summaryrefslogtreecommitdiffstats
path: root/IntelSiliconPkg/Feature/VTd/IntelVTdDxe/DmaProtection.c
blob: 557c18aa547cb8a85951db0a70b8de658fc66636 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/** @file

  Copyright (c) 2017 - 2018, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php.

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "DmaProtection.h"

UINT64                                  mBelow4GMemoryLimit;
UINT64                                  mAbove4GMemoryLimit;

EDKII_PLATFORM_VTD_POLICY_PROTOCOL      *mPlatformVTdPolicy;

VTD_ACCESS_REQUEST                      *mAccessRequest = NULL;
UINTN                                   mAccessRequestCount = 0;
UINTN                                   mAccessRequestMaxCount = 0;

/**
  Append VTd Access Request to global.

  @param[in]  Segment           The Segment used to identify a VTd engine.
  @param[in]  SourceId          The SourceId used to identify a VTd engine and table entry.
  @param[in]  BaseAddress       The base of device memory address to be used as the DMA memory.
  @param[in]  Length            The length of device memory address to be used as the DMA memory.
  @param[in]  IoMmuAccess       The IOMMU access.

  @retval EFI_SUCCESS           The IoMmuAccess is set for the memory range specified by BaseAddress and Length.
  @retval EFI_INVALID_PARAMETER BaseAddress is not IoMmu Page size aligned.
  @retval EFI_INVALID_PARAMETER Length is not IoMmu Page size aligned.
  @retval EFI_INVALID_PARAMETER Length is 0.
  @retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access.
  @retval EFI_UNSUPPORTED       The bit mask of IoMmuAccess is not supported by the IOMMU.
  @retval EFI_UNSUPPORTED       The IOMMU does not support the memory range specified by BaseAddress and Length.
  @retval EFI_OUT_OF_RESOURCES  There are not enough resources available to modify the IOMMU access.
  @retval EFI_DEVICE_ERROR      The IOMMU device reported an error while attempting the operation.

**/
EFI_STATUS
RequestAccessAttribute (
  IN UINT16                 Segment,
  IN VTD_SOURCE_ID          SourceId,
  IN UINT64                 BaseAddress,
  IN UINT64                 Length,
  IN UINT64                 IoMmuAccess
  )
{
  VTD_ACCESS_REQUEST        *NewAccessRequest;
  UINTN                     Index;

  //
  // Optimization for memory.
  //
  // If the last record is to IoMmuAccess=0,
  // Check previous records and remove the matched entry.
  //
  if (IoMmuAccess == 0) {
    for (Index = 0; Index < mAccessRequestCount; Index++) {
      if ((mAccessRequest[Index].Segment == Segment) &&
          (mAccessRequest[Index].SourceId.Uint16 == SourceId.Uint16) &&
          (mAccessRequest[Index].BaseAddress == BaseAddress) &&
          (mAccessRequest[Index].Length == Length) &&
          (mAccessRequest[Index].IoMmuAccess != 0)) {
        //
        // Remove this record [Index].
        // No need to add the new record.
        //
        if (Index != mAccessRequestCount - 1) {
          CopyMem (
            &mAccessRequest[Index],
            &mAccessRequest[Index + 1],
            sizeof (VTD_ACCESS_REQUEST) * (mAccessRequestCount - 1 - Index)
            );
        }
        ZeroMem (&mAccessRequest[mAccessRequestCount - 1], sizeof(VTD_ACCESS_REQUEST));
        mAccessRequestCount--;
        return EFI_SUCCESS;
      }
    }
  }

  if (mAccessRequestCount >= mAccessRequestMaxCount) {
    NewAccessRequest = AllocateZeroPool (sizeof(*NewAccessRequest) * (mAccessRequestMaxCount + MAX_VTD_ACCESS_REQUEST));
    if (NewAccessRequest == NULL) {
      return EFI_OUT_OF_RESOURCES;
    }
    mAccessRequestMaxCount += MAX_VTD_ACCESS_REQUEST;
    if (mAccessRequest != NULL) {
      CopyMem (NewAccessRequest, mAccessRequest, sizeof(*NewAccessRequest) * mAccessRequestCount);
      FreePool (mAccessRequest);
    }
    mAccessRequest = NewAccessRequest;
  }

  ASSERT (mAccessRequestCount < mAccessRequestMaxCount);

  mAccessRequest[mAccessRequestCount].Segment = Segment;
  mAccessRequest[mAccessRequestCount].SourceId = SourceId;
  mAccessRequest[mAccessRequestCount].BaseAddress = BaseAddress;
  mAccessRequest[mAccessRequestCount].Length = Length;
  mAccessRequest[mAccessRequestCount].IoMmuAccess = IoMmuAccess;

  mAccessRequestCount++;

  return EFI_SUCCESS;
}

/**
  Process Access Requests from before DMAR table is installed.

**/
VOID
ProcessRequestedAccessAttribute (
  VOID
  )
{
  UINTN       Index;
  EFI_STATUS  Status;

  DEBUG ((DEBUG_INFO, "ProcessRequestedAccessAttribute ...\n"));

  for (Index = 0; Index < mAccessRequestCount; Index++) {
    DEBUG ((
      DEBUG_INFO,
      "PCI(S%x.B%x.D%x.F%x) ",
      mAccessRequest[Index].Segment,
      mAccessRequest[Index].SourceId.Bits.Bus,
      mAccessRequest[Index].SourceId.Bits.Device,
      mAccessRequest[Index].SourceId.Bits.Function
      ));
    DEBUG ((
      DEBUG_INFO,
      "(0x%lx~0x%lx) - %lx\n",
      mAccessRequest[Index].BaseAddress,
      mAccessRequest[Index].Length,
      mAccessRequest[Index].IoMmuAccess
      ));
    Status = SetAccessAttribute (
               mAccessRequest[Index].Segment,
               mAccessRequest[Index].SourceId,
               mAccessRequest[Index].BaseAddress,
               mAccessRequest[Index].Length,
               mAccessRequest[Index].IoMmuAccess
               );
    if (EFI_ERROR (Status)) {
      DEBUG ((DEBUG_ERROR, "SetAccessAttribute %r: ", Status));
    }
  }

  if (mAccessRequest != NULL) {
    FreePool (mAccessRequest);
  }
  mAccessRequest = NULL;
  mAccessRequestCount = 0;
  mAccessRequestMaxCount = 0;

  DEBUG ((DEBUG_INFO, "ProcessRequestedAccessAttribute Done\n"));
}

/**
  return the UEFI memory information.

  @param[out] Below4GMemoryLimit  The below 4GiB memory limit
  @param[out] Above4GMemoryLimit  The above 4GiB memory limit
**/
VOID
ReturnUefiMemoryMap (
  OUT UINT64   *Below4GMemoryLimit,
  OUT UINT64   *Above4GMemoryLimit
  )
{
  EFI_STATUS                  Status;
  EFI_MEMORY_DESCRIPTOR       *EfiMemoryMap;
  EFI_MEMORY_DESCRIPTOR       *EfiMemoryMapEnd;
  EFI_MEMORY_DESCRIPTOR       *EfiEntry;
  EFI_MEMORY_DESCRIPTOR       *NextEfiEntry;
  EFI_MEMORY_DESCRIPTOR       TempEfiEntry;
  UINTN                       EfiMemoryMapSize;
  UINTN                       EfiMapKey;
  UINTN                       EfiDescriptorSize;
  UINT32                      EfiDescriptorVersion;
  UINT64                      MemoryBlockLength;

  *Below4GMemoryLimit = 0;
  *Above4GMemoryLimit = 0;

  //
  // Get the EFI memory map.
  //
  EfiMemoryMapSize  = 0;
  EfiMemoryMap      = NULL;
  Status = gBS->GetMemoryMap (
                  &EfiMemoryMapSize,
                  EfiMemoryMap,
                  &EfiMapKey,
                  &EfiDescriptorSize,
                  &EfiDescriptorVersion
                  );
  ASSERT (Status == EFI_BUFFER_TOO_SMALL);

  do {
    //
    // Use size returned back plus 1 descriptor for the AllocatePool.
    // We don't just multiply by 2 since the "for" loop below terminates on
    // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
    // we process bogus entries and create bogus E820 entries.
    //
    EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
    ASSERT (EfiMemoryMap != NULL);
    Status = gBS->GetMemoryMap (
                    &EfiMemoryMapSize,
                    EfiMemoryMap,
                    &EfiMapKey,
                    &EfiDescriptorSize,
                    &EfiDescriptorVersion
                    );
    if (EFI_ERROR (Status)) {
      FreePool (EfiMemoryMap);
    }
  } while (Status == EFI_BUFFER_TOO_SMALL);

  ASSERT_EFI_ERROR (Status);

  //
  // Sort memory map from low to high
  //
  EfiEntry        = EfiMemoryMap;
  NextEfiEntry    = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
  EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
  while (EfiEntry < EfiMemoryMapEnd) {
    while (NextEfiEntry < EfiMemoryMapEnd) {
      if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
        CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
        CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
        CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
      }

      NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
    }

    EfiEntry      = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
    NextEfiEntry  = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
  }

  //
  //
  //
  DEBUG ((DEBUG_INFO, "MemoryMap:\n"));
  EfiEntry        = EfiMemoryMap;
  EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
  while (EfiEntry < EfiMemoryMapEnd) {
    MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
    DEBUG ((DEBUG_INFO, "Entry(0x%02x) 0x%016lx - 0x%016lx\n", EfiEntry->Type, EfiEntry->PhysicalStart, EfiEntry->PhysicalStart + MemoryBlockLength));
    switch (EfiEntry->Type) {
    case EfiLoaderCode:
    case EfiLoaderData:
    case EfiBootServicesCode:
    case EfiBootServicesData:
    case EfiConventionalMemory:
    case EfiRuntimeServicesCode:
    case EfiRuntimeServicesData:
    case EfiACPIReclaimMemory:
    case EfiACPIMemoryNVS:
    case EfiReservedMemoryType:
      if ((EfiEntry->PhysicalStart + MemoryBlockLength) <= BASE_1MB) {
        //
        // Skip the memory block is under 1MB
        //
      } else if (EfiEntry->PhysicalStart >= BASE_4GB) {
        if (*Above4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
          *Above4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
        }
      } else {
        if (*Below4GMemoryLimit < EfiEntry->PhysicalStart + MemoryBlockLength) {
          *Below4GMemoryLimit = EfiEntry->PhysicalStart + MemoryBlockLength;
        }
      }
      break;
    }
    EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
  }

  FreePool (EfiMemoryMap);

  DEBUG ((DEBUG_INFO, "Result:\n"));
  DEBUG ((DEBUG_INFO, "Below4GMemoryLimit:  0x%016lx\n", *Below4GMemoryLimit));
  DEBUG ((DEBUG_INFO, "Above4GMemoryLimit:  0x%016lx\n", *Above4GMemoryLimit));

  return ;
}

/**
  The scan bus callback function to always enable page attribute.

  @param[in]  Context               The context of the callback.
  @param[in]  Segment               The segment of the source.
  @param[in]  Bus                   The bus of the source.
  @param[in]  Device                The device of the source.
  @param[in]  Function              The function of the source.

  @retval EFI_SUCCESS           The VTd entry is updated to always enable all DMA access for the specific device.
**/
EFI_STATUS
EFIAPI
ScanBusCallbackAlwaysEnablePageAttribute (
  IN VOID           *Context,
  IN UINT16         Segment,
  IN UINT8          Bus,
  IN UINT8          Device,
  IN UINT8          Function
  )
{
  VTD_SOURCE_ID           SourceId;
  EFI_STATUS              Status;

  SourceId.Bits.Bus = Bus;
  SourceId.Bits.Device = Device;
  SourceId.Bits.Function = Function;
  Status = AlwaysEnablePageAttribute (Segment, SourceId);
  return Status;
}

/**
  Always enable the VTd page attribute for the device in the DeviceScope.

  @param[in]  DeviceScope  the input device scope data structure

  @retval EFI_SUCCESS           The VTd entry is updated to always enable all DMA access for the specific device in the device scope.
**/
EFI_STATUS
AlwaysEnablePageAttributeDeviceScope (
  IN  EDKII_PLATFORM_VTD_DEVICE_SCOPE   *DeviceScope
  )
{
  UINT8                             Bus;
  UINT8                             Device;
  UINT8                             Function;
  VTD_SOURCE_ID                     SourceId;
  UINT8                             SecondaryBusNumber;
  EFI_STATUS                        Status;

  Status = GetPciBusDeviceFunction (DeviceScope->SegmentNumber, &DeviceScope->DeviceScope, &Bus, &Device, &Function);

  if (DeviceScope->DeviceScope.Type == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE) {
    //
    // Need scan the bridge and add all devices.
    //
    SecondaryBusNumber = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(DeviceScope->SegmentNumber, Bus, Device, Function, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
    Status = ScanPciBus (NULL, DeviceScope->SegmentNumber, SecondaryBusNumber, ScanBusCallbackAlwaysEnablePageAttribute);
    return Status;
  } else {
    SourceId.Bits.Bus      = Bus;
    SourceId.Bits.Device   = Device;
    SourceId.Bits.Function = Function;
    Status = AlwaysEnablePageAttribute (DeviceScope->SegmentNumber, SourceId);
    return Status;
  }
}

/**
  Always enable the VTd page attribute for the device matching DeviceId.

  @param[in]  PciDeviceId  the input PCI device ID

  @retval EFI_SUCCESS           The VTd entry is updated to always enable all DMA access for the specific device matching DeviceId.
**/
EFI_STATUS
AlwaysEnablePageAttributePciDeviceId (
  IN  EDKII_PLATFORM_VTD_PCI_DEVICE_ID   *PciDeviceId
  )
{
  UINTN            VtdIndex;
  UINTN            PciIndex;
  PCI_DEVICE_DATA  *PciDeviceData;
  EFI_STATUS       Status;

  for (VtdIndex = 0; VtdIndex < mVtdUnitNumber; VtdIndex++) {
    for (PciIndex = 0; PciIndex < mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceDataNumber; PciIndex++) {
      PciDeviceData = &mVtdUnitInformation[VtdIndex].PciDeviceInfo.PciDeviceData[PciIndex];

      if (((PciDeviceId->VendorId == 0xFFFF) || (PciDeviceId->VendorId == PciDeviceData->PciDeviceId.VendorId)) &&
          ((PciDeviceId->DeviceId == 0xFFFF) || (PciDeviceId->DeviceId == PciDeviceData->PciDeviceId.DeviceId)) &&
          ((PciDeviceId->RevisionId == 0xFF) || (PciDeviceId->RevisionId == PciDeviceData->PciDeviceId.RevisionId)) &&
          ((PciDeviceId->SubsystemVendorId == 0xFFFF) || (PciDeviceId->SubsystemVendorId == PciDeviceData->PciDeviceId.SubsystemVendorId)) &&
          ((PciDeviceId->SubsystemDeviceId == 0xFFFF) || (PciDeviceId->SubsystemDeviceId == PciDeviceData->PciDeviceId.SubsystemDeviceId)) ) {
        Status = AlwaysEnablePageAttribute (mVtdUnitInformation[VtdIndex].Segment, PciDeviceData->PciSourceId);
        if (EFI_ERROR(Status)) {
          continue;
        }
      }
    }
  }
  return EFI_SUCCESS;
}

/**
  Always enable the VTd page attribute for the device.

  @param[in]  DeviceInfo  the exception device information

  @retval EFI_SUCCESS           The VTd entry is updated to always enable all DMA access for the specific device in the device info.
**/
EFI_STATUS
AlwaysEnablePageAttributeExceptionDeviceInfo (
  IN  EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO   *DeviceInfo
  )
{
  switch (DeviceInfo->Type) {
  case EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_DEVICE_SCOPE:
    return AlwaysEnablePageAttributeDeviceScope ((VOID *)(DeviceInfo + 1));
  case EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_PCI_DEVICE_ID:
    return AlwaysEnablePageAttributePciDeviceId ((VOID *)(DeviceInfo + 1));
  default:
    return EFI_UNSUPPORTED;
  }
}

/**
  Initialize platform VTd policy.
**/
VOID
InitializePlatformVTdPolicy (
  VOID
  )
{
  EFI_STATUS                               Status;
  UINTN                                    DeviceInfoCount;
  VOID                                     *DeviceInfo;
  EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO *ThisDeviceInfo;
  UINTN                                    Index;

  //
  // It is optional.
  //
  Status = gBS->LocateProtocol (
                  &gEdkiiPlatformVTdPolicyProtocolGuid,
                  NULL,
                  (VOID **)&mPlatformVTdPolicy
                  );
  if (!EFI_ERROR(Status)) {
    DEBUG ((DEBUG_INFO, "InitializePlatformVTdPolicy\n"));
    Status = mPlatformVTdPolicy->GetExceptionDeviceList (mPlatformVTdPolicy, &DeviceInfoCount, &DeviceInfo);
    if (!EFI_ERROR(Status)) {
      ThisDeviceInfo = DeviceInfo;
      for (Index = 0; Index < DeviceInfoCount; Index++) {
        if (ThisDeviceInfo->Type == EDKII_PLATFORM_VTD_EXCEPTION_DEVICE_INFO_TYPE_END) {
          break;
        }
        AlwaysEnablePageAttributeExceptionDeviceInfo (ThisDeviceInfo);
        ThisDeviceInfo = (VOID *)((UINTN)ThisDeviceInfo + ThisDeviceInfo->Length);
      }
      FreePool (DeviceInfo);
    }
  }
}

/**
  Setup VTd engine.
**/
VOID
SetupVtd (
  VOID
  )
{
  EFI_STATUS      Status;
  VOID            *PciEnumerationComplete;
  UINTN           Index;
  UINT64          Below4GMemoryLimit;
  UINT64          Above4GMemoryLimit;

  //
  // PCI Enumeration must be done
  //
  Status = gBS->LocateProtocol (
                  &gEfiPciEnumerationCompleteProtocolGuid,
                  NULL,
                  &PciEnumerationComplete
                  );
  ASSERT_EFI_ERROR (Status);

  ReturnUefiMemoryMap (&Below4GMemoryLimit, &Above4GMemoryLimit);
  Below4GMemoryLimit = ALIGN_VALUE_UP(Below4GMemoryLimit, SIZE_256MB);
  DEBUG ((DEBUG_INFO, " Adjusted Below4GMemoryLimit: 0x%016lx\n", Below4GMemoryLimit));

  mBelow4GMemoryLimit = Below4GMemoryLimit;
  mAbove4GMemoryLimit = Above4GMemoryLimit;

  //
  // 1. setup
  //
  DEBUG ((DEBUG_INFO, "ParseDmarAcpiTable\n"));
  Status = ParseDmarAcpiTableDrhd ();
  if (EFI_ERROR (Status)) {
    return;
  }
  DEBUG ((DEBUG_INFO, "PrepareVtdConfig\n"));
  PrepareVtdConfig ();

  //
  // 2. initialization
  //
  DEBUG ((DEBUG_INFO, "SetupTranslationTable\n"));
  Status = SetupTranslationTable ();
  if (EFI_ERROR (Status)) {
    return;
  }

  InitializePlatformVTdPolicy ();

  ParseDmarAcpiTableRmrr ();

  ProcessRequestedAccessAttribute ();

  for (Index = 0; Index < mVtdUnitNumber; Index++) {
    DEBUG ((DEBUG_INFO,"VTD Unit %d (Segment: %04x)\n", Index, mVtdUnitInformation[Index].Segment));
    if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
      DumpDmarExtContextEntryTable (mVtdUnitInformation[Index].ExtRootEntryTable);
    }
    if (mVtdUnitInformation[Index].RootEntryTable != NULL) {
      DumpDmarContextEntryTable (mVtdUnitInformation[Index].RootEntryTable);
    }
  }

  //
  // 3. enable
  //
  DEBUG ((DEBUG_INFO, "EnableDmar\n"));
  Status = EnableDmar ();
  if (EFI_ERROR (Status)) {
    return;
  }
  DEBUG ((DEBUG_INFO, "DumpVtdRegs\n"));
  DumpVtdRegsAll ();
}

/**
  Notification function of ACPI Table change.

  This is a notification function registered on ACPI Table change event.

  @param  Event        Event whose notification function is being invoked.
  @param  Context      Pointer to the notification function's context.

**/
VOID
EFIAPI
AcpiNotificationFunc (
  IN EFI_EVENT        Event,
  IN VOID             *Context
  )
{
  EFI_STATUS          Status;

  Status = GetDmarAcpiTable ();
  if (EFI_ERROR (Status)) {
    if (Status == EFI_ALREADY_STARTED) {
      gBS->CloseEvent (Event);
    }
    return;
  }
  SetupVtd ();
  gBS->CloseEvent (Event);
}

/**
  Exit boot service callback function.

  @param[in]  Event    The event handle.
  @param[in]  Context  The event content.
**/
VOID
EFIAPI
OnExitBootServices (
  IN EFI_EVENT                               Event,
  IN VOID                                    *Context
  )
{
  DEBUG ((DEBUG_INFO, "Vtd OnExitBootServices\n"));
  DumpVtdRegsAll ();

  if ((PcdGet8(PcdVTdPolicyPropertyMask) & BIT1) == 0) {
    DisableDmar ();
    DumpVtdRegsAll ();
  }
}

/**
  Legacy boot callback function.

  @param[in]  Event    The event handle.
  @param[in]  Context  The event content.
**/
VOID
EFIAPI
OnLegacyBoot (
  EFI_EVENT                               Event,
  VOID                                    *Context
  )
{
  DEBUG ((DEBUG_INFO, "Vtd OnLegacyBoot\n"));
  DumpVtdRegsAll ();
  DisableDmar ();
  DumpVtdRegsAll ();
}

/**
  Initialize DMA protection.
**/
VOID
InitializeDmaProtection (
  VOID
  )
{
  EFI_STATUS  Status;
  EFI_EVENT   ExitBootServicesEvent;
  EFI_EVENT   LegacyBootEvent;
  EFI_EVENT   EventAcpi10;
  EFI_EVENT   EventAcpi20;
  
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  VTD_TPL_LEVEL,
                  AcpiNotificationFunc,
                  NULL,
                  &gEfiAcpi10TableGuid,
                  &EventAcpi10
                  );
  ASSERT_EFI_ERROR (Status);

  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  VTD_TPL_LEVEL,
                  AcpiNotificationFunc,
                  NULL,
                  &gEfiAcpi20TableGuid,
                  &EventAcpi20
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Signal the events initially for the case
  // that DMAR table has been installed.
  //
  gBS->SignalEvent (EventAcpi20);
  gBS->SignalEvent (EventAcpi10);

  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_CALLBACK,
                  OnExitBootServices,
                  NULL,
                  &gEfiEventExitBootServicesGuid,
                  &ExitBootServicesEvent
                  );
  ASSERT_EFI_ERROR (Status);

  Status = EfiCreateEventLegacyBootEx (
             TPL_CALLBACK,
             OnLegacyBoot,
             NULL,
             &LegacyBootEvent
             );
  ASSERT_EFI_ERROR (Status);

  return ;
}