1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/** @file
RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
This file implements following APIs which provide basic capabilities for RSA:
1) RsaNew
2) RsaFree
3) RsaSetKey
4) RsaPkcs1Verify
Copyright (c) 2009 - 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "InternalCryptLib.h"
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>
/**
Allocates and initializes one RSA context for subsequent use.
@return Pointer to the RSA context that has been initialized.
If the allocations fails, RsaNew() returns NULL.
**/
VOID *
EFIAPI
RsaNew (
VOID
)
{
//
// Allocates & Initializes RSA Context by OpenSSL RSA_new()
//
return (VOID *)RSA_new ();
}
/**
Release the specified RSA context.
@param[in] RsaContext Pointer to the RSA context to be released.
**/
VOID
EFIAPI
RsaFree (
IN VOID *RsaContext
)
{
//
// Free OpenSSL RSA Context
//
RSA_free ((RSA *)RsaContext);
}
/**
Sets the tag-designated key component into the established RSA context.
This function sets the tag-designated RSA key component into the established
RSA context from the user-specified non-negative integer (octet string format
represented in RSA PKCS#1).
If BigNumber is NULL, then the specified key component in RSA context is cleared.
If RsaContext is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[in] BigNumber Pointer to octet integer buffer.
If NULL, then the specified key component in RSA
context is cleared.
@param[in] BnSize Size of big number buffer in bytes.
If BigNumber is NULL, then it is ignored.
@retval TRUE RSA key component was set successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaSetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
IN CONST UINT8 *BigNumber,
IN UINTN BnSize
)
{
RSA *RsaKey;
BIGNUM *BnN;
BIGNUM *BnE;
BIGNUM *BnD;
BIGNUM *BnP;
BIGNUM *BnQ;
BIGNUM *BnDp;
BIGNUM *BnDq;
BIGNUM *BnQInv;
//
// Check input parameters.
//
if ((RsaContext == NULL) || (BnSize > INT_MAX)) {
return FALSE;
}
BnN = NULL;
BnE = NULL;
BnD = NULL;
BnP = NULL;
BnQ = NULL;
BnDp = NULL;
BnDq = NULL;
BnQInv = NULL;
//
// Retrieve the components from RSA object.
//
RsaKey = (RSA *)RsaContext;
RSA_get0_key (RsaKey, (const BIGNUM **)&BnN, (const BIGNUM **)&BnE, (const BIGNUM **)&BnD);
RSA_get0_factors (RsaKey, (const BIGNUM **)&BnP, (const BIGNUM **)&BnQ);
RSA_get0_crt_params (RsaKey, (const BIGNUM **)&BnDp, (const BIGNUM **)&BnDq, (const BIGNUM **)&BnQInv);
//
// Set RSA Key Components by converting octet string to OpenSSL BN representation.
// NOTE: For RSA public key (used in signature verification), only public components
// (N, e) are needed.
//
switch (KeyTag) {
//
// RSA Public Modulus (N), Public Exponent (e) and Private Exponent (d)
//
case RsaKeyN:
case RsaKeyE:
case RsaKeyD:
if (BnN == NULL) {
BnN = BN_new ();
}
if (BnE == NULL) {
BnE = BN_new ();
}
if (BnD == NULL) {
BnD = BN_new ();
}
if ((BnN == NULL) || (BnE == NULL) || (BnD == NULL)) {
return FALSE;
}
switch (KeyTag) {
case RsaKeyN:
BnN = BN_bin2bn (BigNumber, (UINT32)BnSize, BnN);
break;
case RsaKeyE:
BnE = BN_bin2bn (BigNumber, (UINT32)BnSize, BnE);
break;
case RsaKeyD:
BnD = BN_bin2bn (BigNumber, (UINT32)BnSize, BnD);
break;
default:
return FALSE;
}
if (RSA_set0_key (RsaKey, BN_dup (BnN), BN_dup (BnE), BN_dup (BnD)) == 0) {
return FALSE;
}
break;
//
// RSA Secret Prime Factor of Modulus (p and q)
//
case RsaKeyP:
case RsaKeyQ:
if (BnP == NULL) {
BnP = BN_new ();
}
if (BnQ == NULL) {
BnQ = BN_new ();
}
if ((BnP == NULL) || (BnQ == NULL)) {
return FALSE;
}
switch (KeyTag) {
case RsaKeyP:
BnP = BN_bin2bn (BigNumber, (UINT32)BnSize, BnP);
break;
case RsaKeyQ:
BnQ = BN_bin2bn (BigNumber, (UINT32)BnSize, BnQ);
break;
default:
return FALSE;
}
if (RSA_set0_factors (RsaKey, BN_dup (BnP), BN_dup (BnQ)) == 0) {
return FALSE;
}
break;
//
// p's CRT Exponent (== d mod (p - 1)), q's CRT Exponent (== d mod (q - 1)),
// and CRT Coefficient (== 1/q mod p)
//
case RsaKeyDp:
case RsaKeyDq:
case RsaKeyQInv:
if (BnDp == NULL) {
BnDp = BN_new ();
}
if (BnDq == NULL) {
BnDq = BN_new ();
}
if (BnQInv == NULL) {
BnQInv = BN_new ();
}
if ((BnDp == NULL) || (BnDq == NULL) || (BnQInv == NULL)) {
return FALSE;
}
switch (KeyTag) {
case RsaKeyDp:
BnDp = BN_bin2bn (BigNumber, (UINT32)BnSize, BnDp);
break;
case RsaKeyDq:
BnDq = BN_bin2bn (BigNumber, (UINT32)BnSize, BnDq);
break;
case RsaKeyQInv:
BnQInv = BN_bin2bn (BigNumber, (UINT32)BnSize, BnQInv);
break;
default:
return FALSE;
}
if (RSA_set0_crt_params (RsaKey, BN_dup (BnDp), BN_dup (BnDq), BN_dup (BnQInv)) == 0) {
return FALSE;
}
break;
default:
return FALSE;
}
return TRUE;
}
/**
Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If RsaContext is NULL, then return FALSE.
If MessageHash is NULL, then return FALSE.
If Signature is NULL, then return FALSE.
If HashSize is not equal to the size of MD5, SHA-1, SHA-256, SHA-384 or SHA-512 digest, then return FALSE.
@param[in] RsaContext Pointer to RSA context for signature verification.
@param[in] MessageHash Pointer to octet message hash to be checked.
@param[in] HashSize Size of the message hash in bytes.
@param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
@param[in] SigSize Size of signature in bytes.
@retval TRUE Valid signature encoded in PKCS1-v1_5.
@retval FALSE Invalid signature or invalid RSA context.
**/
BOOLEAN
EFIAPI
RsaPkcs1Verify (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
IN CONST UINT8 *Signature,
IN UINTN SigSize
)
{
INT32 DigestType;
UINT8 *SigBuf;
//
// Check input parameters.
//
if ((RsaContext == NULL) || (MessageHash == NULL) || (Signature == NULL)) {
return FALSE;
}
if ((SigSize > INT_MAX) || (SigSize == 0)) {
return FALSE;
}
//
// Determine the message digest algorithm according to digest size.
// Only MD5, SHA-1, SHA-256, SHA-384 or SHA-512 algorithm is supported.
//
switch (HashSize) {
case MD5_DIGEST_SIZE:
DigestType = NID_md5;
break;
case SHA1_DIGEST_SIZE:
DigestType = NID_sha1;
break;
case SHA256_DIGEST_SIZE:
DigestType = NID_sha256;
break;
case SHA384_DIGEST_SIZE:
DigestType = NID_sha384;
break;
case SHA512_DIGEST_SIZE:
DigestType = NID_sha512;
break;
default:
return FALSE;
}
SigBuf = (UINT8 *)Signature;
return (BOOLEAN)RSA_verify (
DigestType,
MessageHash,
(UINT32)HashSize,
SigBuf,
(UINT32)SigSize,
(RSA *)RsaContext
);
}
|