MergeState, and may be called before then if
+ * you want to free the temp memory early.
+ */
+static void
+merge_freemem(MergeState *ms)
+{
+ assert(ms != NULL);
+ if (ms->a != ms->temparray)
+ PyMem_Free(ms->a);
+ ms->a = ms->temparray;
+ ms->alloced = MERGESTATE_TEMP_SIZE;
+}
+
+/* Ensure enough temp memory for 'need' array slots is available.
+ * Returns 0 on success and -1 if the memory can't be gotten.
+ */
+static int
+merge_getmem(MergeState *ms, Py_ssize_t need)
+{
+ assert(ms != NULL);
+ if (need <= ms->alloced)
+ return 0;
+ /* Don't realloc! That can cost cycles to copy the old data, but
+ * we don't care what's in the block.
+ */
+ merge_freemem(ms);
+ if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*)) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ ms->a = (PyObject **)PyMem_Malloc(need * sizeof(PyObject*));
+ if (ms->a) {
+ ms->alloced = need;
+ return 0;
+ }
+ PyErr_NoMemory();
+ merge_freemem(ms); /* reset to sane state */
+ return -1;
+}
+#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
+ merge_getmem(MS, NEED))
+
+/* Merge the na elements starting at pa with the nb elements starting at pb
+ * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
+ * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
+ * merge, and should have na <= nb. See listsort.txt for more info.
+ * Return 0 if successful, -1 if error.
+ */
+static Py_ssize_t
+merge_lo(MergeState *ms, PyObject **pa, Py_ssize_t na,
+ PyObject **pb, Py_ssize_t nb)
+{
+ Py_ssize_t k;
+ PyObject *compare;
+ PyObject **dest;
+ int result = -1; /* guilty until proved innocent */
+ Py_ssize_t min_gallop;
+
+ assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
+ if (MERGE_GETMEM(ms, na) < 0)
+ return -1;
+ memcpy(ms->a, pa, na * sizeof(PyObject*));
+ dest = pa;
+ pa = ms->a;
+
+ *dest++ = *pb++;
+ --nb;
+ if (nb == 0)
+ goto Succeed;
+ if (na == 1)
+ goto CopyB;
+
+ min_gallop = ms->min_gallop;
+ compare = ms->compare;
+ for (;;) {
+ Py_ssize_t acount = 0; /* # of times A won in a row */
+ Py_ssize_t bcount = 0; /* # of times B won in a row */
+
+ /* Do the straightforward thing until (if ever) one run
+ * appears to win consistently.
+ */
+ for (;;) {
+ assert(na > 1 && nb > 0);
+ k = ISLT(*pb, *pa, compare);
+ if (k) {
+ if (k < 0)
+ goto Fail;
+ *dest++ = *pb++;
+ ++bcount;
+ acount = 0;
+ --nb;
+ if (nb == 0)
+ goto Succeed;
+ if (bcount >= min_gallop)
+ break;
+ }
+ else {
+ *dest++ = *pa++;
+ ++acount;
+ bcount = 0;
+ --na;
+ if (na == 1)
+ goto CopyB;
+ if (acount >= min_gallop)
+ break;
+ }
+ }
+
+ /* One run is winning so consistently that galloping may
+ * be a huge win. So try that, and continue galloping until
+ * (if ever) neither run appears to be winning consistently
+ * anymore.
+ */
+ ++min_gallop;
+ do {
+ assert(na > 1 && nb > 0);
+ min_gallop -= min_gallop > 1;
+ ms->min_gallop = min_gallop;
+ k = gallop_right(*pb, pa, na, 0, compare);
+ acount = k;
+ if (k) {
+ if (k < 0)
+ goto Fail;
+ memcpy(dest, pa, k * sizeof(PyObject *));
+ dest += k;
+ pa += k;
+ na -= k;
+ if (na == 1)
+ goto CopyB;
+ /* na==0 is impossible now if the comparison
+ * function is consistent, but we can't assume
+ * that it is.
+ */
+ if (na == 0)
+ goto Succeed;
+ }
+ *dest++ = *pb++;
+ --nb;
+ if (nb == 0)
+ goto Succeed;
+
+ k = gallop_left(*pa, pb, nb, 0, compare);
+ bcount = k;
+ if (k) {
+ if (k < 0)
+ goto Fail;
+ memmove(dest, pb, k * sizeof(PyObject *));
+ dest += k;
+ pb += k;
+ nb -= k;
+ if (nb == 0)
+ goto Succeed;
+ }
+ *dest++ = *pa++;
+ --na;
+ if (na == 1)
+ goto CopyB;
+ } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
+ ++min_gallop; /* penalize it for leaving galloping mode */
+ ms->min_gallop = min_gallop;
+ }
+Succeed:
+ result = 0;
+Fail:
+ if (na)
+ memcpy(dest, pa, na * sizeof(PyObject*));
+ return result;
+CopyB:
+ assert(na == 1 && nb > 0);
+ /* The last element of pa belongs at the end of the merge. */
+ memmove(dest, pb, nb * sizeof(PyObject *));
+ dest[nb] = *pa;
+ return 0;
+}
+
+/* Merge the na elements starting at pa with the nb elements starting at pb
+ * in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
+ * Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
+ * merge, and should have na >= nb. See listsort.txt for more info.
+ * Return 0 if successful, -1 if error.
+ */
+static Py_ssize_t
+merge_hi(MergeState *ms, PyObject **pa, Py_ssize_t na, PyObject **pb, Py_ssize_t nb)
+{
+ Py_ssize_t k;
+ PyObject *compare;
+ PyObject **dest;
+ int result = -1; /* guilty until proved innocent */
+ PyObject **basea;
+ PyObject **baseb;
+ Py_ssize_t min_gallop;
+
+ assert(ms && pa && pb && na > 0 && nb > 0 && pa + na == pb);
+ if (MERGE_GETMEM(ms, nb) < 0)
+ return -1;
+ dest = pb + nb - 1;
+ memcpy(ms->a, pb, nb * sizeof(PyObject*));
+ basea = pa;
+ baseb = ms->a;
+ pb = ms->a + nb - 1;
+ pa += na - 1;
+
+ *dest-- = *pa--;
+ --na;
+ if (na == 0)
+ goto Succeed;
+ if (nb == 1)
+ goto CopyA;
+
+ min_gallop = ms->min_gallop;
+ compare = ms->compare;
+ for (;;) {
+ Py_ssize_t acount = 0; /* # of times A won in a row */
+ Py_ssize_t bcount = 0; /* # of times B won in a row */
+
+ /* Do the straightforward thing until (if ever) one run
+ * appears to win consistently.
+ */
+ for (;;) {
+ assert(na > 0 && nb > 1);
+ k = ISLT(*pb, *pa, compare);
+ if (k) {
+ if (k < 0)
+ goto Fail;
+ *dest-- = *pa--;
+ ++acount;
+ bcount = 0;
+ --na;
+ if (na == 0)
+ goto Succeed;
+ if (acount >= min_gallop)
+ break;
+ }
+ else {
+ *dest-- = *pb--;
+ ++bcount;
+ acount = 0;
+ --nb;
+ if (nb == 1)
+ goto CopyA;
+ if (bcount >= min_gallop)
+ break;
+ }
+ }
+
+ /* One run is winning so consistently that galloping may
+ * be a huge win. So try that, and continue galloping until
+ * (if ever) neither run appears to be winning consistently
+ * anymore.
+ */
+ ++min_gallop;
+ do {
+ assert(na > 0 && nb > 1);
+ min_gallop -= min_gallop > 1;
+ ms->min_gallop = min_gallop;
+ k = gallop_right(*pb, basea, na, na-1, compare);
+ if (k < 0)
+ goto Fail;
+ k = na - k;
+ acount = k;
+ if (k) {
+ dest -= k;
+ pa -= k;
+ memmove(dest+1, pa+1, k * sizeof(PyObject *));
+ na -= k;
+ if (na == 0)
+ goto Succeed;
+ }
+ *dest-- = *pb--;
+ --nb;
+ if (nb == 1)
+ goto CopyA;
+
+ k = gallop_left(*pa, baseb, nb, nb-1, compare);
+ if (k < 0)
+ goto Fail;
+ k = nb - k;
+ bcount = k;
+ if (k) {
+ dest -= k;
+ pb -= k;
+ memcpy(dest+1, pb+1, k * sizeof(PyObject *));
+ nb -= k;
+ if (nb == 1)
+ goto CopyA;
+ /* nb==0 is impossible now if the comparison
+ * function is consistent, but we can't assume
+ * that it is.
+ */
+ if (nb == 0)
+ goto Succeed;
+ }
+ *dest-- = *pa--;
+ --na;
+ if (na == 0)
+ goto Succeed;
+ } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
+ ++min_gallop; /* penalize it for leaving galloping mode */
+ ms->min_gallop = min_gallop;
+ }
+Succeed:
+ result = 0;
+Fail:
+ if (nb)
+ memcpy(dest-(nb-1), baseb, nb * sizeof(PyObject*));
+ return result;
+CopyA:
+ assert(nb == 1 && na > 0);
+ /* The first element of pb belongs at the front of the merge. */
+ dest -= na;
+ pa -= na;
+ memmove(dest+1, pa+1, na * sizeof(PyObject *));
+ *dest = *pb;
+ return 0;
+}
+
+/* Merge the two runs at stack indices i and i+1.
+ * Returns 0 on success, -1 on error.
+ */
+static Py_ssize_t
+merge_at(MergeState *ms, Py_ssize_t i)
+{
+ PyObject **pa, **pb;
+ Py_ssize_t na, nb;
+ Py_ssize_t k;
+ PyObject *compare;
+
+ assert(ms != NULL);
+ assert(ms->n >= 2);
+ assert(i >= 0);
+ assert(i == ms->n - 2 || i == ms->n - 3);
+
+ pa = ms->pending[i].base;
+ na = ms->pending[i].len;
+ pb = ms->pending[i+1].base;
+ nb = ms->pending[i+1].len;
+ assert(na > 0 && nb > 0);
+ assert(pa + na == pb);
+
+ /* Record the length of the combined runs; if i is the 3rd-last
+ * run now, also slide over the last run (which isn't involved
+ * in this merge). The current run i+1 goes away in any case.
+ */
+ ms->pending[i].len = na + nb;
+ if (i == ms->n - 3)
+ ms->pending[i+1] = ms->pending[i+2];
+ --ms->n;
+
+ /* Where does b start in a? Elements in a before that can be
+ * ignored (already in place).
+ */
+ compare = ms->compare;
+ k = gallop_right(*pb, pa, na, 0, compare);
+ if (k < 0)
+ return -1;
+ pa += k;
+ na -= k;
+ if (na == 0)
+ return 0;
+
+ /* Where does a end in b? Elements in b after that can be
+ * ignored (already in place).
+ */
+ nb = gallop_left(pa[na-1], pb, nb, nb-1, compare);
+ if (nb <= 0)
+ return nb;
+
+ /* Merge what remains of the runs, using a temp array with
+ * min(na, nb) elements.
+ */
+ if (na <= nb)
+ return merge_lo(ms, pa, na, pb, nb);
+ else
+ return merge_hi(ms, pa, na, pb, nb);
+}
+
+/* Examine the stack of runs waiting to be merged, merging adjacent runs
+ * until the stack invariants are re-established:
+ *
+ * 1. len[-3] > len[-2] + len[-1]
+ * 2. len[-2] > len[-1]
+ *
+ * See listsort.txt for more info.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int
+merge_collapse(MergeState *ms)
+{
+ struct s_slice *p = ms->pending;
+
+ assert(ms);
+ while (ms->n > 1) {
+ Py_ssize_t n = ms->n - 2;
+ if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) {
+ if (p[n-1].len < p[n+1].len)
+ --n;
+ if (merge_at(ms, n) < 0)
+ return -1;
+ }
+ else if (p[n].len <= p[n+1].len) {
+ if (merge_at(ms, n) < 0)
+ return -1;
+ }
+ else
+ break;
+ }
+ return 0;
+}
+
+/* Regardless of invariants, merge all runs on the stack until only one
+ * remains. This is used at the end of the mergesort.
+ *
+ * Returns 0 on success, -1 on error.
+ */
+static int
+merge_force_collapse(MergeState *ms)
+{
+ struct s_slice *p = ms->pending;
+
+ assert(ms);
+ while (ms->n > 1) {
+ Py_ssize_t n = ms->n - 2;
+ if (n > 0 && p[n-1].len < p[n+1].len)
+ --n;
+ if (merge_at(ms, n) < 0)
+ return -1;
+ }
+ return 0;
+}
+
+/* Compute a good value for the minimum run length; natural runs shorter
+ * than this are boosted artificially via binary insertion.
+ *
+ * If n < 64, return n (it's too small to bother with fancy stuff).
+ * Else if n is an exact power of 2, return 32.
+ * Else return an int k, 32 <= k <= 64, such that n/k is close to, but
+ * strictly less than, an exact power of 2.
+ *
+ * See listsort.txt for more info.
+ */
+static Py_ssize_t
+merge_compute_minrun(Py_ssize_t n)
+{
+ Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */
+
+ assert(n >= 0);
+ while (n >= 64) {
+ r |= n & 1;
+ n >>= 1;
+ }
+ return n + r;
+}
+
+/* Special wrapper to support stable sorting using the decorate-sort-undecorate
+ pattern. Holds a key which is used for comparisons and the original record
+ which is returned during the undecorate phase. By exposing only the key
+ during comparisons, the underlying sort stability characteristics are left
+ unchanged. Also, if a custom comparison function is used, it will only see
+ the key instead of a full record. */
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *key;
+ PyObject *value;
+} sortwrapperobject;
+
+PyDoc_STRVAR(sortwrapper_doc, "Object wrapper with a custom sort key.");
+static PyObject *
+sortwrapper_richcompare(sortwrapperobject *, sortwrapperobject *, int);
+static void
+sortwrapper_dealloc(sortwrapperobject *);
+
+static PyTypeObject sortwrapper_type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "sortwrapper", /* tp_name */
+ sizeof(sortwrapperobject), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ /* methods */
+ (destructor)sortwrapper_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT |
+ Py_TPFLAGS_HAVE_RICHCOMPARE, /* tp_flags */
+ sortwrapper_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ (richcmpfunc)sortwrapper_richcompare, /* tp_richcompare */
+};
+
+
+static PyObject *
+sortwrapper_richcompare(sortwrapperobject *a, sortwrapperobject *b, int op)
+{
+ if (!PyObject_TypeCheck(b, &sortwrapper_type)) {
+ PyErr_SetString(PyExc_TypeError,
+ "expected a sortwrapperobject");
+ return NULL;
+ }
+ return PyObject_RichCompare(a->key, b->key, op);
+}
+
+static void
+sortwrapper_dealloc(sortwrapperobject *so)
+{
+ Py_XDECREF(so->key);
+ Py_XDECREF(so->value);
+ PyObject_Del(so);
+}
+
+/* Returns a new reference to a sortwrapper.
+ Consumes the references to the two underlying objects. */
+
+static PyObject *
+build_sortwrapper(PyObject *key, PyObject *value)
+{
+ sortwrapperobject *so;
+
+ so = PyObject_New(sortwrapperobject, &sortwrapper_type);
+ if (so == NULL)
+ return NULL;
+ so->key = key;
+ so->value = value;
+ return (PyObject *)so;
+}
+
+/* Returns a new reference to the value underlying the wrapper. */
+static PyObject *
+sortwrapper_getvalue(PyObject *so)
+{
+ PyObject *value;
+
+ if (!PyObject_TypeCheck(so, &sortwrapper_type)) {
+ PyErr_SetString(PyExc_TypeError,
+ "expected a sortwrapperobject");
+ return NULL;
+ }
+ value = ((sortwrapperobject *)so)->value;
+ Py_INCREF(value);
+ return value;
+}
+
+/* Wrapper for user specified cmp functions in combination with a
+ specified key function. Makes sure the cmp function is presented
+ with the actual key instead of the sortwrapper */
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *func;
+} cmpwrapperobject;
+
+static void
+cmpwrapper_dealloc(cmpwrapperobject *co)
+{
+ Py_XDECREF(co->func);
+ PyObject_Del(co);
+}
+
+static PyObject *
+cmpwrapper_call(cmpwrapperobject *co, PyObject *args, PyObject *kwds)
+{
+ PyObject *x, *y, *xx, *yy;
+
+ if (!PyArg_UnpackTuple(args, "", 2, 2, &x, &y))
+ return NULL;
+ if (!PyObject_TypeCheck(x, &sortwrapper_type) ||
+ !PyObject_TypeCheck(y, &sortwrapper_type)) {
+ PyErr_SetString(PyExc_TypeError,
+ "expected a sortwrapperobject");
+ return NULL;
+ }
+ xx = ((sortwrapperobject *)x)->key;
+ yy = ((sortwrapperobject *)y)->key;
+ return PyObject_CallFunctionObjArgs(co->func, xx, yy, NULL);
+}
+
+PyDoc_STRVAR(cmpwrapper_doc, "cmp() wrapper for sort with custom keys.");
+
+static PyTypeObject cmpwrapper_type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "cmpwrapper", /* tp_name */
+ sizeof(cmpwrapperobject), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ /* methods */
+ (destructor)cmpwrapper_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ (ternaryfunc)cmpwrapper_call, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT, /* tp_flags */
+ cmpwrapper_doc, /* tp_doc */
+};
+
+static PyObject *
+build_cmpwrapper(PyObject *cmpfunc)
+{
+ cmpwrapperobject *co;
+
+ co = PyObject_New(cmpwrapperobject, &cmpwrapper_type);
+ if (co == NULL)
+ return NULL;
+ Py_INCREF(cmpfunc);
+ co->func = cmpfunc;
+ return (PyObject *)co;
+}
+
+/* An adaptive, stable, natural mergesort. See listsort.txt.
+ * Returns Py_None on success, NULL on error. Even in case of error, the
+ * list will be some permutation of its input state (nothing is lost or
+ * duplicated).
+ */
+static PyObject *
+listsort(PyListObject *self, PyObject *args, PyObject *kwds)
+{
+ MergeState ms;
+ PyObject **lo, **hi;
+ Py_ssize_t nremaining;
+ Py_ssize_t minrun;
+ Py_ssize_t saved_ob_size, saved_allocated;
+ PyObject **saved_ob_item;
+ PyObject **final_ob_item;
+ PyObject *compare = NULL;
+ PyObject *result = NULL; /* guilty until proved innocent */
+ int reverse = 0;
+ PyObject *keyfunc = NULL;
+ Py_ssize_t i;
+ PyObject *key, *value, *kvpair;
+ static char *kwlist[] = {"cmp", "key", "reverse", 0};
+
+ assert(self != NULL);
+ assert (PyList_Check(self));
+ if (args != NULL) {
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOi:sort",
+ kwlist, &compare, &keyfunc, &reverse))
+ return NULL;
+ }
+ if (compare == Py_None)
+ compare = NULL;
+ if (compare != NULL &&
+ PyErr_WarnPy3k("the cmp argument is not supported in 3.x", 1) < 0)
+ return NULL;
+ if (keyfunc == Py_None)
+ keyfunc = NULL;
+ if (compare != NULL && keyfunc != NULL) {
+ compare = build_cmpwrapper(compare);
+ if (compare == NULL)
+ return NULL;
+ } else
+ Py_XINCREF(compare);
+
+ /* The list is temporarily made empty, so that mutations performed
+ * by comparison functions can't affect the slice of memory we're
+ * sorting (allowing mutations during sorting is a core-dump
+ * factory, since ob_item may change).
+ */
+ saved_ob_size = Py_SIZE(self);
+ saved_ob_item = self->ob_item;
+ saved_allocated = self->allocated;
+ Py_SIZE(self) = 0;
+ self->ob_item = NULL;
+ self->allocated = -1; /* any operation will reset it to >= 0 */
+
+ if (keyfunc != NULL) {
+ for (i=0 ; i < saved_ob_size ; i++) {
+ value = saved_ob_item[i];
+ key = PyObject_CallFunctionObjArgs(keyfunc, value,
+ NULL);
+ if (key == NULL) {
+ for (i=i-1 ; i>=0 ; i--) {
+ kvpair = saved_ob_item[i];
+ value = sortwrapper_getvalue(kvpair);
+ saved_ob_item[i] = value;
+ Py_DECREF(kvpair);
+ }
+ goto dsu_fail;
+ }
+ kvpair = build_sortwrapper(key, value);
+ if (kvpair == NULL)
+ goto dsu_fail;
+ saved_ob_item[i] = kvpair;
+ }
+ }
+
+ /* Reverse sort stability achieved by initially reversing the list,
+ applying a stable forward sort, then reversing the final result. */
+ if (reverse && saved_ob_size > 1)
+ reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
+
+ merge_init(&ms, compare);
+
+ nremaining = saved_ob_size;
+ if (nremaining < 2)
+ goto succeed;
+
+ /* March over the array once, left to right, finding natural runs,
+ * and extending short natural runs to minrun elements.
+ */
+ lo = saved_ob_item;
+ hi = lo + nremaining;
+ minrun = merge_compute_minrun(nremaining);
+ do {
+ int descending;
+ Py_ssize_t n;
+
+ /* Identify next run. */
+ n = count_run(lo, hi, compare, &descending);
+ if (n < 0)
+ goto fail;
+ if (descending)
+ reverse_slice(lo, lo + n);
+ /* If short, extend to min(minrun, nremaining). */
+ if (n < minrun) {
+ const Py_ssize_t force = nremaining <= minrun ?
+ nremaining : minrun;
+ if (binarysort(lo, lo + force, lo + n, compare) < 0)
+ goto fail;
+ n = force;
+ }
+ /* Push run onto pending-runs stack, and maybe merge. */
+ assert(ms.n < MAX_MERGE_PENDING);
+ ms.pending[ms.n].base = lo;
+ ms.pending[ms.n].len = n;
+ ++ms.n;
+ if (merge_collapse(&ms) < 0)
+ goto fail;
+ /* Advance to find next run. */
+ lo += n;
+ nremaining -= n;
+ } while (nremaining);
+ assert(lo == hi);
+
+ if (merge_force_collapse(&ms) < 0)
+ goto fail;
+ assert(ms.n == 1);
+ assert(ms.pending[0].base == saved_ob_item);
+ assert(ms.pending[0].len == saved_ob_size);
+
+succeed:
+ result = Py_None;
+fail:
+ if (keyfunc != NULL) {
+ for (i=0 ; i < saved_ob_size ; i++) {
+ kvpair = saved_ob_item[i];
+ value = sortwrapper_getvalue(kvpair);
+ saved_ob_item[i] = value;
+ Py_DECREF(kvpair);
+ }
+ }
+
+ if (self->allocated != -1 && result != NULL) {
+ /* The user mucked with the list during the sort,
+ * and we don't already have another error to report.
+ */
+ PyErr_SetString(PyExc_ValueError, "list modified during sort");
+ result = NULL;
+ }
+
+ if (reverse && saved_ob_size > 1)
+ reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
+
+ merge_freemem(&ms);
+
+dsu_fail:
+ final_ob_item = self->ob_item;
+ i = Py_SIZE(self);
+ Py_SIZE(self) = saved_ob_size;
+ self->ob_item = saved_ob_item;
+ self->allocated = saved_allocated;
+ if (final_ob_item != NULL) {
+ /* we cannot use list_clear() for this because it does not
+ guarantee that the list is really empty when it returns */
+ while (--i >= 0) {
+ Py_XDECREF(final_ob_item[i]);
+ }
+ PyMem_FREE(final_ob_item);
+ }
+ Py_XDECREF(compare);
+ Py_XINCREF(result);
+ return result;
+}
+#undef IFLT
+#undef ISLT
+
+int
+PyList_Sort(PyObject *v)
+{
+ if (v == NULL || !PyList_Check(v)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL);
+ if (v == NULL)
+ return -1;
+ Py_DECREF(v);
+ return 0;
+}
+
+static PyObject *
+listreverse(PyListObject *self)
+{
+ if (Py_SIZE(self) > 1)
+ reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
+ Py_RETURN_NONE;
+}
+
+int
+PyList_Reverse(PyObject *v)
+{
+ PyListObject *self = (PyListObject *)v;
+
+ if (v == NULL || !PyList_Check(v)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ if (Py_SIZE(self) > 1)
+ reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
+ return 0;
+}
+
+PyObject *
+PyList_AsTuple(PyObject *v)
+{
+ PyObject *w;
+ PyObject **p, **q;
+ Py_ssize_t n;
+ if (v == NULL || !PyList_Check(v)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ n = Py_SIZE(v);
+ w = PyTuple_New(n);
+ if (w == NULL)
+ return NULL;
+ p = ((PyTupleObject *)w)->ob_item;
+ q = ((PyListObject *)v)->ob_item;
+ while (--n >= 0) {
+ Py_INCREF(*q);
+ *p = *q;
+ p++;
+ q++;
+ }
+ return w;
+}
+
+static PyObject *
+listindex(PyListObject *self, PyObject *args)
+{
+ Py_ssize_t i, start=0, stop=Py_SIZE(self);
+ PyObject *v, *format_tuple, *err_string;
+ static PyObject *err_format = NULL;
+
+ if (!PyArg_ParseTuple(args, "O|O&O&:index", &v,
+ _PyEval_SliceIndex, &start,
+ _PyEval_SliceIndex, &stop))
+ return NULL;
+ if (start < 0) {
+ start += Py_SIZE(self);
+ if (start < 0)
+ start = 0;
+ }
+ if (stop < 0) {
+ stop += Py_SIZE(self);
+ if (stop < 0)
+ stop = 0;
+ }
+ for (i = start; i < stop && i < Py_SIZE(self); i++) {
+ int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
+ if (cmp > 0)
+ return PyInt_FromSsize_t(i);
+ else if (cmp < 0)
+ return NULL;
+ }
+ if (err_format == NULL) {
+ err_format = PyString_FromString("%r is not in list");
+ if (err_format == NULL)
+ return NULL;
+ }
+ format_tuple = PyTuple_Pack(1, v);
+ if (format_tuple == NULL)
+ return NULL;
+ err_string = PyString_Format(err_format, format_tuple);
+ Py_DECREF(format_tuple);
+ if (err_string == NULL)
+ return NULL;
+ PyErr_SetObject(PyExc_ValueError, err_string);
+ Py_DECREF(err_string);
+ return NULL;
+}
+
+static PyObject *
+listcount(PyListObject *self, PyObject *v)
+{
+ Py_ssize_t count = 0;
+ Py_ssize_t i;
+
+ for (i = 0; i < Py_SIZE(self); i++) {
+ int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
+ if (cmp > 0)
+ count++;
+ else if (cmp < 0)
+ return NULL;
+ }
+ return PyInt_FromSsize_t(count);
+}
+
+static PyObject *
+listremove(PyListObject *self, PyObject *v)
+{
+ Py_ssize_t i;
+
+ for (i = 0; i < Py_SIZE(self); i++) {
+ int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
+ if (cmp > 0) {
+ if (list_ass_slice(self, i, i+1,
+ (PyObject *)NULL) == 0)
+ Py_RETURN_NONE;
+ return NULL;
+ }
+ else if (cmp < 0)
+ return NULL;
+ }
+ PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
+ return NULL;
+}
+
+static int
+list_traverse(PyListObject *o, visitproc visit, void *arg)
+{
+ Py_ssize_t i;
+
+ for (i = Py_SIZE(o); --i >= 0; )
+ Py_VISIT(o->ob_item[i]);
+ return 0;
+}
+
+static PyObject *
+list_richcompare(PyObject *v, PyObject *w, int op)
+{
+ PyListObject *vl, *wl;
+ Py_ssize_t i;
+
+ if (!PyList_Check(v) || !PyList_Check(w)) {
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+
+ vl = (PyListObject *)v;
+ wl = (PyListObject *)w;
+
+ if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) {
+ /* Shortcut: if the lengths differ, the lists differ */
+ PyObject *res;
+ if (op == Py_EQ)
+ res = Py_False;
+ else
+ res = Py_True;
+ Py_INCREF(res);
+ return res;
+ }
+
+ /* Search for the first index where items are different */
+ for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
+ int k = PyObject_RichCompareBool(vl->ob_item[i],
+ wl->ob_item[i], Py_EQ);
+ if (k < 0)
+ return NULL;
+ if (!k)
+ break;
+ }
+
+ if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) {
+ /* No more items to compare -- compare sizes */
+ Py_ssize_t vs = Py_SIZE(vl);
+ Py_ssize_t ws = Py_SIZE(wl);
+ int cmp;
+ PyObject *res;
+ switch (op) {
+ case Py_LT: cmp = vs < ws; break;
+ case Py_LE: cmp = vs <= ws; break;
+ case Py_EQ: cmp = vs == ws; break;
+ case Py_NE: cmp = vs != ws; break;
+ case Py_GT: cmp = vs > ws; break;
+ case Py_GE: cmp = vs >= ws; break;
+ default: return NULL; /* cannot happen */
+ }
+ if (cmp)
+ res = Py_True;
+ else
+ res = Py_False;
+ Py_INCREF(res);
+ return res;
+ }
+
+ /* We have an item that differs -- shortcuts for EQ/NE */
+ if (op == Py_EQ) {
+ Py_INCREF(Py_False);
+ return Py_False;
+ }
+ if (op == Py_NE) {
+ Py_INCREF(Py_True);
+ return Py_True;
+ }
+
+ /* Compare the final item again using the proper operator */
+ return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
+}
+
+static int
+list_init(PyListObject *self, PyObject *args, PyObject *kw)
+{
+ PyObject *arg = NULL;
+ static char *kwlist[] = {"sequence", 0};
+
+ if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
+ return -1;
+
+ /* Verify list invariants established by PyType_GenericAlloc() */
+ assert(0 <= Py_SIZE(self));
+ assert(Py_SIZE(self) <= self->allocated || self->allocated == -1);
+ assert(self->ob_item != NULL ||
+ self->allocated == 0 || self->allocated == -1);
+
+ /* Empty previous contents */
+ if (self->ob_item != NULL) {
+ (void)list_clear(self);
+ }
+ if (arg != NULL) {
+ PyObject *rv = listextend(self, arg);
+ if (rv == NULL)
+ return -1;
+ Py_DECREF(rv);
+ }
+ return 0;
+}
+
+static PyObject *
+list_sizeof(PyListObject *self)
+{
+ Py_ssize_t res;
+
+ res = sizeof(PyListObject) + self->allocated * sizeof(void*);
+ return PyInt_FromSsize_t(res);
+}
+
+static PyObject *list_iter(PyObject *seq);
+static PyObject *list_reversed(PyListObject* seq, PyObject* unused);
+
+PyDoc_STRVAR(getitem_doc,
+"x.__getitem__(y) <==> x[y]");
+PyDoc_STRVAR(reversed_doc,
+"L.__reversed__() -- return a reverse iterator over the list");
+PyDoc_STRVAR(sizeof_doc,
+"L.__sizeof__() -- size of L in memory, in bytes");
+PyDoc_STRVAR(append_doc,
+"L.append(object) -- append object to end");
+PyDoc_STRVAR(extend_doc,
+"L.extend(iterable) -- extend list by appending elements from the iterable");
+PyDoc_STRVAR(insert_doc,
+"L.insert(index, object) -- insert object before index");
+PyDoc_STRVAR(pop_doc,
+"L.pop([index]) -> item -- remove and return item at index (default last).\n"
+"Raises IndexError if list is empty or index is out of range.");
+PyDoc_STRVAR(remove_doc,
+"L.remove(value) -- remove first occurrence of value.\n"
+"Raises ValueError if the value is not present.");
+PyDoc_STRVAR(index_doc,
+"L.index(value, [start, [stop]]) -> integer -- return first index of value.\n"
+"Raises ValueError if the value is not present.");
+PyDoc_STRVAR(count_doc,
+"L.count(value) -> integer -- return number of occurrences of value");
+PyDoc_STRVAR(reverse_doc,
+"L.reverse() -- reverse *IN PLACE*");
+PyDoc_STRVAR(sort_doc,
+"L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;\n\
+cmp(x, y) -> -1, 0, 1");
+
+static PyObject *list_subscript(PyListObject*, PyObject*);
+
+static PyMethodDef list_methods[] = {
+ {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc},
+ {"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc},
+ {"__sizeof__", (PyCFunction)list_sizeof, METH_NOARGS, sizeof_doc},
+ {"append", (PyCFunction)listappend, METH_O, append_doc},
+ {"insert", (PyCFunction)listinsert, METH_VARARGS, insert_doc},
+ {"extend", (PyCFunction)listextend, METH_O, extend_doc},
+ {"pop", (PyCFunction)listpop, METH_VARARGS, pop_doc},
+ {"remove", (PyCFunction)listremove, METH_O, remove_doc},
+ {"index", (PyCFunction)listindex, METH_VARARGS, index_doc},
+ {"count", (PyCFunction)listcount, METH_O, count_doc},
+ {"reverse", (PyCFunction)listreverse, METH_NOARGS, reverse_doc},
+ {"sort", (PyCFunction)listsort, METH_VARARGS | METH_KEYWORDS, sort_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+static PySequenceMethods list_as_sequence = {
+ (lenfunc)list_length, /* sq_length */
+ (binaryfunc)list_concat, /* sq_concat */
+ (ssizeargfunc)list_repeat, /* sq_repeat */
+ (ssizeargfunc)list_item, /* sq_item */
+ (ssizessizeargfunc)list_slice, /* sq_slice */
+ (ssizeobjargproc)list_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc)list_ass_slice, /* sq_ass_slice */
+ (objobjproc)list_contains, /* sq_contains */
+ (binaryfunc)list_inplace_concat, /* sq_inplace_concat */
+ (ssizeargfunc)list_inplace_repeat, /* sq_inplace_repeat */
+};
+
+PyDoc_STRVAR(list_doc,
+"list() -> new empty list\n"
+"list(iterable) -> new list initialized from iterable's items");
+
+
+static PyObject *
+list_subscript(PyListObject* self, PyObject* item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += PyList_GET_SIZE(self);
+ return list_item(self, i);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength, cur, i;
+ PyObject* result;
+ PyObject* it;
+ PyObject **src, **dest;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, Py_SIZE(self),
+ &start, &stop, &step, &slicelength) < 0) {
+ return NULL;
+ }
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return list_slice(self, start, stop);
+ }
+ else {
+ result = PyList_New(slicelength);
+ if (!result) return NULL;
+
+ src = self->ob_item;
+ dest = ((PyListObject *)result)->ob_item;
+ for (cur = start, i = 0; i < slicelength;
+ cur += step, i++) {
+ it = src[cur];
+ Py_INCREF(it);
+ dest[i] = it;
+ }
+
+ return result;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "list indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
+
+static int
+list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += PyList_GET_SIZE(self);
+ return list_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, Py_SIZE(self),
+ &start, &stop, &step, &slicelength) < 0) {
+ return -1;
+ }
+
+ if (step == 1)
+ return list_ass_slice(self, start, stop, value);
+
+ /* Make sure s[5:2] = [..] inserts at the right place:
+ before 5, not before 2. */
+ if ((step < 0 && start < stop) ||
+ (step > 0 && start > stop))
+ stop = start;
+
+ if (value == NULL) {
+ /* delete slice */
+ PyObject **garbage;
+ size_t cur;
+ Py_ssize_t i;
+
+ if (slicelength <= 0)
+ return 0;
+
+ if (step < 0) {
+ stop = start + 1;
+ start = stop + step*(slicelength - 1) - 1;
+ step = -step;
+ }
+
+ assert((size_t)slicelength <=
+ PY_SIZE_MAX / sizeof(PyObject*));
+
+ garbage = (PyObject**)
+ PyMem_MALLOC(slicelength*sizeof(PyObject*));
+ if (!garbage) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ /* drawing pictures might help understand these for
+ loops. Basically, we memmove the parts of the
+ list that are *not* part of the slice: step-1
+ items for each item that is part of the slice,
+ and then tail end of the list that was not
+ covered by the slice */
+ for (cur = start, i = 0;
+ cur < (size_t)stop;
+ cur += step, i++) {
+ Py_ssize_t lim = step - 1;
+
+ garbage[i] = PyList_GET_ITEM(self, cur);
+
+ if (cur + step >= (size_t)Py_SIZE(self)) {
+ lim = Py_SIZE(self) - cur - 1;
+ }
+
+ memmove(self->ob_item + cur - i,
+ self->ob_item + cur + 1,
+ lim * sizeof(PyObject *));
+ }
+ cur = start + slicelength*step;
+ if (cur < (size_t)Py_SIZE(self)) {
+ memmove(self->ob_item + cur - slicelength,
+ self->ob_item + cur,
+ (Py_SIZE(self) - cur) *
+ sizeof(PyObject *));
+ }
+
+ Py_SIZE(self) -= slicelength;
+ list_resize(self, Py_SIZE(self));
+
+ for (i = 0; i < slicelength; i++) {
+ Py_DECREF(garbage[i]);
+ }
+ PyMem_FREE(garbage);
+
+ return 0;
+ }
+ else {
+ /* assign slice */
+ PyObject *ins, *seq;
+ PyObject **garbage, **seqitems, **selfitems;
+ Py_ssize_t cur, i;
+
+ /* protect against a[::-1] = a */
+ if (self == (PyListObject*)value) {
+ seq = list_slice((PyListObject*)value, 0,
+ PyList_GET_SIZE(value));
+ }
+ else {
+ seq = PySequence_Fast(value,
+ "must assign iterable "
+ "to extended slice");
+ }
+ if (!seq)
+ return -1;
+
+ if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
+ PyErr_Format(PyExc_ValueError,
+ "attempt to assign sequence of "
+ "size %zd to extended slice of "
+ "size %zd",
+ PySequence_Fast_GET_SIZE(seq),
+ slicelength);
+ Py_DECREF(seq);
+ return -1;
+ }
+
+ if (!slicelength) {
+ Py_DECREF(seq);
+ return 0;
+ }
+
+ garbage = (PyObject**)
+ PyMem_MALLOC(slicelength*sizeof(PyObject*));
+ if (!garbage) {
+ Py_DECREF(seq);
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ selfitems = self->ob_item;
+ seqitems = PySequence_Fast_ITEMS(seq);
+ for (cur = start, i = 0; i < slicelength;
+ cur += step, i++) {
+ garbage[i] = selfitems[cur];
+ ins = seqitems[i];
+ Py_INCREF(ins);
+ selfitems[cur] = ins;
+ }
+
+ for (i = 0; i < slicelength; i++) {
+ Py_DECREF(garbage[i]);
+ }
+
+ PyMem_FREE(garbage);
+ Py_DECREF(seq);
+
+ return 0;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "list indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
+ }
+}
+
+static PyMappingMethods list_as_mapping = {
+ (lenfunc)list_length,
+ (binaryfunc)list_subscript,
+ (objobjargproc)list_ass_subscript
+};
+
+PyTypeObject PyList_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "list",
+ sizeof(PyListObject),
+ 0,
+ (destructor)list_dealloc, /* tp_dealloc */
+ (printfunc)list_print, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)list_repr, /* tp_repr */
+ 0, /* tp_as_number */
+ &list_as_sequence, /* tp_as_sequence */
+ &list_as_mapping, /* tp_as_mapping */
+ (hashfunc)PyObject_HashNotImplemented, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
+ Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */
+ list_doc, /* tp_doc */
+ (traverseproc)list_traverse, /* tp_traverse */
+ (inquiry)list_clear, /* tp_clear */
+ list_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ list_iter, /* tp_iter */
+ 0, /* tp_iternext */
+ list_methods, /* tp_methods */
+ 0, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ (initproc)list_init, /* tp_init */
+ PyType_GenericAlloc, /* tp_alloc */
+ PyType_GenericNew, /* tp_new */
+ PyObject_GC_Del, /* tp_free */
+};
+
+
+/*********************** List Iterator **************************/
+
+typedef struct {
+ PyObject_HEAD
+ long it_index;
+ PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
+} listiterobject;
+
+static PyObject *list_iter(PyObject *);
+static void listiter_dealloc(listiterobject *);
+static int listiter_traverse(listiterobject *, visitproc, void *);
+static PyObject *listiter_next(listiterobject *);
+static PyObject *listiter_len(listiterobject *);
+
+PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
+
+static PyMethodDef listiter_methods[] = {
+ {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+PyTypeObject PyListIter_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "listiterator", /* tp_name */
+ sizeof(listiterobject), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ /* methods */
+ (destructor)listiter_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
+ 0, /* tp_doc */
+ (traverseproc)listiter_traverse, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ PyObject_SelfIter, /* tp_iter */
+ (iternextfunc)listiter_next, /* tp_iternext */
+ listiter_methods, /* tp_methods */
+ 0, /* tp_members */
+};
+
+
+static PyObject *
+list_iter(PyObject *seq)
+{
+ listiterobject *it;
+
+ if (!PyList_Check(seq)) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+ it = PyObject_GC_New(listiterobject, &PyListIter_Type);
+ if (it == NULL)
+ return NULL;
+ it->it_index = 0;
+ Py_INCREF(seq);
+ it->it_seq = (PyListObject *)seq;
+ _PyObject_GC_TRACK(it);
+ return (PyObject *)it;
+}
+
+static void
+listiter_dealloc(listiterobject *it)
+{
+ _PyObject_GC_UNTRACK(it);
+ Py_XDECREF(it->it_seq);
+ PyObject_GC_Del(it);
+}
+
+static int
+listiter_traverse(listiterobject *it, visitproc visit, void *arg)
+{
+ Py_VISIT(it->it_seq);
+ return 0;
+}
+
+static PyObject *
+listiter_next(listiterobject *it)
+{
+ PyListObject *seq;
+ PyObject *item;
+
+ assert(it != NULL);
+ seq = it->it_seq;
+ if (seq == NULL)
+ return NULL;
+ assert(PyList_Check(seq));
+
+ if (it->it_index < PyList_GET_SIZE(seq)) {
+ item = PyList_GET_ITEM(seq, it->it_index);
+ ++it->it_index;
+ Py_INCREF(item);
+ return item;
+ }
+
+ Py_DECREF(seq);
+ it->it_seq = NULL;
+ return NULL;
+}
+
+static PyObject *
+listiter_len(listiterobject *it)
+{
+ Py_ssize_t len;
+ if (it->it_seq) {
+ len = PyList_GET_SIZE(it->it_seq) - it->it_index;
+ if (len >= 0)
+ return PyInt_FromSsize_t(len);
+ }
+ return PyInt_FromLong(0);
+}
+/*********************** List Reverse Iterator **************************/
+
+typedef struct {
+ PyObject_HEAD
+ Py_ssize_t it_index;
+ PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
+} listreviterobject;
+
+static PyObject *list_reversed(PyListObject *, PyObject *);
+static void listreviter_dealloc(listreviterobject *);
+static int listreviter_traverse(listreviterobject *, visitproc, void *);
+static PyObject *listreviter_next(listreviterobject *);
+static PyObject *listreviter_len(listreviterobject *);
+
+static PyMethodDef listreviter_methods[] = {
+ {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+PyTypeObject PyListRevIter_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "listreverseiterator", /* tp_name */
+ sizeof(listreviterobject), /* tp_basicsize */
+ 0, /* tp_itemsize */
+ /* methods */
+ (destructor)listreviter_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
+ 0, /* tp_doc */
+ (traverseproc)listreviter_traverse, /* tp_traverse */
+ 0, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ PyObject_SelfIter, /* tp_iter */
+ (iternextfunc)listreviter_next, /* tp_iternext */
+ listreviter_methods, /* tp_methods */
+ 0,
+};
+
+static PyObject *
+list_reversed(PyListObject *seq, PyObject *unused)
+{
+ listreviterobject *it;
+
+ it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
+ if (it == NULL)
+ return NULL;
+ assert(PyList_Check(seq));
+ it->it_index = PyList_GET_SIZE(seq) - 1;
+ Py_INCREF(seq);
+ it->it_seq = seq;
+ PyObject_GC_Track(it);
+ return (PyObject *)it;
+}
+
+static void
+listreviter_dealloc(listreviterobject *it)
+{
+ PyObject_GC_UnTrack(it);
+ Py_XDECREF(it->it_seq);
+ PyObject_GC_Del(it);
+}
+
+static int
+listreviter_traverse(listreviterobject *it, visitproc visit, void *arg)
+{
+ Py_VISIT(it->it_seq);
+ return 0;
+}
+
+static PyObject *
+listreviter_next(listreviterobject *it)
+{
+ PyObject *item;
+ Py_ssize_t index = it->it_index;
+ PyListObject *seq = it->it_seq;
+
+ if (index>=0 && index < PyList_GET_SIZE(seq)) {
+ item = PyList_GET_ITEM(seq, index);
+ it->it_index--;
+ Py_INCREF(item);
+ return item;
+ }
+ it->it_index = -1;
+ if (seq != NULL) {
+ it->it_seq = NULL;
+ Py_DECREF(seq);
+ }
+ return NULL;
+}
+
+static PyObject *
+listreviter_len(listreviterobject *it)
+{
+ Py_ssize_t len = it->it_index + 1;
+ if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
+ len = 0;
+ return PyLong_FromSsize_t(len);
+}