summaryrefslogtreecommitdiffstats
path: root/ArmPkg/Application/LinuxLoader/LinuxLoaderFdt.c
blob: 0f5378403fa708793e80fca9324648823259ae4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/** @file
*
*  Copyright (c) 2011-2015, ARM Limited. All rights reserved.
*
*  This program and the accompanying materials
*  are licensed and made available under the terms and conditions of the BSD License
*  which accompanies this distribution.  The full text of the license may be found at
*  http://opensource.org/licenses/bsd-license.php
*
*  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
*  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/

#include <PiDxe.h>
#include <Library/ArmLib.h>
#include <Library/HobLib.h>

#include <Guid/ArmMpCoreInfo.h>

#include "LinuxLoader.h"

#define ALIGN(x, a)     (((x) + ((a) - 1)) & ~((a) - 1))
#define PALIGN(p, a)    ((void *)(ALIGN ((unsigned long)(p), (a))))
#define GET_CELL(p)     (p += 4, *((const UINT32 *)(p-4)))

STATIC
UINTN
cpu_to_fdtn (UINTN x) {
  if (sizeof (UINTN) == sizeof (UINT32)) {
    return cpu_to_fdt32 (x);
  } else {
    return cpu_to_fdt64 (x);
  }
}

typedef struct {
  UINTN   Base;
  UINTN   Size;
} FDT_REGION;

STATIC
BOOLEAN
IsLinuxReservedRegion (
  IN EFI_MEMORY_TYPE MemoryType
  )
{
  switch (MemoryType) {
  case EfiRuntimeServicesCode:
  case EfiRuntimeServicesData:
  case EfiUnusableMemory:
  case EfiACPIReclaimMemory:
  case EfiACPIMemoryNVS:
  case EfiReservedMemoryType:
    return TRUE;
  default:
    return FALSE;
  }
}

/**
** Relocate the FDT blob to a more appropriate location for the Linux kernel.
** This function will allocate memory for the relocated FDT blob.
**
** @retval EFI_SUCCESS on success.
** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure.
*/
STATIC
EFI_STATUS
RelocateFdt (
  EFI_PHYSICAL_ADDRESS   SystemMemoryBase,
  EFI_PHYSICAL_ADDRESS   OriginalFdt,
  UINTN                  OriginalFdtSize,
  EFI_PHYSICAL_ADDRESS   *RelocatedFdt,
  UINTN                  *RelocatedFdtSize,
  EFI_PHYSICAL_ADDRESS   *RelocatedFdtAlloc
  )
{
  EFI_STATUS            Status;
  INTN                  Error;
  UINT64                FdtAlignment;

  *RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE;

  // If FDT load address needs to be aligned, allocate more space.
  FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment);
  if (FdtAlignment != 0) {
    *RelocatedFdtSize += FdtAlignment;
  }

  // Try below a watermark address.
  Status = EFI_NOT_FOUND;
  if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) {
    *RelocatedFdt = LINUX_FDT_MAX_OFFSET;
    Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData,
                    EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status));
    }
  }

  // Try anywhere there is available space.
  if (EFI_ERROR (Status)) {
    Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData,
                    EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
    if (EFI_ERROR (Status)) {
      ASSERT_EFI_ERROR (Status);
      return EFI_OUT_OF_RESOURCES;
    } else {
      DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt));
    }
  }

  *RelocatedFdtAlloc = *RelocatedFdt;
  if (FdtAlignment != 0) {
    *RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment);
  }

  // Load the Original FDT tree into the new region
  Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt,
            (VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize);
  if (Error) {
    DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error)));
    gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize));
    return EFI_INVALID_PARAMETER;
  }

  return EFI_SUCCESS;
}

EFI_STATUS
PrepareFdt (
  IN     EFI_PHYSICAL_ADDRESS SystemMemoryBase,
  IN     CONST CHAR8*         CommandLineArguments,
  IN     EFI_PHYSICAL_ADDRESS InitrdImage,
  IN     UINTN                InitrdImageSize,
  IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase,
  IN OUT UINTN                *FdtBlobSize
  )
{
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  NewFdtBlobBase;
  EFI_PHYSICAL_ADDRESS  NewFdtBlobAllocation;
  UINTN                 NewFdtBlobSize;
  VOID*                 fdt;
  INTN                  err;
  INTN                  node;
  INTN                  cpu_node;
  INT32                 lenp;
  CONST VOID*           BootArg;
  CONST VOID*           Method;
  EFI_PHYSICAL_ADDRESS  InitrdImageStart;
  EFI_PHYSICAL_ADDRESS  InitrdImageEnd;
  FDT_REGION            Region;
  UINTN                 Index;
  CHAR8                 Name[10];
  LIST_ENTRY            ResourceList;
  SYSTEM_MEMORY_RESOURCE  *Resource;
  ARM_PROCESSOR_TABLE   *ArmProcessorTable;
  ARM_CORE_INFO         *ArmCoreInfoTable;
  UINT32                MpId;
  UINT32                ClusterId;
  UINT32                CoreId;
  UINT64                CpuReleaseAddr;
  UINTN                 MemoryMapSize;
  EFI_MEMORY_DESCRIPTOR *MemoryMap;
  EFI_MEMORY_DESCRIPTOR *MemoryMapPtr;
  UINTN                 MapKey;
  UINTN                 DescriptorSize;
  UINT32                DescriptorVersion;
  UINTN                 Pages;
  UINTN                 OriginalFdtSize;
  BOOLEAN               CpusNodeExist;
  UINTN                 CoreMpId;

  NewFdtBlobAllocation = 0;

  //
  // Sanity checks on the original FDT blob.
  //
  err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase));
  if (err != 0) {
    Print (L"ERROR: Device Tree header not valid (err:%d)\n", err);
    return EFI_INVALID_PARAMETER;
  }

  // The original FDT blob might have been loaded partially.
  // Check that it is not the case.
  OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
  if (OriginalFdtSize > *FdtBlobSize) {
    Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n",
           *FdtBlobSize, OriginalFdtSize);
    return EFI_INVALID_PARAMETER;
  }

  //
  // Relocate the FDT to its final location.
  //
  Status = RelocateFdt (SystemMemoryBase, *FdtBlobBase, OriginalFdtSize,
             &NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation);
  if (EFI_ERROR (Status)) {
    goto FAIL_RELOCATE_FDT;
  }

  fdt = (VOID*)(UINTN)NewFdtBlobBase;

  node = fdt_subnode_offset (fdt, 0, "chosen");
  if (node < 0) {
    // The 'chosen' node does not exist, create it
    node = fdt_add_subnode (fdt, 0, "chosen");
    if (node < 0) {
      DEBUG ((EFI_D_ERROR, "Error on finding 'chosen' node\n"));
      Status = EFI_INVALID_PARAMETER;
      goto FAIL_COMPLETE_FDT;
    }
  }

  DEBUG_CODE_BEGIN ();
    BootArg = fdt_getprop (fdt, node, "bootargs", &lenp);
    if (BootArg != NULL) {
      DEBUG ((EFI_D_ERROR, "BootArg: %a\n", BootArg));
    }
  DEBUG_CODE_END ();

  //
  // Set Linux CmdLine
  //
  if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) {
    err = fdt_setprop (fdt, node, "bootargs", CommandLineArguments, AsciiStrSize (CommandLineArguments));
    if (err) {
      DEBUG ((EFI_D_ERROR, "Fail to set new 'bootarg' (err:%d)\n", err));
    }
  }

  //
  // Set Linux Initrd
  //
  if (InitrdImageSize != 0) {
    InitrdImageStart = cpu_to_fdt64 (InitrdImage);
    err = fdt_setprop (fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof (EFI_PHYSICAL_ADDRESS));
    if (err) {
      DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err));
    }
    InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize);
    err = fdt_setprop (fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof (EFI_PHYSICAL_ADDRESS));
    if (err) {
      DEBUG ((EFI_D_ERROR, "Fail to set new 'linux,initrd-start' (err:%d)\n", err));
    }
  }

  //
  // Set Physical memory setup if does not exist
  //
  node = fdt_subnode_offset (fdt, 0, "memory");
  if (node < 0) {
    // The 'memory' node does not exist, create it
    node = fdt_add_subnode (fdt, 0, "memory");
    if (node >= 0) {
      fdt_setprop_string (fdt, node, "name", "memory");
      fdt_setprop_string (fdt, node, "device_type", "memory");

      GetSystemMemoryResources (&ResourceList);
      Resource = (SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink;

      Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart);
      Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength);

      err = fdt_setprop (fdt, node, "reg", &Region, sizeof (Region));
      if (err) {
        DEBUG ((EFI_D_ERROR, "Fail to set new 'memory region' (err:%d)\n", err));
      }
    }
  }

  //
  // Add the memory regions reserved by the UEFI Firmware
  //

  // Retrieve the UEFI Memory Map
  MemoryMap = NULL;
  MemoryMapSize = 0;
  Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
  if (Status == EFI_BUFFER_TOO_SMALL) {
    // The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive
    // calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size.
    Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1;
    MemoryMap = AllocatePages (Pages);
    if (MemoryMap == NULL) {
      Status = EFI_OUT_OF_RESOURCES;
      goto FAIL_COMPLETE_FDT;
    }
    Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
  }

  // Go through the list and add the reserved region to the Device Tree
  if (!EFI_ERROR (Status)) {
    MemoryMapPtr = MemoryMap;
    for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) {
      if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) {
        DEBUG ((DEBUG_VERBOSE, "Reserved region of type %d [0x%lX, 0x%lX]\n",
            MemoryMapPtr->Type,
            (UINTN)MemoryMapPtr->PhysicalStart,
            (UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE)));
        err = fdt_add_mem_rsv (fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE);
        if (err != 0) {
          Print (L"Warning: Fail to add 'memreserve' (err:%d)\n", err);
        }
      }
      MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize);
    }
  }

  //
  // Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms.
  //
  // For 'cpus' and 'cpu' device tree nodes bindings, refer to this file
  // in the kernel documentation:
  // Documentation/devicetree/bindings/arm/cpus.txt
  //
  for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
    // Check for correct GUID type
    if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) {
      MpId = ArmReadMpidr ();
      ClusterId = GET_CLUSTER_ID (MpId);
      CoreId    = GET_CORE_ID (MpId);

      node = fdt_subnode_offset (fdt, 0, "cpus");
      if (node < 0) {
        // Create the /cpus node
        node = fdt_add_subnode (fdt, 0, "cpus");
        fdt_setprop_string (fdt, node, "name", "cpus");
        fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4);
        fdt_setprop_cell (fdt, node, "#size-cells", 0);
        CpusNodeExist = FALSE;
      } else {
        CpusNodeExist = TRUE;
      }

      // Get pointer to ARM processor table
      ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable;
      ArmCoreInfoTable = ArmProcessorTable->ArmCpus;

      for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) {
        CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId,
                             ArmCoreInfoTable[Index].CoreId);
        AsciiSPrint (Name, 10, "cpu@%x", CoreMpId);

        // If the 'cpus' node did not exist then create all the 'cpu' nodes.
        // In case 'cpus' node is provided in the original FDT then we do not add
        // any 'cpu' node.
        if (!CpusNodeExist) {
          cpu_node = fdt_add_subnode (fdt, node, Name);
          if (cpu_node < 0) {
            DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name));
            Status = EFI_INVALID_PARAMETER;
            goto FAIL_COMPLETE_FDT;
          }

          fdt_setprop_string (fdt, cpu_node, "device_type", "cpu");

          CoreMpId = cpu_to_fdtn (CoreMpId);
          fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId));
        } else {
          cpu_node = fdt_subnode_offset (fdt, node, Name);
        }

        if (cpu_node >= 0) {
          Method = fdt_getprop (fdt, cpu_node, "enable-method", &lenp);
          // We only care when 'enable-method' == 'spin-table'. If the enable-method is not defined
          // or defined as 'psci' then we ignore its properties.
          if ((Method != NULL) && (AsciiStrCmp ((CHAR8 *)Method, "spin-table") == 0)) {
            // There are two cases;
            //  - UEFI firmware parked the secondary cores and/or UEFI firmware is aware of the CPU
            //    release addresses (PcdArmLinuxSpinTable == TRUE)
            //  - the parking of the secondary cores has been managed before starting UEFI and/or UEFI
            //    does not anything about the CPU release addresses - in this case we do nothing
            if (FeaturePcdGet (PcdArmLinuxSpinTable)) {
              CpuReleaseAddr = cpu_to_fdt64 (ArmCoreInfoTable[Index].MailboxSetAddress);
              fdt_setprop (fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof (CpuReleaseAddr));

              // If it is not the primary core than the cpu should be disabled
              if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) {
                fdt_setprop_string (fdt, cpu_node, "status", "disabled");
              }
            }
          }
        }
      }
      break;
    }
  }

  // If we succeeded to generate the new Device Tree then free the old Device Tree
  gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize));

  // Update the real size of the Device Tree
  fdt_pack ((VOID*)(UINTN)(NewFdtBlobBase));

  *FdtBlobBase = NewFdtBlobBase;
  *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase));
  return EFI_SUCCESS;

FAIL_COMPLETE_FDT:
  gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize));

FAIL_RELOCATE_FDT:
  *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
  // Return success even if we failed to update the FDT blob.
  // The original one is still valid.
  return EFI_SUCCESS;
}