1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
|
/** @file
*
* Copyright (c) 2012-2014, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "Lan9118Dxe.h"
STATIC EFI_MAC_ADDRESS mZeroMac = { 0 };
/**
This internal function reverses bits for 32bit data.
@param Value The data to be reversed.
@return Data reversed.
**/
UINT32
ReverseBits (
UINT32 Value
)
{
UINTN Index;
UINT32 NewValue;
NewValue = 0;
for (Index = 0; Index < 32; Index++) {
if ((Value & (1 << Index)) != 0) {
NewValue = NewValue | (1 << (31 - Index));
}
}
return NewValue;
}
/*
** Create Ethernet CRC
**
** INFO USED:
** 1: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
**
** 2: http://www.erg.abdn.ac.uk/~gorry/eg3567/dl-pages/crc.html
**
** 3: http://en.wikipedia.org/wiki/Computation_of_CRC
*/
UINT32
GenEtherCrc32 (
IN EFI_MAC_ADDRESS *Mac,
IN UINT32 AddrLen
)
{
INT32 Iter;
UINT32 Remainder;
UINT8 *Ptr;
Iter = 0;
Remainder = 0xFFFFFFFF; // 0xFFFFFFFF is standard seed for Ethernet
// Convert Mac Address to array of bytes
Ptr = (UINT8*)Mac;
// Generate the Crc bit-by-bit (LSB first)
while (AddrLen--) {
Remainder ^= *Ptr++;
for (Iter = 0;Iter < 8;Iter++) {
// Check if exponent is set
if (Remainder & 1) {
Remainder = (Remainder >> 1) ^ CRC_POLYNOMIAL;
} else {
Remainder = (Remainder >> 1) ^ 0;
}
}
}
// Reverse the bits before returning (to Big Endian)
//TODO: Need to be reviewed. Do we want to do a bit reverse or a byte reverse (in this case use SwapBytes32())
return ReverseBits (Remainder);
}
// Function to read from MAC indirect registers
UINT32
IndirectMACRead32 (
UINT32 Index
)
{
UINT32 MacCSR;
// Check index is in the range
ASSERT(Index <= 12);
// Wait until CSR busy bit is cleared
while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Set CSR busy bit to ensure read will occur
// Set the R/W bit to indicate we are reading
// Set the index of CSR Address to access desired register
MacCSR = MAC_CSR_BUSY | MAC_CSR_READ | MAC_CSR_ADDR(Index);
// Write to the register
MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
// Wait until CSR busy bit is cleared
while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Now read from data register to get read value
return MmioRead32 (LAN9118_MAC_CSR_DATA);
}
// Function to write to MAC indirect registers
UINT32
IndirectMACWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 ValueWritten;
UINT32 MacCSR;
// Check index is in the range
ASSERT(Index <= 12);
// Wait until CSR busy bit is cleared
while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
// Set CSR busy bit to ensure read will occur
// Set the R/W bit to indicate we are writing
// Set the index of CSR Address to access desired register
MacCSR = MAC_CSR_BUSY | MAC_CSR_WRITE | MAC_CSR_ADDR(Index);
// Now write the value to the register before issuing the write command
ValueWritten = MmioWrite32 (LAN9118_MAC_CSR_DATA, Value);
// Write the config to the register
MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
// Wait until CSR busy bit is cleared
while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
return ValueWritten;
}
// Function to read from MII register (PHY Access)
UINT32
IndirectPHYRead32 (
UINT32 Index
)
{
UINT32 ValueRead;
UINT32 MiiAcc;
// Check it is a valid index
ASSERT(Index < 31);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Clear the R/W bit to indicate we are reading
// Set the index of the MII register
// Set the PHY Address
// Set the MII busy bit to allow read
MiiAcc = MII_ACC_MII_READ | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
// Now write this config to register
IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Now read the value of the register
ValueRead = (IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_DATA) & 0xFFFF); // only lower 16 bits are valid for any PHY register
return ValueRead;
}
// Function to write to the MII register (PHY Access)
UINT32
IndirectPHYWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 MiiAcc;
UINT32 ValueWritten;
// Check it is a valid index
ASSERT(Index < 31);
// Wait for busy bit to clear
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
// Clear the R/W bit to indicate we are reading
// Set the index of the MII register
// Set the PHY Address
// Set the MII busy bit to allow read
MiiAcc = MII_ACC_MII_WRITE | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
// Write the desired value to the register first
ValueWritten = IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_DATA, (Value & 0xFFFF));
// Now write the config to register
IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
// Wait for operation to terminate
while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
return ValueWritten;
}
/* ---------------- EEPROM Operations ------------------ */
// Function to read from EEPROM memory
UINT32
IndirectEEPROMRead32 (
UINT32 Index
)
{
UINT32 EepromCmd;
// Set the busy bit to ensure read will occur
EepromCmd = E2P_EPC_BUSY | E2P_EPC_CMD_READ;
// Set the index to access desired EEPROM memory location
EepromCmd |= E2P_EPC_ADDRESS(Index);
// Write to Eeprom command register
MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
gBS->Stall (LAN9118_STALL);
// Wait until operation has completed
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Check that operation didn't time out
if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Read command on index %x\n",Index));
return 0;
}
// Wait until operation has completed
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Finally read the value
return MmioRead32 (LAN9118_E2P_DATA);
}
// Function to write to EEPROM memory
UINT32
IndirectEEPROMWrite32 (
UINT32 Index,
UINT32 Value
)
{
UINT32 ValueWritten;
UINT32 EepromCmd;
ValueWritten = 0;
// Read the EEPROM Command register
EepromCmd = MmioRead32 (LAN9118_E2P_CMD);
// Set the busy bit to ensure read will occur
EepromCmd |= ((UINT32)1 << 31);
// Set the EEPROM command to write(0b011)
EepromCmd &= ~(7 << 28); // Clear the command first
EepromCmd |= (3 << 28); // Write 011
// Set the index to access desired EEPROM memory location
EepromCmd |= (Index & 0xF);
// Write the value to the data register first
ValueWritten = MmioWrite32 (LAN9118_E2P_DATA, Value);
// Write to Eeprom command register
MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
gBS->Stall (LAN9118_STALL);
// Wait until operation has completed
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Check that operation didn't time out
if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Write command at memloc 0x%x, with value 0x%x\n",Index, Value));
return 0;
}
// Wait until operation has completed
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
return ValueWritten;
}
/* ---------------- General Operations ----------------- */
VOID
Lan9118SetMacAddress (
EFI_MAC_ADDRESS *Mac,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRL,
(Mac->Addr[0] & 0xFF) |
((Mac->Addr[1] & 0xFF) << 8) |
((Mac->Addr[2] & 0xFF) << 16) |
((Mac->Addr[3] & 0xFF) << 24)
);
IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRH,
(UINT32)(Mac->Addr[4] & 0xFF) |
((Mac->Addr[5] & 0xFF) << 8)
);
CopyMem (&Snp->Mode->CurrentAddress, &Mac, NET_ETHER_ADDR_LEN);
}
VOID
Lan9118ReadMacAddress (
OUT EFI_MAC_ADDRESS *MacAddress
)
{
UINT32 MacAddrHighValue;
UINT32 MacAddrLowValue;
// Read the Mac Addr high register
MacAddrHighValue = (IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRH) & 0xFFFF);
// Read the Mac Addr low register
MacAddrLowValue = IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRL);
SetMem (MacAddress, sizeof(*MacAddress), 0);
MacAddress->Addr[0] = (MacAddrLowValue & 0xFF);
MacAddress->Addr[1] = (MacAddrLowValue & 0xFF00) >> 8;
MacAddress->Addr[2] = (MacAddrLowValue & 0xFF0000) >> 16;
MacAddress->Addr[3] = (MacAddrLowValue & 0xFF000000) >> 24;
MacAddress->Addr[4] = (MacAddrHighValue & 0xFF);
MacAddress->Addr[5] = (MacAddrHighValue & 0xFF00) >> 8;
}
/*
* Power up the 9118 and find its MAC address.
*
* This operation can be carried out when the LAN9118 is in any power state
*
*/
EFI_STATUS
Lan9118Initialize (
IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINTN Timeout;
UINT64 DefaultMacAddress;
// Attempt to wake-up the device if it is in a lower power state
if (((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PM_MODE_MASK) >> 12) != 0) {
DEBUG ((DEBUG_NET, "Waking from reduced power state.\n"));
MmioWrite32 (LAN9118_BYTE_TEST, 0xFFFFFFFF);
gBS->Stall (LAN9118_STALL);
}
// Check that device is active
Timeout = 20;
while ((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_READY) == 0 && --Timeout) {
gBS->Stall (LAN9118_STALL);
}
if (!Timeout) {
return EFI_TIMEOUT;
}
// Check that EEPROM isn't active
Timeout = 20;
while ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY) && --Timeout){
gBS->Stall (LAN9118_STALL);
}
if (!Timeout) {
return EFI_TIMEOUT;
}
// Check if a MAC address was loaded from EEPROM, and if it was, set it as the
// current address.
if ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_MAC_ADDRESS_LOADED) == 0) {
DEBUG ((EFI_D_ERROR, "Warning: There was an error detecting EEPROM or loading the MAC Address.\n"));
// If we had an address before (set by StationAddess), continue to use it
if (CompareMem (&Snp->Mode->CurrentAddress, &mZeroMac, NET_ETHER_ADDR_LEN)) {
Lan9118SetMacAddress (&Snp->Mode->CurrentAddress, Snp);
} else {
// If there are no cached addresses, then fall back to a default
DEBUG ((EFI_D_WARN, "Warning: using driver-default MAC address\n"));
DefaultMacAddress = FixedPcdGet64 (PcdLan9118DefaultMacAddress);
Lan9118SetMacAddress((EFI_MAC_ADDRESS *) &DefaultMacAddress, Snp);
}
} else {
// Store the MAC address that was loaded from EEPROM
Lan9118ReadMacAddress (&Snp->Mode->CurrentAddress);
CopyMem (&Snp->Mode->PermanentAddress, &Snp->Mode->CurrentAddress, NET_ETHER_ADDR_LEN);
}
// Clear and acknowledge interrupts
MmioWrite32 (LAN9118_INT_EN, 0);
MmioWrite32 (LAN9118_IRQ_CFG, 0);
MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
// Do self tests here?
return EFI_SUCCESS;
}
// Perform software reset on the LAN9118
// Return 0 on success, -1 on error
EFI_STATUS
SoftReset (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 HwConf;
UINT32 ResetTime;
// Initialize variable
ResetTime = 0;
// Stop Rx and Tx
StopTx (STOP_TX_MAC | STOP_TX_CFG | STOP_TX_CLEAR, Snp);
StopRx (STOP_RX_CLEAR, Snp); // Clear receiver FIFO
// Issue the reset
HwConf = MmioRead32 (LAN9118_HW_CFG);
HwConf |= 1;
// Set the Must Be One (MBO) bit
if (((HwConf & HWCFG_MBO) >> 20) == 0) {
HwConf |= HWCFG_MBO;
}
// Check that EEPROM isn't active
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// Write the configuration
MmioWrite32 (LAN9118_HW_CFG, HwConf);
gBS->Stall (LAN9118_STALL);
// Wait for reset to complete
while (MmioRead32 (LAN9118_HW_CFG) & HWCFG_SRST) {
gBS->Stall (LAN9118_STALL);
ResetTime += 1;
// If time taken exceeds 100us, then there was an error condition
if (ResetTime > 1000) {
Snp->Mode->State = EfiSimpleNetworkStopped;
return EFI_TIMEOUT;
}
}
// Check that EEPROM isn't active
while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
// TODO we probably need to re-set the mac address here.
// Clear and acknowledge all interrupts
if (Flags & SOFT_RESET_CLEAR_INT) {
MmioWrite32 (LAN9118_INT_EN, 0);
MmioWrite32 (LAN9118_IRQ_CFG, 0);
MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
}
// Do self tests here?
if (Flags & SOFT_RESET_SELF_TEST) {
}
return EFI_SUCCESS;
}
// Perform PHY software reset
INT32
PhySoftReset (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 PmtCtrl = 0;
UINT32 LinkTo = 0;
// PMT PHY reset takes precedence over BCR
if (Flags & PHY_RESET_PMT) {
PmtCtrl = MmioRead32 (LAN9118_PMT_CTRL);
PmtCtrl |= MPTCTRL_PHY_RST;
MmioWrite32 (LAN9118_PMT_CTRL,PmtCtrl);
// Wait for completion
while (MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PHY_RST) {
gBS->Stall (LAN9118_STALL);
}
// PHY Basic Control Register reset
} else if (Flags & PHY_RESET_PMT) {
IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PHYCR_RESET);
// Wait for completion
while (IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL) & PHYCR_RESET) {
gBS->Stall (LAN9118_STALL);
}
}
// Check the link status
if (Flags & PHY_RESET_CHECK_LINK) {
LinkTo = 100000; // 2 second (could be 50% more)
while (EFI_ERROR (CheckLinkStatus (0, Snp)) && (LinkTo > 0)) {
gBS->Stall (LAN9118_STALL);
LinkTo--;
}
// Timed out
if (LinkTo <= 0) {
return -1;
}
}
// Clear and acknowledge all interrupts
if (Flags & PHY_SOFT_RESET_CLEAR_INT) {
MmioWrite32 (LAN9118_INT_EN, 0);
MmioWrite32 (LAN9118_IRQ_CFG, 0);
MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
}
return 0;
}
// Configure hardware for LAN9118
EFI_STATUS
ConfigureHardware (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 GpioConf;
// Check if we want to use LEDs on GPIO
if (Flags & HW_CONF_USE_LEDS) {
GpioConf = MmioRead32 (LAN9118_GPIO_CFG);
// Enable GPIO as LEDs and Config as Push-Pull driver
GpioConf |= GPIO_GPIO0_PUSH_PULL | GPIO_GPIO1_PUSH_PULL | GPIO_GPIO2_PUSH_PULL |
GPIO_LED1_ENABLE | GPIO_LED2_ENABLE | GPIO_LED3_ENABLE;
// Write the configuration
MmioWrite32 (LAN9118_GPIO_CFG, GpioConf);
gBS->Stall (LAN9118_STALL);
}
return EFI_SUCCESS;
}
// Configure flow control
EFI_STATUS
ConfigureFlow (
UINT32 Flags,
UINT32 HighTrig,
UINT32 LowTrig,
UINT32 BPDuration,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
return EFI_SUCCESS;
}
// Do auto-negotiation
EFI_STATUS
AutoNegotiate (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 PhyControl;
UINT32 PhyStatus;
UINT32 Features;
UINT32 TimeOut;
// First check that auto-negotiation is supported
PhyStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
if ((PhyStatus & PHYSTS_AUTO_CAP) == 0) {
DEBUG ((EFI_D_ERROR, "Auto-negotiation not supported.\n"));
return EFI_DEVICE_ERROR;
}
// Check that link is up first
if ((PhyStatus & PHYSTS_LINK_STS) == 0) {
// Wait until it is up or until Time Out
TimeOut = 2000;
while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_LINK_STS) == 0) {
gBS->Stall (LAN9118_STALL);
TimeOut--;
if (!TimeOut) {
DEBUG ((EFI_D_ERROR, "Link timeout in auto-negotiation.\n"));
return EFI_TIMEOUT;
}
}
}
// Configure features to advertise
Features = IndirectPHYRead32 (PHY_INDEX_AUTO_NEG_ADVERT);
if ((Flags & AUTO_NEGOTIATE_ADVERTISE_ALL) > 0) {
// Link speed capabilities
Features |= (PHYANA_10BASET | PHYANA_10BASETFD | PHYANA_100BASETX | PHYANA_100BASETXFD);
// Pause frame capabilities
Features &= ~(PHYANA_PAUSE_OP_MASK);
Features |= 3 << 10;
}
// Write the features
IndirectPHYWrite32 (PHY_INDEX_AUTO_NEG_ADVERT, Features);
// Read control register
PhyControl = IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL);
// Enable Auto-Negotiation
if ((PhyControl & PHYCR_AUTO_EN) == 0) {
PhyControl |= PHYCR_AUTO_EN;
}
// Restart auto-negotiation
PhyControl |= PHYCR_RST_AUTO;
// Enable collision test if required to do so
if (Flags & AUTO_NEGOTIATE_COLLISION_TEST) {
PhyControl |= PHYCR_COLL_TEST;
} else {
PhyControl &= ~ PHYCR_COLL_TEST;
}
// Write this configuration
IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PhyControl);
// Wait until process has completed
while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_AUTO_COMP) == 0);
return EFI_SUCCESS;
}
// Check the Link Status and take appropriate action
EFI_STATUS
CheckLinkStatus (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
// Get the PHY Status
UINT32 PhyBStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
if (PhyBStatus & PHYSTS_LINK_STS) {
return EFI_SUCCESS;
} else {
return EFI_DEVICE_ERROR;
}
}
// Stop the transmitter
EFI_STATUS
StopTx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 TxCfg;
MacCsr = 0;
TxCfg = 0;
// Check if we want to clear tx
if (Flags & STOP_TX_CLEAR) {
TxCfg = MmioRead32 (LAN9118_TX_CFG);
TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
MmioWrite32 (LAN9118_TX_CFG, TxCfg);
gBS->Stall (LAN9118_STALL);
}
// Check if already stopped
if (Flags & STOP_TX_MAC) {
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if (MacCsr & MACCR_TX_EN) {
MacCsr &= ~MACCR_TX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
}
if (Flags & STOP_TX_CFG) {
TxCfg = MmioRead32 (LAN9118_TX_CFG);
if (TxCfg & TXCFG_TX_ON) {
TxCfg |= TXCFG_STOP_TX;
MmioWrite32 (LAN9118_TX_CFG, TxCfg);
gBS->Stall (LAN9118_STALL);
// Wait for Tx to finish transmitting
while (MmioRead32 (LAN9118_TX_CFG) & TXCFG_STOP_TX);
}
}
return EFI_SUCCESS;
}
// Stop the receiver
EFI_STATUS
StopRx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 RxCfg;
RxCfg = 0;
// Check if already stopped
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if (MacCsr & MACCR_RX_EN) {
MacCsr &= ~ MACCR_RX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
}
// Check if we want to clear receiver FIFOs
if (Flags & STOP_RX_CLEAR) {
RxCfg = MmioRead32 (LAN9118_RX_CFG);
RxCfg |= RXCFG_RX_DUMP;
MmioWrite32 (LAN9118_RX_CFG, RxCfg);
gBS->Stall (LAN9118_STALL);
while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
}
return EFI_SUCCESS;
}
// Start the transmitter
EFI_STATUS
StartTx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 TxCfg;
MacCsr = 0;
TxCfg = 0;
// Check if we want to clear tx
if (Flags & START_TX_CLEAR) {
TxCfg = MmioRead32 (LAN9118_TX_CFG);
TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
MmioWrite32 (LAN9118_TX_CFG, TxCfg);
gBS->Stall (LAN9118_STALL);
}
// Check if tx was started from MAC and enable if not
if (Flags & START_TX_MAC) {
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
gBS->Stall (LAN9118_STALL);
if ((MacCsr & MACCR_TX_EN) == 0) {
MacCsr |= MACCR_TX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
gBS->Stall (LAN9118_STALL);
}
}
// Check if tx was started from TX_CFG and enable if not
if (Flags & START_TX_CFG) {
TxCfg = MmioRead32 (LAN9118_TX_CFG);
gBS->Stall (LAN9118_STALL);
if ((TxCfg & TXCFG_TX_ON) == 0) {
TxCfg |= TXCFG_TX_ON;
MmioWrite32 (LAN9118_TX_CFG, TxCfg);
gBS->Stall (LAN9118_STALL);
}
}
// Set the tx data trigger level
return EFI_SUCCESS;
}
// Start the receiver
EFI_STATUS
StartRx (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 MacCsr;
UINT32 RxCfg;
RxCfg = 0;
// Check if already started
MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
if ((MacCsr & MACCR_RX_EN) == 0) {
// Check if we want to clear receiver FIFOs before starting
if (Flags & START_RX_CLEAR) {
RxCfg = MmioRead32 (LAN9118_RX_CFG);
RxCfg |= RXCFG_RX_DUMP;
MmioWrite32 (LAN9118_RX_CFG, RxCfg);
gBS->Stall (LAN9118_STALL);
while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
}
MacCsr |= MACCR_RX_EN;
IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
gBS->Stall (LAN9118_STALL);
}
return EFI_SUCCESS;
}
// Check Tx Data available space
UINT32
TxDataFreeSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 TxInf;
UINT32 FreeSpace;
// Get the amount of free space from information register
TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
FreeSpace = (TxInf & TXFIFOINF_TDFREE_MASK);
return FreeSpace; // Value in bytes
}
// Check Tx Status used space
UINT32
TxStatusUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 TxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
UsedSpace = (TxInf & TXFIFOINF_TXSUSED_MASK) >> 16;
return UsedSpace << 2; // Value in bytes
}
// Check Rx Data used space
UINT32
RxDataUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 RxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
UsedSpace = (RxInf & RXFIFOINF_RXDUSED_MASK);
return UsedSpace; // Value in bytes (rounded up to nearest DWORD)
}
// Check Rx Status used space
UINT32
RxStatusUsedSpace (
UINT32 Flags,
EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 RxInf;
UINT32 UsedSpace;
// Get the amount of used space from information register
RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
UsedSpace = (RxInf & RXFIFOINF_RXSUSED_MASK) >> 16;
return UsedSpace << 2; // Value in bytes
}
// Change the allocation of FIFOs
EFI_STATUS
ChangeFifoAllocation (
IN UINT32 Flags,
IN OUT UINTN *TxDataSize OPTIONAL,
IN OUT UINTN *RxDataSize OPTIONAL,
IN OUT UINT32 *TxStatusSize OPTIONAL,
IN OUT UINT32 *RxStatusSize OPTIONAL,
IN OUT EFI_SIMPLE_NETWORK_PROTOCOL *Snp
)
{
UINT32 HwConf;
UINT32 TxFifoOption;
// Check that desired sizes don't exceed limits
if (*TxDataSize > TX_FIFO_MAX_SIZE)
return EFI_INVALID_PARAMETER;
#if defined(RX_FIFO_MIN_SIZE) && defined(RX_FIFO_MAX_SIZE)
if (*RxDataSize > RX_FIFO_MAX_SIZE) {
return EFI_INVALID_PARAMETER;
}
#endif
if (Flags & ALLOC_USE_DEFAULT) {
return EFI_SUCCESS;
}
// If we use the FIFOs (always use this first)
if (Flags & ALLOC_USE_FIFOS) {
// Read the current value of allocation
HwConf = MmioRead32 (LAN9118_HW_CFG);
TxFifoOption = (HwConf >> 16) & 0xF;
// Choose the correct size (always use larger than requested if possible)
if (*TxDataSize < TX_FIFO_MIN_SIZE) {
*TxDataSize = TX_FIFO_MIN_SIZE;
*RxDataSize = 13440;
*RxStatusSize = 896;
TxFifoOption = 2;
} else if ((*TxDataSize > TX_FIFO_MIN_SIZE) && (*TxDataSize <= 2560)) {
*TxDataSize = 2560;
*RxDataSize = 12480;
*RxStatusSize = 832;
TxFifoOption = 3;
} else if ((*TxDataSize > 2560) && (*TxDataSize <= 3584)) {
*TxDataSize = 3584;
*RxDataSize = 11520;
*RxStatusSize = 768;
TxFifoOption = 4;
} else if ((*TxDataSize > 3584) && (*TxDataSize <= 4608)) { // default option
*TxDataSize = 4608;
*RxDataSize = 10560;
*RxStatusSize = 704;
TxFifoOption = 5;
} else if ((*TxDataSize > 4608) && (*TxDataSize <= 5632)) {
*TxDataSize = 5632;
*RxDataSize = 9600;
*RxStatusSize = 640;
TxFifoOption = 6;
} else if ((*TxDataSize > 5632) && (*TxDataSize <= 6656)) {
*TxDataSize = 6656;
*RxDataSize = 8640;
*RxStatusSize = 576;
TxFifoOption = 7;
} else if ((*TxDataSize > 6656) && (*TxDataSize <= 7680)) {
*TxDataSize = 7680;
*RxDataSize = 7680;
*RxStatusSize = 512;
TxFifoOption = 8;
} else if ((*TxDataSize > 7680) && (*TxDataSize <= 8704)) {
*TxDataSize = 8704;
*RxDataSize = 6720;
*RxStatusSize = 448;
TxFifoOption = 9;
} else if ((*TxDataSize > 8704) && (*TxDataSize <= 9728)) {
*TxDataSize = 9728;
*RxDataSize = 5760;
*RxStatusSize = 384;
TxFifoOption = 10;
} else if ((*TxDataSize > 9728) && (*TxDataSize <= 10752)) {
*TxDataSize = 10752;
*RxDataSize = 4800;
*RxStatusSize = 320;
TxFifoOption = 11;
} else if ((*TxDataSize > 10752) && (*TxDataSize <= 11776)) {
*TxDataSize = 11776;
*RxDataSize = 3840;
*RxStatusSize = 256;
TxFifoOption = 12;
} else if ((*TxDataSize > 11776) && (*TxDataSize <= 12800)) {
*TxDataSize = 12800;
*RxDataSize = 2880;
*RxStatusSize = 192;
TxFifoOption = 13;
} else if ((*TxDataSize > 12800) && (*TxDataSize <= 13824)) {
*TxDataSize = 13824;
*RxDataSize = 1920;
*RxStatusSize = 128;
TxFifoOption = 14;
}
} else {
ASSERT(0); // Untested code path
HwConf = 0;
TxFifoOption = 0;
}
// Do we need DMA?
if (Flags & ALLOC_USE_DMA) {
return EFI_UNSUPPORTED; // Unsupported as of now
}
// Clear and assign the new size option
HwConf &= ~(0xF0000);
HwConf |= ((TxFifoOption & 0xF) << 16);
MmioWrite32 (LAN9118_HW_CFG, HwConf);
gBS->Stall (LAN9118_STALL);
return EFI_SUCCESS;
}
|