summaryrefslogtreecommitdiffstats
path: root/ArmPkg/Library/ArmMmuLib/Arm/ArmMmuLibCore.c
blob: 889b22867dc79081a6a8bb79736533ccd8a27126 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/** @file
*  File managing the MMU for ARMv7 architecture
*
*  Copyright (c) 2011-2016, ARM Limited. All rights reserved.
*
*  This program and the accompanying materials
*  are licensed and made available under the terms and conditions of the BSD License
*  which accompanies this distribution.  The full text of the license may be found at
*  http://opensource.org/licenses/bsd-license.php
*
*  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
*  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/

#include <Uefi.h>
#include <Chipset/ArmV7.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>

#define ID_MMFR0_SHARELVL_SHIFT       12
#define ID_MMFR0_SHARELVL_MASK       0xf
#define ID_MMFR0_SHARELVL_ONE          0
#define ID_MMFR0_SHARELVL_TWO          1

#define ID_MMFR0_INNERSHR_SHIFT       28
#define ID_MMFR0_INNERSHR_MASK       0xf
#define ID_MMFR0_OUTERSHR_SHIFT        8
#define ID_MMFR0_OUTERSHR_MASK       0xf

#define ID_MMFR0_SHR_IMP_UNCACHED      0
#define ID_MMFR0_SHR_IMP_HW_COHERENT   1
#define ID_MMFR0_SHR_IGNORED         0xf

#define __EFI_MEMORY_RWX               0    // no restrictions

#define CACHE_ATTRIBUTE_MASK   (EFI_MEMORY_UC | \
                                EFI_MEMORY_WC | \
                                EFI_MEMORY_WT | \
                                EFI_MEMORY_WB | \
                                EFI_MEMORY_UCE | \
                                EFI_MEMORY_WP)

UINTN
EFIAPI
ArmReadIdMmfr0 (
  VOID
  );

BOOLEAN
EFIAPI
ArmHasMpExtensions (
  VOID
  );

UINT32
ConvertSectionAttributesToPageAttributes (
  IN UINT32   SectionAttributes,
  IN BOOLEAN  IsLargePage
  )
{
  UINT32 PageAttributes;

  PageAttributes = 0;
  PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY (SectionAttributes, IsLargePage);
  PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_AP (SectionAttributes);
  PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_XN (SectionAttributes, IsLargePage);
  PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_NG (SectionAttributes);
  PageAttributes |= TT_DESCRIPTOR_CONVERT_TO_PAGE_S (SectionAttributes);

  return PageAttributes;
}

STATIC
BOOLEAN
PreferNonshareableMemory (
  VOID
  )
{
  UINTN   Mmfr;
  UINTN   Val;

  if (FeaturePcdGet (PcdNormalMemoryNonshareableOverride)) {
    return TRUE;
  }

  //
  // Check whether the innermost level of shareability (the level we will use
  // by default to map normal memory) is implemented with hardware coherency
  // support. Otherwise, revert to mapping as non-shareable.
  //
  Mmfr = ArmReadIdMmfr0 ();
  switch ((Mmfr >> ID_MMFR0_SHARELVL_SHIFT) & ID_MMFR0_SHARELVL_MASK) {
  case ID_MMFR0_SHARELVL_ONE:
    // one level of shareability
    Val = (Mmfr >> ID_MMFR0_OUTERSHR_SHIFT) & ID_MMFR0_OUTERSHR_MASK;
    break;
  case ID_MMFR0_SHARELVL_TWO:
    // two levels of shareability
    Val = (Mmfr >> ID_MMFR0_INNERSHR_SHIFT) & ID_MMFR0_INNERSHR_MASK;
    break;
  default:
    // unexpected value -> shareable is the safe option
    ASSERT (FALSE);
    return FALSE;
  }
  return Val != ID_MMFR0_SHR_IMP_HW_COHERENT;
}

STATIC
VOID
PopulateLevel2PageTable (
  IN UINT32                         *SectionEntry,
  IN UINT32                         PhysicalBase,
  IN UINT32                         RemainLength,
  IN ARM_MEMORY_REGION_ATTRIBUTES   Attributes
  )
{
  UINT32* PageEntry;
  UINT32  Pages;
  UINT32  Index;
  UINT32  PageAttributes;
  UINT32  SectionDescriptor;
  UINT32  TranslationTable;
  UINT32  BaseSectionAddress;
  UINT32  FirstPageOffset;

  switch (Attributes) {
    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
      PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_BACK;
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
      PageAttributes = TT_DESCRIPTOR_PAGE_WRITE_THROUGH;
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
      PageAttributes = TT_DESCRIPTOR_PAGE_DEVICE;
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
      PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
      break;
    default:
      PageAttributes = TT_DESCRIPTOR_PAGE_UNCACHED;
      break;
  }

  if (PreferNonshareableMemory ()) {
    PageAttributes &= ~TT_DESCRIPTOR_PAGE_S_SHARED;
  }

  // Check if the Section Entry has already been populated. Otherwise attach a
  // Level 2 Translation Table to it
  if (*SectionEntry != 0) {
    // The entry must be a page table. Otherwise it exists an overlapping in the memory map
    if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(*SectionEntry)) {
      TranslationTable = *SectionEntry & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK;
    } else if ((*SectionEntry & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
      // Case where a virtual memory map descriptor overlapped a section entry

      // Allocate a Level2 Page Table for this Section
      TranslationTable = (UINTN)AllocatePages(EFI_SIZE_TO_PAGES(TRANSLATION_TABLE_PAGE_SIZE + TRANSLATION_TABLE_PAGE_ALIGNMENT));
      TranslationTable = ((UINTN)TranslationTable + TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK;

      // Translate the Section Descriptor into Page Descriptor
      SectionDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (*SectionEntry, FALSE);

      BaseSectionAddress = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(*SectionEntry);

      // Populate the new Level2 Page Table for the section
      PageEntry = (UINT32*)TranslationTable;
      for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
        PageEntry[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseSectionAddress + (Index << 12)) | SectionDescriptor;
      }

      // Overwrite the section entry to point to the new Level2 Translation Table
      *SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
          (IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE(Attributes) ? (1 << 3) : 0) |
          TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
    } else {
      // We do not support the other section type (16MB Section)
      ASSERT(0);
      return;
    }
  } else {
    TranslationTable = (UINTN)AllocatePages(EFI_SIZE_TO_PAGES(TRANSLATION_TABLE_PAGE_SIZE + TRANSLATION_TABLE_PAGE_ALIGNMENT));
    TranslationTable = ((UINTN)TranslationTable + TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK;

    ZeroMem ((VOID *)TranslationTable, TRANSLATION_TABLE_PAGE_SIZE);

    *SectionEntry = (TranslationTable & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) |
        (IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE(Attributes) ? (1 << 3) : 0) |
        TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
  }

  FirstPageOffset = (PhysicalBase & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
  PageEntry = (UINT32 *)TranslationTable + FirstPageOffset;
  Pages     = RemainLength / TT_DESCRIPTOR_PAGE_SIZE;

  ASSERT (FirstPageOffset + Pages <= TRANSLATION_TABLE_PAGE_COUNT);

  for (Index = 0; Index < Pages; Index++) {
    *PageEntry++     =  TT_DESCRIPTOR_PAGE_BASE_ADDRESS(PhysicalBase) | PageAttributes;
    PhysicalBase += TT_DESCRIPTOR_PAGE_SIZE;
  }

}

STATIC
VOID
FillTranslationTable (
  IN  UINT32                        *TranslationTable,
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryRegion
  )
{
  UINT32  *SectionEntry;
  UINT32  Attributes;
  UINT32  PhysicalBase;
  UINT64  RemainLength;
  UINT32  PageMapLength;

  ASSERT(MemoryRegion->Length > 0);

  if (MemoryRegion->PhysicalBase >= SIZE_4GB) {
    return;
  }

  PhysicalBase = MemoryRegion->PhysicalBase;
  RemainLength = MIN(MemoryRegion->Length, SIZE_4GB - PhysicalBase);

  switch (MemoryRegion->Attributes) {
    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
      Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK(0);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
      Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH(0);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
      Attributes = TT_DESCRIPTOR_SECTION_DEVICE(0);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
      Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(0);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
      Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK(1);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
      Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH(1);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
      Attributes = TT_DESCRIPTOR_SECTION_DEVICE(1);
      break;
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
      Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(1);
      break;
    default:
      Attributes = TT_DESCRIPTOR_SECTION_UNCACHED(0);
      break;
  }

  if (PreferNonshareableMemory ()) {
    Attributes &= ~TT_DESCRIPTOR_SECTION_S_SHARED;
  }

  // Get the first section entry for this mapping
  SectionEntry    = TRANSLATION_TABLE_ENTRY_FOR_VIRTUAL_ADDRESS(TranslationTable, MemoryRegion->VirtualBase);

  while (RemainLength != 0) {
    if (PhysicalBase % TT_DESCRIPTOR_SECTION_SIZE == 0 &&
        RemainLength >= TT_DESCRIPTOR_SECTION_SIZE) {
      // Case: Physical address aligned on the Section Size (1MB) && the length
      // is greater than the Section Size
      *SectionEntry++ = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(PhysicalBase) | Attributes;
      PhysicalBase += TT_DESCRIPTOR_SECTION_SIZE;
      RemainLength -= TT_DESCRIPTOR_SECTION_SIZE;
    } else {
      PageMapLength = MIN (RemainLength, TT_DESCRIPTOR_SECTION_SIZE) -
                      (PhysicalBase % TT_DESCRIPTOR_SECTION_SIZE);

      // Case: Physical address aligned on the Section Size (1MB) && the length
      //       does not fill a section
      // Case: Physical address NOT aligned on the Section Size (1MB)
      PopulateLevel2PageTable (SectionEntry++, PhysicalBase, PageMapLength,
        MemoryRegion->Attributes);

      // If it is the last entry
      if (RemainLength < TT_DESCRIPTOR_SECTION_SIZE) {
        break;
      }

      PhysicalBase += PageMapLength;
      RemainLength -= PageMapLength;
    }
  }
}

RETURN_STATUS
EFIAPI
ArmConfigureMmu (
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryTable,
  OUT VOID                         **TranslationTableBase OPTIONAL,
  OUT UINTN                         *TranslationTableSize OPTIONAL
  )
{
  VOID*                         TranslationTable;
  ARM_MEMORY_REGION_ATTRIBUTES  TranslationTableAttribute;
  UINT32                        TTBRAttributes;

  // Allocate pages for translation table.
  TranslationTable = AllocatePages (EFI_SIZE_TO_PAGES (TRANSLATION_TABLE_SECTION_SIZE + TRANSLATION_TABLE_SECTION_ALIGNMENT));
  if (TranslationTable == NULL) {
    return RETURN_OUT_OF_RESOURCES;
  }
  TranslationTable = (VOID*)(((UINTN)TranslationTable + TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK);

  if (TranslationTableBase != NULL) {
    *TranslationTableBase = TranslationTable;
  }

  if (TranslationTableSize != NULL) {
    *TranslationTableSize = TRANSLATION_TABLE_SECTION_SIZE;
  }

  ZeroMem (TranslationTable, TRANSLATION_TABLE_SECTION_SIZE);

  // By default, mark the translation table as belonging to a uncached region
  TranslationTableAttribute = ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
  while (MemoryTable->Length != 0) {
    // Find the memory attribute for the Translation Table
    if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) && ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
      TranslationTableAttribute = MemoryTable->Attributes;
    }

    FillTranslationTable (TranslationTable, MemoryTable);
    MemoryTable++;
  }

  // Translate the Memory Attributes into Translation Table Register Attributes
  if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
      (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
    TTBRAttributes = ArmHasMpExtensions () ? TTBR_MP_WRITE_BACK_ALLOC : TTBR_WRITE_BACK_ALLOC;
  } else {
    // Page tables must reside in memory mapped as write-back cacheable
    ASSERT (0);
    return RETURN_UNSUPPORTED;
  }

  if (TTBRAttributes & TTBR_SHAREABLE) {
    if (PreferNonshareableMemory ()) {
      TTBRAttributes ^= TTBR_SHAREABLE;
    } else {
      //
      // Unlike the S bit in the short descriptors, which implies inner shareable
      // on an implementation that supports two levels, the meaning of the S bit
      // in the TTBR depends on the NOS bit, which defaults to Outer Shareable.
      // However, we should only set this bit after we have confirmed that the
      // implementation supports multiple levels, or else the NOS bit is UNK/SBZP
      //
      if (((ArmReadIdMmfr0 () >> 12) & 0xf) != 0) {
        TTBRAttributes |= TTBR_NOT_OUTER_SHAREABLE;
      }
    }
  }

  ArmCleanInvalidateDataCache ();
  ArmInvalidateInstructionCache ();

  ArmDisableDataCache ();
  ArmDisableInstructionCache();
  // TLBs are also invalidated when calling ArmDisableMmu()
  ArmDisableMmu ();

  // Make sure nothing sneaked into the cache
  ArmCleanInvalidateDataCache ();
  ArmInvalidateInstructionCache ();

  ArmSetTTBR0 ((VOID *)(UINTN)(((UINTN)TranslationTable & ~TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK) | (TTBRAttributes & 0x7F)));

  //
  // The TTBCR register value is undefined at reset in the Non-Secure world.
  // Writing 0 has the effect of:
  //   Clearing EAE: Use short descriptors, as mandated by specification.
  //   Clearing PD0 and PD1: Translation Table Walk Disable is off.
  //   Clearing N: Perform all translation table walks through TTBR0.
  //               (0 is the default reset value in systems not implementing
  //               the Security Extensions.)
  //
  ArmSetTTBCR (0);

  ArmSetDomainAccessControl (DOMAIN_ACCESS_CONTROL_NONE(15) |
                             DOMAIN_ACCESS_CONTROL_NONE(14) |
                             DOMAIN_ACCESS_CONTROL_NONE(13) |
                             DOMAIN_ACCESS_CONTROL_NONE(12) |
                             DOMAIN_ACCESS_CONTROL_NONE(11) |
                             DOMAIN_ACCESS_CONTROL_NONE(10) |
                             DOMAIN_ACCESS_CONTROL_NONE( 9) |
                             DOMAIN_ACCESS_CONTROL_NONE( 8) |
                             DOMAIN_ACCESS_CONTROL_NONE( 7) |
                             DOMAIN_ACCESS_CONTROL_NONE( 6) |
                             DOMAIN_ACCESS_CONTROL_NONE( 5) |
                             DOMAIN_ACCESS_CONTROL_NONE( 4) |
                             DOMAIN_ACCESS_CONTROL_NONE( 3) |
                             DOMAIN_ACCESS_CONTROL_NONE( 2) |
                             DOMAIN_ACCESS_CONTROL_NONE( 1) |
                             DOMAIN_ACCESS_CONTROL_CLIENT(0));

  ArmEnableInstructionCache();
  ArmEnableDataCache();
  ArmEnableMmu();
  return RETURN_SUCCESS;
}

STATIC
EFI_STATUS
ConvertSectionToPages (
  IN EFI_PHYSICAL_ADDRESS  BaseAddress
  )
{
  UINT32                  FirstLevelIdx;
  UINT32                  SectionDescriptor;
  UINT32                  PageTableDescriptor;
  UINT32                  PageDescriptor;
  UINT32                  Index;

  volatile ARM_FIRST_LEVEL_DESCRIPTOR   *FirstLevelTable;
  volatile ARM_PAGE_TABLE_ENTRY         *PageTable;

  DEBUG ((EFI_D_PAGE, "Converting section at 0x%x to pages\n", (UINTN)BaseAddress));

  // Obtain page table base
  FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();

  // Calculate index into first level translation table for start of modification
  FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
  ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);

  // Get section attributes and convert to page attributes
  SectionDescriptor = FirstLevelTable[FirstLevelIdx];
  PageDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (SectionDescriptor, FALSE);

  // Allocate a page table for the 4KB entries (we use up a full page even though we only need 1KB)
  PageTable = (volatile ARM_PAGE_TABLE_ENTRY *)AllocatePages (1);
  if (PageTable == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }

  // Write the page table entries out
  for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
    PageTable[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS(BaseAddress + (Index << 12)) | PageDescriptor;
  }

  // Formulate page table entry, Domain=0, NS=0
  PageTableDescriptor = (((UINTN)PageTable) & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) | TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;

  // Write the page table entry out, replacing section entry
  FirstLevelTable[FirstLevelIdx] = PageTableDescriptor;

  return EFI_SUCCESS;
}

STATIC
EFI_STATUS
UpdatePageEntries (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length,
  IN  UINT64                    Attributes,
  OUT BOOLEAN                   *FlushTlbs OPTIONAL
  )
{
  EFI_STATUS    Status;
  UINT32        EntryValue;
  UINT32        EntryMask;
  UINT32        FirstLevelIdx;
  UINT32        Offset;
  UINT32        NumPageEntries;
  UINT32        Descriptor;
  UINT32        p;
  UINT32        PageTableIndex;
  UINT32        PageTableEntry;
  UINT32        CurrentPageTableEntry;
  VOID          *Mva;

  volatile ARM_FIRST_LEVEL_DESCRIPTOR   *FirstLevelTable;
  volatile ARM_PAGE_TABLE_ENTRY         *PageTable;

  Status = EFI_SUCCESS;

  // EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
  // EntryValue: values at bit positions specified by EntryMask
  EntryMask = TT_DESCRIPTOR_PAGE_TYPE_MASK | TT_DESCRIPTOR_PAGE_AP_MASK;
  if (Attributes & EFI_MEMORY_XP) {
    EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE_XN;
  } else {
    EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
  }

  // Although the PI spec is unclear on this, the GCD guarantees that only
  // one Attribute bit is set at a time, so the order of the conditionals below
  // is irrelevant. If no memory attribute is specified, we preserve whatever
  // memory type is set in the page tables, and update the permission attributes
  // only.
  if (Attributes & EFI_MEMORY_UC) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
    // map to strongly ordered
    EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
  } else if (Attributes & EFI_MEMORY_WC) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
    // map to normal non-cachable
    EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
  } else if (Attributes & EFI_MEMORY_WT) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
    // write through with no-allocate
    EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
  } else if (Attributes & EFI_MEMORY_WB) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
    // write back (with allocate)
    EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
  } else if (Attributes & CACHE_ATTRIBUTE_MASK) {
    // catch unsupported memory type attributes
    ASSERT (FALSE);
    return EFI_UNSUPPORTED;
  }

  if (Attributes & EFI_MEMORY_RO) {
    EntryValue |= TT_DESCRIPTOR_PAGE_AP_RO_RO;
  } else {
    EntryValue |= TT_DESCRIPTOR_PAGE_AP_RW_RW;
  }

  // Obtain page table base
  FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();

  // Calculate number of 4KB page table entries to change
  NumPageEntries = Length / TT_DESCRIPTOR_PAGE_SIZE;

  // Iterate for the number of 4KB pages to change
  Offset = 0;
  for(p = 0; p < NumPageEntries; p++) {
    // Calculate index into first level translation table for page table value

    FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress + Offset) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
    ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);

    // Read the descriptor from the first level page table
    Descriptor = FirstLevelTable[FirstLevelIdx];

    // Does this descriptor need to be converted from section entry to 4K pages?
    if (!TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(Descriptor)) {
      Status = ConvertSectionToPages (FirstLevelIdx << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
      if (EFI_ERROR(Status)) {
        // Exit for loop
        break;
      }

      // Re-read descriptor
      Descriptor = FirstLevelTable[FirstLevelIdx];
      if (FlushTlbs != NULL) {
        *FlushTlbs = TRUE;
      }
    }

    // Obtain page table base address
    PageTable = (ARM_PAGE_TABLE_ENTRY *)TT_DESCRIPTOR_PAGE_BASE_ADDRESS(Descriptor);

    // Calculate index into the page table
    PageTableIndex = ((BaseAddress + Offset) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
    ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);

    // Get the entry
    CurrentPageTableEntry = PageTable[PageTableIndex];

    // Mask off appropriate fields
    PageTableEntry = CurrentPageTableEntry & ~EntryMask;

    // Mask in new attributes and/or permissions
    PageTableEntry |= EntryValue;

    if (CurrentPageTableEntry  != PageTableEntry) {
      Mva = (VOID *)(UINTN)((((UINTN)FirstLevelIdx) << TT_DESCRIPTOR_SECTION_BASE_SHIFT) + (PageTableIndex << TT_DESCRIPTOR_PAGE_BASE_SHIFT));

      // Only need to update if we are changing the entry
      PageTable[PageTableIndex] = PageTableEntry;
      ArmUpdateTranslationTableEntry ((VOID *)&PageTable[PageTableIndex], Mva);
    }

    Status = EFI_SUCCESS;
    Offset += TT_DESCRIPTOR_PAGE_SIZE;

  } // End first level translation table loop

  return Status;
}

STATIC
EFI_STATUS
UpdateSectionEntries (
  IN EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN UINT64                    Length,
  IN UINT64                    Attributes
  )
{
  EFI_STATUS    Status = EFI_SUCCESS;
  UINT32        EntryMask;
  UINT32        EntryValue;
  UINT32        FirstLevelIdx;
  UINT32        NumSections;
  UINT32        i;
  UINT32        CurrentDescriptor;
  UINT32        Descriptor;
  VOID          *Mva;
  volatile ARM_FIRST_LEVEL_DESCRIPTOR   *FirstLevelTable;

  // EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
  // EntryValue: values at bit positions specified by EntryMask

  // Make sure we handle a section range that is unmapped
  EntryMask = TT_DESCRIPTOR_SECTION_TYPE_MASK | TT_DESCRIPTOR_SECTION_XN_MASK |
              TT_DESCRIPTOR_SECTION_AP_MASK;
  EntryValue = TT_DESCRIPTOR_SECTION_TYPE_SECTION;

  // Although the PI spec is unclear on this, the GCD guarantees that only
  // one Attribute bit is set at a time, so the order of the conditionals below
  // is irrelevant. If no memory attribute is specified, we preserve whatever
  // memory type is set in the page tables, and update the permission attributes
  // only.
  if (Attributes & EFI_MEMORY_UC) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
    // map to strongly ordered
    EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
  } else if (Attributes & EFI_MEMORY_WC) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
    // map to normal non-cachable
    EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
  } else if (Attributes & EFI_MEMORY_WT) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
    // write through with no-allocate
    EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
  } else if (Attributes & EFI_MEMORY_WB) {
    // modify cacheability attributes
    EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
    // write back (with allocate)
    EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
  } else if (Attributes & CACHE_ATTRIBUTE_MASK) {
    // catch unsupported memory type attributes
    ASSERT (FALSE);
    return EFI_UNSUPPORTED;
  }

  if (Attributes & EFI_MEMORY_RO) {
    EntryValue |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
  } else {
    EntryValue |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
  }

  if (Attributes & EFI_MEMORY_XP) {
    EntryValue |= TT_DESCRIPTOR_SECTION_XN_MASK;
  }

  // obtain page table base
  FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();

  // calculate index into first level translation table for start of modification
  FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
  ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);

  // calculate number of 1MB first level entries this applies to
  NumSections = Length / TT_DESCRIPTOR_SECTION_SIZE;

  // iterate through each descriptor
  for(i=0; i<NumSections; i++) {
    CurrentDescriptor = FirstLevelTable[FirstLevelIdx + i];

    // has this descriptor already been coverted to pages?
    if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(CurrentDescriptor)) {
      // forward this 1MB range to page table function instead
      Status = UpdatePageEntries (
                 (FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT,
                 TT_DESCRIPTOR_SECTION_SIZE,
                 Attributes,
                 NULL);
    } else {
      // still a section entry

      if (CurrentDescriptor != 0) {
        // mask off appropriate fields
        Descriptor = CurrentDescriptor & ~EntryMask;
      } else {
        Descriptor = ((UINTN)FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT;
      }

      // mask in new attributes and/or permissions
      Descriptor |= EntryValue;

      if (CurrentDescriptor  != Descriptor) {
        Mva = (VOID *)(UINTN)(((UINTN)FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT);

        // Only need to update if we are changing the descriptor
        FirstLevelTable[FirstLevelIdx + i] = Descriptor;
        ArmUpdateTranslationTableEntry ((VOID *)&FirstLevelTable[FirstLevelIdx + i], Mva);
      }

      Status = EFI_SUCCESS;
    }
  }

  return Status;
}

EFI_STATUS
ArmSetMemoryAttributes (
  IN EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN UINT64                    Length,
  IN UINT64                    Attributes
  )
{
  EFI_STATUS    Status;
  UINT64        ChunkLength;
  BOOLEAN       FlushTlbs;

  if (Length == 0) {
    return EFI_SUCCESS;
  }

  FlushTlbs = FALSE;
  while (Length > 0) {
    if ((BaseAddress % TT_DESCRIPTOR_SECTION_SIZE == 0) &&
        Length >= TT_DESCRIPTOR_SECTION_SIZE) {

      ChunkLength = Length - Length % TT_DESCRIPTOR_SECTION_SIZE;

      DEBUG ((DEBUG_PAGE,
        "SetMemoryAttributes(): MMU section 0x%lx length 0x%lx to %lx\n",
        BaseAddress, ChunkLength, Attributes));

      Status = UpdateSectionEntries (BaseAddress, ChunkLength, Attributes);

      FlushTlbs = TRUE;
    } else {

      //
      // Process page by page until the next section boundary, but only if
      // we have more than a section's worth of area to deal with after that.
      //
      ChunkLength = TT_DESCRIPTOR_SECTION_SIZE -
                    (BaseAddress % TT_DESCRIPTOR_SECTION_SIZE);
      if (ChunkLength + TT_DESCRIPTOR_SECTION_SIZE > Length) {
        ChunkLength = Length;
      }

      DEBUG ((DEBUG_PAGE,
        "SetMemoryAttributes(): MMU page 0x%lx length 0x%lx to %lx\n",
        BaseAddress, ChunkLength, Attributes));

      Status = UpdatePageEntries (BaseAddress, ChunkLength, Attributes,
                 &FlushTlbs);
    }

    if (EFI_ERROR (Status)) {
      break;
    }

    BaseAddress += ChunkLength;
    Length -= ChunkLength;
  }

  if (FlushTlbs) {
    ArmInvalidateTlb ();
  }
  return Status;
}

EFI_STATUS
ArmSetMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return ArmSetMemoryAttributes (BaseAddress, Length, EFI_MEMORY_XP);
}

EFI_STATUS
ArmClearMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return ArmSetMemoryAttributes (BaseAddress, Length, __EFI_MEMORY_RWX);
}

EFI_STATUS
ArmSetMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return ArmSetMemoryAttributes (BaseAddress, Length, EFI_MEMORY_RO);
}

EFI_STATUS
ArmClearMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return ArmSetMemoryAttributes (BaseAddress, Length, __EFI_MEMORY_RWX);
}

RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
  VOID
  )
{
  return RETURN_SUCCESS;
}