1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
|
/**@file
Memory Detection for Virtual Machines.
Copyright (c) 2006 - 2024, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
MemDetect.c
**/
//
// The package level header files this module uses
//
#include <IndustryStandard/E820.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/CloudHv.h>
#include <IndustryStandard/Xen/arch-x86/hvm/start_info.h>
#include <PiPei.h>
#include <Register/Intel/SmramSaveStateMap.h>
//
// The Library classes this module consumes
//
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CcProbeLib.h>
#include <Library/DebugLib.h>
#include <Library/HardwareInfoLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/ResourcePublicationLib.h>
#include <Library/MtrrLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/QemuFwCfgSimpleParserLib.h>
#include <Library/TdxLib.h>
#include <Library/PlatformInitLib.h>
#include <Guid/AcpiS3Context.h>
#include <Guid/SmramMemoryReserve.h>
#define MEGABYTE_SHIFT 20
VOID
EFIAPI
PlatformQemuUc32BaseInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
return;
}
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
PlatformInfoHob->Uc32Size = CLOUDHV_MMIO_HOLE_SIZE;
PlatformInfoHob->Uc32Base = CLOUDHV_MMIO_HOLE_ADDRESS;
return;
}
ASSERT (
PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID ||
PlatformInfoHob->HostBridgeDevId == INTEL_82441_DEVICE_ID
);
PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
ASSERT (PcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);
ASSERT (PcdGet64 (PcdPciExpressBaseAddress) >= PlatformInfoHob->LowMemory);
}
//
// Start with the [LowerMemorySize, 4GB) range. Make sure one
// variable MTRR suffices by truncating the size to a whole power of two,
// while keeping the end affixed to 4GB. This will round the base up.
//
PlatformInfoHob->Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - PlatformInfoHob->LowMemory));
PlatformInfoHob->Uc32Base = (UINT32)(SIZE_4GB - PlatformInfoHob->Uc32Size);
//
// Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.
// Therefore Uc32Base is at least 2GB.
//
ASSERT (PlatformInfoHob->Uc32Base >= BASE_2GB);
if (PlatformInfoHob->Uc32Base != PlatformInfoHob->LowMemory) {
DEBUG ((
DEBUG_VERBOSE,
"%a: rounded UC32 base from 0x%x up to 0x%x, for "
"an UC32 size of 0x%x\n",
__func__,
PlatformInfoHob->LowMemory,
PlatformInfoHob->Uc32Base,
PlatformInfoHob->Uc32Size
));
}
}
typedef VOID (*E820_SCAN_CALLBACK) (
EFI_E820_ENTRY64 *E820Entry,
EFI_HOB_PLATFORM_INFO *PlatformInfoHob
);
/**
Store first address not used by e820 RAM entries in
PlatformInfoHob->FirstNonAddress
**/
STATIC
VOID
PlatformGetFirstNonAddressCB (
IN EFI_E820_ENTRY64 *E820Entry,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 Candidate;
if (E820Entry->Type != EfiAcpiAddressRangeMemory) {
return;
}
Candidate = E820Entry->BaseAddr + E820Entry->Length;
if (PlatformInfoHob->FirstNonAddress < Candidate) {
DEBUG ((DEBUG_INFO, "%a: FirstNonAddress=0x%Lx\n", __func__, Candidate));
PlatformInfoHob->FirstNonAddress = Candidate;
}
}
/**
Store the low (below 4G) memory size in
PlatformInfoHob->LowMemory
**/
STATIC
VOID
PlatformGetLowMemoryCB (
IN EFI_E820_ENTRY64 *E820Entry,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 Candidate;
if (E820Entry->Type != EfiAcpiAddressRangeMemory) {
return;
}
Candidate = E820Entry->BaseAddr + E820Entry->Length;
if (Candidate >= BASE_4GB) {
return;
}
if (PlatformInfoHob->LowMemory < Candidate) {
DEBUG ((DEBUG_INFO, "%a: LowMemory=0x%Lx\n", __func__, Candidate));
PlatformInfoHob->LowMemory = (UINT32)Candidate;
}
}
/**
Create HOBs for reservations and RAM (except low memory).
**/
STATIC
VOID
PlatformAddHobCB (
IN EFI_E820_ENTRY64 *E820Entry,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 Base, End;
Base = E820Entry->BaseAddr;
End = E820Entry->BaseAddr + E820Entry->Length;
switch (E820Entry->Type) {
case EfiAcpiAddressRangeMemory:
if (Base >= BASE_4GB) {
//
// Round up the start address, and round down the end address.
//
Base = ALIGN_VALUE (Base, (UINT64)EFI_PAGE_SIZE);
End = End & ~(UINT64)EFI_PAGE_MASK;
if (Base < End) {
DEBUG ((DEBUG_INFO, "%a: HighMemory [0x%Lx, 0x%Lx)\n", __func__, Base, End));
PlatformAddMemoryRangeHob (Base, End);
}
}
break;
case EfiAcpiAddressRangeReserved:
BuildResourceDescriptorHob (EFI_RESOURCE_MEMORY_RESERVED, 0, Base, End - Base);
DEBUG ((DEBUG_INFO, "%a: Reserved [0x%Lx, 0x%Lx)\n", __func__, Base, End));
break;
default:
DEBUG ((
DEBUG_WARN,
"%a: Type %u [0x%Lx, 0x%Lx) (NOT HANDLED)\n",
__func__,
E820Entry->Type,
Base,
End
));
break;
}
}
/**
Check whenever the 64bit PCI MMIO window overlaps with a reservation
from qemu. If so move down the MMIO window to resolve the conflict.
This happens on (virtual) AMD machines with 1TB address space,
because the AMD IOMMU uses an address window just below 1TB.
**/
STATIC
VOID
PlatformReservationConflictCB (
IN EFI_E820_ENTRY64 *E820Entry,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 IntersectionBase;
UINT64 IntersectionEnd;
UINT64 NewBase;
IntersectionBase = MAX (
E820Entry->BaseAddr,
PlatformInfoHob->PcdPciMmio64Base
);
IntersectionEnd = MIN (
E820Entry->BaseAddr + E820Entry->Length,
PlatformInfoHob->PcdPciMmio64Base +
PlatformInfoHob->PcdPciMmio64Size
);
if (IntersectionBase >= IntersectionEnd) {
return; // no overlap
}
NewBase = E820Entry->BaseAddr - PlatformInfoHob->PcdPciMmio64Size;
NewBase = NewBase & ~(PlatformInfoHob->PcdPciMmio64Size - 1);
DEBUG ((
DEBUG_INFO,
"%a: move mmio: 0x%Lx => %Lx\n",
__func__,
PlatformInfoHob->PcdPciMmio64Base,
NewBase
));
PlatformInfoHob->PcdPciMmio64Base = NewBase;
}
/**
Returns PVH memmap
@param Entries Pointer to PVH memmap
@param Count Number of entries
@return EFI_STATUS
**/
EFI_STATUS
GetPvhMemmapEntries (
struct hvm_memmap_table_entry **Entries,
UINT32 *Count
)
{
UINT32 *PVHResetVectorData;
struct hvm_start_info *pvh_start_info;
PVHResetVectorData = (VOID *)(UINTN)PcdGet32 (PcdXenPvhStartOfDayStructPtr);
if (PVHResetVectorData == 0) {
return EFI_NOT_FOUND;
}
pvh_start_info = (struct hvm_start_info *)(UINTN)PVHResetVectorData[0];
*Entries = (struct hvm_memmap_table_entry *)(UINTN)pvh_start_info->memmap_paddr;
*Count = pvh_start_info->memmap_entries;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
PlatformScanE820Pvh (
IN E820_SCAN_CALLBACK Callback,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
struct hvm_memmap_table_entry *Memmap;
UINT32 MemmapEntriesCount;
struct hvm_memmap_table_entry *Entry;
EFI_E820_ENTRY64 E820Entry;
EFI_STATUS Status;
UINT32 Loop;
Status = GetPvhMemmapEntries (&Memmap, &MemmapEntriesCount);
if (EFI_ERROR (Status)) {
return Status;
}
for (Loop = 0; Loop < MemmapEntriesCount; Loop++) {
Entry = Memmap + Loop;
if (Entry->type == XEN_HVM_MEMMAP_TYPE_RAM) {
E820Entry.BaseAddr = Entry->addr;
E820Entry.Length = Entry->size;
E820Entry.Type = Entry->type;
Callback (&E820Entry, PlatformInfoHob);
}
}
return EFI_SUCCESS;
}
/**
Iterate over the entries in QEMU's fw_cfg E820 RAM map, call the
passed callback for each entry.
@param[in] Callback The callback function to be called.
@param[in out] PlatformInfoHob PlatformInfo struct which is passed
through to the callback.
@retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.
@retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a
whole multiple of sizeof(EFI_E820_ENTRY64). No
RAM entry was processed.
@return Error codes from QemuFwCfgFindFile(). No RAM
entry was processed.
**/
STATIC
EFI_STATUS
PlatformScanE820 (
IN E820_SCAN_CALLBACK Callback,
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
EFI_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
EFI_E820_ENTRY64 E820Entry;
UINTN Processed;
if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
return PlatformScanE820Pvh (Callback, PlatformInfoHob);
}
Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);
if (EFI_ERROR (Status)) {
return Status;
}
if (FwCfgSize % sizeof E820Entry != 0) {
return EFI_PROTOCOL_ERROR;
}
QemuFwCfgSelectItem (FwCfgItem);
for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {
QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);
Callback (&E820Entry, PlatformInfoHob);
}
return EFI_SUCCESS;
}
STATIC
UINT64
GetHighestSystemMemoryAddressFromPvhMemmap (
BOOLEAN Below4gb
)
{
struct hvm_memmap_table_entry *Memmap;
UINT32 MemmapEntriesCount;
struct hvm_memmap_table_entry *Entry;
EFI_STATUS Status;
UINT32 Loop;
UINT64 HighestAddress;
UINT64 EntryEnd;
HighestAddress = 0;
Status = GetPvhMemmapEntries (&Memmap, &MemmapEntriesCount);
ASSERT_EFI_ERROR (Status);
for (Loop = 0; Loop < MemmapEntriesCount; Loop++) {
Entry = Memmap + Loop;
EntryEnd = Entry->addr + Entry->size;
if ((Entry->type == XEN_HVM_MEMMAP_TYPE_RAM) &&
(EntryEnd > HighestAddress))
{
if (Below4gb && (EntryEnd <= BASE_4GB)) {
HighestAddress = EntryEnd;
} else if (!Below4gb && (EntryEnd >= BASE_4GB)) {
HighestAddress = EntryEnd;
}
}
}
return HighestAddress;
}
VOID
EFIAPI
PlatformGetSystemMemorySizeBelow4gb (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
EFI_STATUS Status;
UINT8 Cmos0x34;
UINT8 Cmos0x35;
if ((PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) &&
(CcProbe () != CcGuestTypeIntelTdx))
{
// Get the information from PVH memmap
PlatformInfoHob->LowMemory = (UINT32)GetHighestSystemMemoryAddressFromPvhMemmap (TRUE);
return;
}
Status = PlatformScanE820 (PlatformGetLowMemoryCB, PlatformInfoHob);
if (!EFI_ERROR (Status) && (PlatformInfoHob->LowMemory > 0)) {
return;
}
//
// CMOS 0x34/0x35 specifies the system memory above 16 MB.
// * CMOS(0x35) is the high byte
// * CMOS(0x34) is the low byte
// * The size is specified in 64kb chunks
// * Since this is memory above 16MB, the 16MB must be added
// into the calculation to get the total memory size.
//
Cmos0x34 = (UINT8)PlatformCmosRead8 (0x34);
Cmos0x35 = (UINT8)PlatformCmosRead8 (0x35);
PlatformInfoHob->LowMemory = (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
}
STATIC
UINT64
PlatformGetSystemMemorySizeAbove4gb (
)
{
UINT32 Size;
UINTN CmosIndex;
//
// CMOS 0x5b-0x5d specifies the system memory above 4GB MB.
// * CMOS(0x5d) is the most significant size byte
// * CMOS(0x5c) is the middle size byte
// * CMOS(0x5b) is the least significant size byte
// * The size is specified in 64kb chunks
//
Size = 0;
for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {
Size = (UINT32)(Size << 8) + (UINT32)PlatformCmosRead8 (CmosIndex);
}
return LShiftU64 (Size, 16);
}
/**
Return the highest address that DXE could possibly use, plus one.
**/
STATIC
VOID
PlatformGetFirstNonAddress (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT32 FwCfgPciMmio64Mb;
EFI_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
UINT64 HotPlugMemoryEnd;
//
// If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM
// address from it. This can express an address >= 4GB+1TB.
//
// Otherwise, get the flat size of the memory above 4GB from the CMOS (which
// can only express a size smaller than 1TB), and add it to 4GB.
//
PlatformInfoHob->FirstNonAddress = BASE_4GB;
Status = PlatformScanE820 (PlatformGetFirstNonAddressCB, PlatformInfoHob);
if (EFI_ERROR (Status)) {
PlatformInfoHob->FirstNonAddress = BASE_4GB + PlatformGetSystemMemorySizeAbove4gb ();
}
//
// If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO
// resources to 32-bit anyway. See DegradeResource() in
// "PciResourceSupport.c".
//
#ifdef MDE_CPU_IA32
if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
return;
}
#endif
//
// See if the user specified the number of megabytes for the 64-bit PCI host
// aperture. Accept an aperture size up to 16TB.
//
// As signaled by the "X-" prefix, this knob is experimental, and might go
// away at any time.
//
Status = QemuFwCfgParseUint32 (
"opt/ovmf/X-PciMmio64Mb",
FALSE,
&FwCfgPciMmio64Mb
);
switch (Status) {
case EFI_UNSUPPORTED:
case EFI_NOT_FOUND:
break;
case EFI_SUCCESS:
if (FwCfgPciMmio64Mb <= 0x1000000) {
PlatformInfoHob->PcdPciMmio64Size = LShiftU64 (FwCfgPciMmio64Mb, 20);
break;
}
//
// fall through
//
default:
DEBUG ((
DEBUG_WARN,
"%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",
__func__
));
break;
}
if (PlatformInfoHob->PcdPciMmio64Size == 0) {
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
DEBUG ((
DEBUG_INFO,
"%a: disabling 64-bit PCI host aperture\n",
__func__
));
}
//
// There's nothing more to do; the amount of memory above 4GB fully
// determines the highest address plus one. The memory hotplug area (see
// below) plays no role for the firmware in this case.
//
return;
}
//
// The "etc/reserved-memory-end" fw_cfg file, when present, contains an
// absolute, exclusive end address for the memory hotplug area. This area
// starts right at the end of the memory above 4GB. The 64-bit PCI host
// aperture must be placed above it.
//
Status = QemuFwCfgFindFile (
"etc/reserved-memory-end",
&FwCfgItem,
&FwCfgSize
);
if (!EFI_ERROR (Status) && (FwCfgSize == sizeof HotPlugMemoryEnd)) {
QemuFwCfgSelectItem (FwCfgItem);
QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);
DEBUG ((
DEBUG_VERBOSE,
"%a: HotPlugMemoryEnd=0x%Lx\n",
__func__,
HotPlugMemoryEnd
));
ASSERT (HotPlugMemoryEnd >= PlatformInfoHob->FirstNonAddress);
PlatformInfoHob->FirstNonAddress = HotPlugMemoryEnd;
}
//
// SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so
// that the host can map it with 1GB hugepages. Follow suit.
//
PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (PlatformInfoHob->FirstNonAddress, (UINT64)SIZE_1GB);
PlatformInfoHob->PcdPciMmio64Size = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Size, (UINT64)SIZE_1GB);
//
// The 64-bit PCI host aperture should also be "naturally" aligned. The
// alignment is determined by rounding the size of the aperture down to the
// next smaller or equal power of two. That is, align the aperture by the
// largest BAR size that can fit into it.
//
PlatformInfoHob->PcdPciMmio64Base = ALIGN_VALUE (PlatformInfoHob->PcdPciMmio64Base, GetPowerOfTwo64 (PlatformInfoHob->PcdPciMmio64Size));
//
// The useful address space ends with the 64-bit PCI host aperture.
//
PlatformInfoHob->FirstNonAddress = PlatformInfoHob->PcdPciMmio64Base + PlatformInfoHob->PcdPciMmio64Size;
return;
}
/*
* Use CPUID to figure physical address width.
*
* Does *not* work reliable on qemu. For historical reasons qemu
* returns phys-bits=40 by default even in case the host machine
* supports less than that.
*
* So we apply the following rules (which can be enabled/disabled
* using the QemuQuirk parameter) to figure whenever we can work with
* the returned physical address width or not:
*
* (1) If it is 41 or higher consider it valid.
* (2) If it is 40 or lower consider it valid in case it matches a
* known-good value for the CPU vendor, which is:
* -> 36 or 39 for Intel
* -> 40 for AMD
* (3) Otherwise consider it invalid.
*
* Recommendation: Run qemu with host-phys-bits=on. That will make
* sure guest phys-bits is not larger than host phys-bits. Some
* distro builds do that by default.
*/
VOID
EFIAPI
PlatformAddressWidthFromCpuid (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob,
IN BOOLEAN QemuQuirk
)
{
UINT32 RegEax, RegEbx, RegEcx, RegEdx, Max;
UINT8 PhysBits;
UINT8 GuestPhysBits;
CHAR8 Signature[13];
IA32_CR4 Cr4;
BOOLEAN Valid = FALSE;
BOOLEAN Page1GSupport = FALSE;
ZeroMem (Signature, sizeof (Signature));
AsmCpuid (0x80000000, &RegEax, &RegEbx, &RegEcx, &RegEdx);
*(UINT32 *)(Signature + 0) = RegEbx;
*(UINT32 *)(Signature + 4) = RegEdx;
*(UINT32 *)(Signature + 8) = RegEcx;
Max = RegEax;
if (Max >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT26) != 0) {
Page1GSupport = TRUE;
}
}
if (Max >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysBits = (UINT8)RegEax;
GuestPhysBits = (UINT8)(RegEax >> 16);
} else {
PhysBits = 36;
GuestPhysBits = 0;
}
if (!QemuQuirk) {
Valid = TRUE;
} else if (GuestPhysBits) {
Valid = TRUE;
} else if (PhysBits >= 41) {
Valid = TRUE;
} else if (AsciiStrCmp (Signature, "GenuineIntel") == 0) {
if ((PhysBits == 36) || (PhysBits == 39)) {
Valid = TRUE;
}
} else if (AsciiStrCmp (Signature, "AuthenticAMD") == 0) {
if (PhysBits == 40) {
Valid = TRUE;
}
}
Cr4.UintN = AsmReadCr4 ();
DEBUG ((
DEBUG_INFO,
"%a: Signature: '%a', PhysBits: %d, GuestPhysBits: %d, QemuQuirk: %a, la57: %a, Valid: %a\n",
__func__,
Signature,
PhysBits,
GuestPhysBits,
QemuQuirk ? "On" : "Off",
Cr4.Bits.LA57 ? "On" : "Off",
Valid ? "Yes" : "No"
));
if (GuestPhysBits && (PhysBits > GuestPhysBits)) {
DEBUG ((DEBUG_INFO, "%a: limit PhysBits to %d (GuestPhysBits)\n", __func__, GuestPhysBits));
PhysBits = GuestPhysBits;
}
if (Valid) {
/*
* Due to the sign extension we can use only the lower half of the
* virtual address space to identity-map physical address space,
* which gives us a 47 bit wide address space with 4 paging levels
* and a 56 bit wide address space with 5 paging levels.
*/
if (Cr4.Bits.LA57) {
if ((PhysBits > 48) && !GuestPhysBits) {
/*
* Some Intel CPUs support 5-level paging, have more than 48
* phys-bits but support only 4-level EPT, which effectively
* limits guest phys-bits to 48.
*
* AMD Processors have a different but somewhat related
* problem: They can handle guest phys-bits larger than 48
* only in case the host runs in 5-level paging mode.
*
* GuestPhysBits is used to communicate that kind of
* limitations from hypervisor to guest. If GuestPhysBits is
* not set play safe and limit phys-bits to 48.
*/
DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 48 (5-level paging, no GuestPhysBits)\n", __func__));
PhysBits = 48;
}
} else {
if (PhysBits > 46) {
/*
* Some older linux kernels apparently have problems handling
* phys-bits > 46 correctly, so use that instead of 47 as
* limit.
*/
DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 46 (4-level paging)\n", __func__));
PhysBits = 46;
}
}
if (!Page1GSupport && (PhysBits > 40)) {
DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 40 (no 1G pages available)\n", __func__));
PhysBits = 40;
}
if (!FixedPcdGetBool (PcdUse1GPageTable) && (PhysBits > 40)) {
DEBUG ((DEBUG_INFO, "%a: limit PhysBits to 40 (PcdUse1GPageTable is false)\n", __func__));
PhysBits = 40;
}
PlatformInfoHob->PhysMemAddressWidth = PhysBits;
PlatformInfoHob->FirstNonAddress = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);
}
}
VOID
EFIAPI
PlatformDynamicMmioWindow (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 AddrSpace, MmioSpace;
AddrSpace = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth);
MmioSpace = LShiftU64 (1, PlatformInfoHob->PhysMemAddressWidth - 3);
if ((PlatformInfoHob->PcdPciMmio64Size < MmioSpace) &&
(PlatformInfoHob->PcdPciMmio64Base + MmioSpace < AddrSpace))
{
DEBUG ((DEBUG_INFO, "%a: using dynamic mmio window\n", __func__));
DEBUG ((DEBUG_INFO, "%a: Addr Space 0x%Lx (%Ld GB)\n", __func__, AddrSpace, RShiftU64 (AddrSpace, 30)));
DEBUG ((DEBUG_INFO, "%a: MMIO Space 0x%Lx (%Ld GB)\n", __func__, MmioSpace, RShiftU64 (MmioSpace, 30)));
PlatformInfoHob->PcdPciMmio64Size = MmioSpace;
PlatformInfoHob->PcdPciMmio64Base = AddrSpace - MmioSpace;
PlatformScanE820 (PlatformReservationConflictCB, PlatformInfoHob);
} else {
DEBUG ((DEBUG_INFO, "%a: using classic mmio window\n", __func__));
}
DEBUG ((DEBUG_INFO, "%a: Pci64 Base 0x%Lx\n", __func__, PlatformInfoHob->PcdPciMmio64Base));
DEBUG ((DEBUG_INFO, "%a: Pci64 Size 0x%Lx\n", __func__, PlatformInfoHob->PcdPciMmio64Size));
}
/**
Iterate over the PCI host bridges resources information optionally provided
in fw-cfg and find the highest address contained in the PCI MMIO windows. If
the information is found, return the exclusive end; one past the last usable
address.
@param[out] PciMmioAddressEnd Pointer to one-after End Address updated with
information extracted from host-provided data
or zero if no information available or an
error happened
@retval EFI_SUCCESS PCI information was read and the output
parameter updated with the last valid
address in the 64-bit MMIO range.
@retval EFI_INVALID_PARAMETER Pointer parameter is invalid
@retval EFI_INCOMPATIBLE_VERSION Hardware information found in fw-cfg
has an incompatible format
@retval EFI_UNSUPPORTED Fw-cfg is not supported, thus host
provided information, if any, cannot be
read
@retval EFI_NOT_FOUND No PCI host bridge information provided
by the host.
**/
STATIC
EFI_STATUS
PlatformScanHostProvided64BitPciMmioEnd (
OUT UINT64 *PciMmioAddressEnd
)
{
EFI_STATUS Status;
HOST_BRIDGE_INFO HostBridge;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
UINTN FwCfgReadIndex;
UINTN ReadDataSize;
UINT64 Above4GMmioEnd;
if (PciMmioAddressEnd == NULL) {
return EFI_INVALID_PARAMETER;
}
*PciMmioAddressEnd = 0;
Above4GMmioEnd = 0;
Status = QemuFwCfgFindFile ("etc/hardware-info", &FwCfgItem, &FwCfgSize);
if (EFI_ERROR (Status)) {
return Status;
}
QemuFwCfgSelectItem (FwCfgItem);
FwCfgReadIndex = 0;
while (FwCfgReadIndex < FwCfgSize) {
Status = QemuFwCfgReadNextHardwareInfoByType (
HardwareInfoTypeHostBridge,
sizeof (HostBridge),
FwCfgSize,
&HostBridge,
&ReadDataSize,
&FwCfgReadIndex
);
if (Status != EFI_SUCCESS) {
//
// No more data available to read in the file, break
// loop and finish process
//
break;
}
Status = HardwareInfoPciHostBridgeLastMmioAddress (
&HostBridge,
ReadDataSize,
TRUE,
&Above4GMmioEnd
);
if (Status != EFI_SUCCESS) {
//
// Error parsing MMIO apertures and extracting last MMIO
// address, reset PciMmioAddressEnd as if no information was
// found, to avoid moving forward with incomplete data, and
// bail out
//
DEBUG ((
DEBUG_ERROR,
"%a: ignoring malformed hardware information from fw_cfg\n",
__func__
));
*PciMmioAddressEnd = 0;
return Status;
}
if (Above4GMmioEnd > *PciMmioAddressEnd) {
*PciMmioAddressEnd = Above4GMmioEnd;
}
}
if (*PciMmioAddressEnd > 0) {
//
// Host-provided PCI information was found and a MMIO window end
// derived from it.
// Increase the End address by one to have the output pointing to
// one after the address in use (exclusive end).
//
*PciMmioAddressEnd += 1;
DEBUG ((
DEBUG_INFO,
"%a: Pci64End=0x%Lx\n",
__func__,
*PciMmioAddressEnd
));
return EFI_SUCCESS;
}
return EFI_NOT_FOUND;
}
/**
Initialize the PhysMemAddressWidth field in PlatformInfoHob based on guest RAM size.
**/
VOID
EFIAPI
PlatformAddressWidthInitialization (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT8 PhysMemAddressWidth;
EFI_STATUS Status;
if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
PlatformAddressWidthFromCpuid (PlatformInfoHob, FALSE);
return;
} else if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
PlatformInfoHob->FirstNonAddress = BASE_4GB;
Status = PlatformScanE820 (PlatformGetFirstNonAddressCB, PlatformInfoHob);
if (EFI_ERROR (Status)) {
PlatformInfoHob->FirstNonAddress = BASE_4GB + PlatformGetSystemMemorySizeAbove4gb ();
}
PlatformInfoHob->PcdPciMmio64Base = PlatformInfoHob->FirstNonAddress;
PlatformAddressWidthFromCpuid (PlatformInfoHob, FALSE);
PlatformInfoHob->PcdPciMmio64Size = PlatformInfoHob->FirstNonAddress - PlatformInfoHob->PcdPciMmio64Base;
return;
}
//
// First scan host-provided hardware information to assess if the address
// space is already known. If so, guest must use those values.
//
Status = PlatformScanHostProvided64BitPciMmioEnd (&PlatformInfoHob->FirstNonAddress);
if (EFI_ERROR (Status)) {
//
// If the host did not provide valid hardware information leading to a
// hard-defined 64-bit MMIO end, fold back to calculating the minimum range
// needed.
// As guest-physical memory size grows, the permanent PEI RAM requirements
// are dominated by the identity-mapping page tables built by the DXE IPL.
// The DXL IPL keys off of the physical address bits advertized in the CPU
// HOB. To conserve memory, we calculate the minimum address width here.
//
PlatformGetFirstNonAddress (PlatformInfoHob);
}
PlatformAddressWidthFromCpuid (PlatformInfoHob, TRUE);
if (PlatformInfoHob->PhysMemAddressWidth != 0) {
// physical address width is known
PlatformDynamicMmioWindow (PlatformInfoHob);
return;
}
//
// physical address width is NOT known
// -> do some guess work, mostly based on installed memory
// -> try be conservstibe to stay below the guaranteed minimum of
// 36 phys bits (aka 64 GB).
//
PhysMemAddressWidth = (UINT8)HighBitSet64 (PlatformInfoHob->FirstNonAddress);
//
// If FirstNonAddress is not an integral power of two, then we need an
// additional bit.
//
if ((PlatformInfoHob->FirstNonAddress & (PlatformInfoHob->FirstNonAddress - 1)) != 0) {
++PhysMemAddressWidth;
}
//
// The minimum address width is 36 (covers up to and excluding 64 GB, which
// is the maximum for Ia32 + PAE). The theoretical architecture maximum for
// X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We
// can simply assert that here, since 48 bits are good enough for 256 TB.
//
if (PhysMemAddressWidth <= 36) {
PhysMemAddressWidth = 36;
}
#if defined (MDE_CPU_X64)
if (TdIsEnabled ()) {
if (TdSharedPageMask () == (1ULL << 47)) {
PhysMemAddressWidth = 48;
} else {
PhysMemAddressWidth = 52;
}
}
ASSERT (PhysMemAddressWidth <= 52);
#else
ASSERT (PhysMemAddressWidth <= 48);
#endif
PlatformInfoHob->PhysMemAddressWidth = PhysMemAddressWidth;
}
/**
Create gEfiSmmSmramMemoryGuid HOB defined in the PI specification Vol. 3,
section 5, which is used to describe the SMRAM memory regions supported
by the platform.
@param[in] StartAddress StartAddress of smram.
@param[in] Size Size of smram.
**/
STATIC
VOID
CreateSmmSmramMemoryHob (
IN EFI_PHYSICAL_ADDRESS StartAddress,
IN UINT32 Size
)
{
UINTN BufferSize;
UINT8 SmramRanges;
EFI_PEI_HOB_POINTERS Hob;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *SmramHobDescriptorBlock;
VOID *GuidHob;
SmramRanges = 2;
BufferSize = sizeof (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK) + (SmramRanges - 1) * sizeof (EFI_SMRAM_DESCRIPTOR);
Hob.Raw = BuildGuidHob (
&gEfiSmmSmramMemoryGuid,
BufferSize
);
ASSERT (Hob.Raw);
SmramHobDescriptorBlock = (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *)(Hob.Raw);
SmramHobDescriptorBlock->NumberOfSmmReservedRegions = SmramRanges;
//
// 1. Create first SMRAM descriptor, which contains data structures used in S3 resume.
// One page is enough for the data structure
//
SmramHobDescriptorBlock->Descriptor[0].PhysicalStart = StartAddress;
SmramHobDescriptorBlock->Descriptor[0].CpuStart = StartAddress;
SmramHobDescriptorBlock->Descriptor[0].PhysicalSize = EFI_PAGE_SIZE;
SmramHobDescriptorBlock->Descriptor[0].RegionState = EFI_SMRAM_CLOSED | EFI_CACHEABLE | EFI_ALLOCATED;
//
// 1.1 Create gEfiAcpiVariableGuid according SmramHobDescriptorBlock->Descriptor[0] since it's used in S3 resume.
//
GuidHob = BuildGuidHob (&gEfiAcpiVariableGuid, sizeof (EFI_SMRAM_DESCRIPTOR));
ASSERT (GuidHob != NULL);
CopyMem (GuidHob, &SmramHobDescriptorBlock->Descriptor[0], sizeof (EFI_SMRAM_DESCRIPTOR));
//
// 2. Create second SMRAM descriptor, which is free and will be used by SMM foundation.
//
SmramHobDescriptorBlock->Descriptor[1].PhysicalStart = SmramHobDescriptorBlock->Descriptor[0].PhysicalStart + EFI_PAGE_SIZE;
SmramHobDescriptorBlock->Descriptor[1].CpuStart = SmramHobDescriptorBlock->Descriptor[0].CpuStart + EFI_PAGE_SIZE;
SmramHobDescriptorBlock->Descriptor[1].PhysicalSize = Size - EFI_PAGE_SIZE;
SmramHobDescriptorBlock->Descriptor[1].RegionState = EFI_SMRAM_CLOSED | EFI_CACHEABLE;
}
STATIC
VOID
QemuInitializeRamBelow1gb (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
if (PlatformInfoHob->SmmSmramRequire && PlatformInfoHob->Q35SmramAtDefaultSmbase) {
PlatformAddMemoryRangeHob (0, SMM_DEFAULT_SMBASE);
PlatformAddReservedMemoryBaseSizeHob (
SMM_DEFAULT_SMBASE,
MCH_DEFAULT_SMBASE_SIZE,
TRUE /* Cacheable */
);
STATIC_ASSERT (
SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE < BASE_512KB + BASE_128KB,
"end of SMRAM at default SMBASE ends at, or exceeds, 640KB"
);
PlatformAddMemoryRangeHob (
SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE,
BASE_512KB + BASE_128KB
);
} else {
PlatformAddMemoryRangeHob (0, BASE_512KB + BASE_128KB);
}
}
/**
Peform Memory Detection for QEMU / KVM
**/
VOID
EFIAPI
PlatformQemuInitializeRam (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 UpperMemorySize;
MTRR_SETTINGS MtrrSettings;
EFI_STATUS Status;
DEBUG ((DEBUG_INFO, "%a called\n", __func__));
//
// Determine total memory size available
//
PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
//
// CpuMpPei saves the original contents of the borrowed area in permanent
// PEI RAM, in a backup buffer allocated with the normal PEI services.
// CpuMpPei restores the original contents ("returns" the borrowed area) at
// End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before
// transferring control to the OS's wakeup vector in the FACS.
//
// We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to
// restore the original contents. Furthermore, we expect all such PEIMs
// (CpuMpPei included) to claim the borrowed areas by producing memory
// allocation HOBs, and to honor preexistent memory allocation HOBs when
// looking for an area to borrow.
//
QemuInitializeRamBelow1gb (PlatformInfoHob);
if (PlatformInfoHob->SmmSmramRequire) {
UINT32 TsegSize;
EFI_PHYSICAL_ADDRESS TsegBase;
TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;
TsegBase = PlatformInfoHob->LowMemory - TsegSize;
PlatformAddMemoryRangeHob (BASE_1MB, TsegBase);
PlatformAddReservedMemoryBaseSizeHob (
TsegBase,
TsegSize,
TRUE
);
//
// Create gEfiSmmSmramMemoryGuid HOB
//
CreateSmmSmramMemoryHob (TsegBase, TsegSize);
} else {
PlatformAddMemoryRangeHob (BASE_1MB, PlatformInfoHob->LowMemory);
}
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
//
// If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM
// entries. Otherwise, create a single memory HOB with the flat >=4GB
// memory size read from the CMOS.
//
Status = PlatformScanE820 (PlatformAddHobCB, PlatformInfoHob);
if (EFI_ERROR (Status)) {
UpperMemorySize = PlatformGetSystemMemorySizeAbove4gb ();
if (UpperMemorySize != 0) {
PlatformAddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);
}
}
}
//
// We'd like to keep the following ranges uncached:
// - [640 KB, 1 MB)
// - [Uc32Base, 4 GB)
//
// Everything else should be WB. Unfortunately, programming the inverse (ie.
// keeping the default UC, and configuring the complement set of the above as
// WB) is not reliable in general, because the end of the upper RAM can have
// practically any alignment, and we may not have enough variable MTRRs to
// cover it exactly.
//
// Because of that PlatformQemuUc32BaseInitialization() will round
// up PlatformInfoHob->LowMemory to make sure a single mtrr register
// is enough. The the result will be stored in
// PlatformInfoHob->Uc32Base. On a typical qemu configuration with
// gigabyte-alignment being used LowMemory will be 2 or 3 GB and no
// rounding is needed, so LowMemory and Uc32Base will be identical.
//
if (IsMtrrSupported () && (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID)) {
MtrrGetAllMtrrs (&MtrrSettings);
//
// MTRRs disabled, fixed MTRRs disabled, default type is uncached
//
ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);
ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);
ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);
//
// flip default type to writeback
//
SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);
ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);
MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;
MtrrSetAllMtrrs (&MtrrSettings);
//
// Set memory range from 640KB to 1MB to uncacheable
//
Status = MtrrSetMemoryAttribute (
BASE_512KB + BASE_128KB,
BASE_1MB - (BASE_512KB + BASE_128KB),
CacheUncacheable
);
ASSERT_EFI_ERROR (Status);
//
// Set the memory range from the start of the 32-bit PCI MMIO
// aperture to 4GB as uncacheable.
//
Status = MtrrSetMemoryAttribute (
PlatformInfoHob->Uc32Base,
SIZE_4GB - PlatformInfoHob->Uc32Base,
CacheUncacheable
);
ASSERT_EFI_ERROR (Status);
}
}
VOID
EFIAPI
PlatformQemuInitializeRamForS3 (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
if (PlatformInfoHob->S3Supported && (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME)) {
//
// This is the memory range that will be used for PEI on S3 resume
//
BuildMemoryAllocationHob (
PlatformInfoHob->S3AcpiReservedMemoryBase,
PlatformInfoHob->S3AcpiReservedMemorySize,
EfiACPIMemoryNVS
);
//
// Cover the initial RAM area used as stack and temporary PEI heap.
//
// This is reserved as ACPI NVS so it can be used on S3 resume.
//
BuildMemoryAllocationHob (
PcdGet32 (PcdOvmfSecPeiTempRamBase),
PcdGet32 (PcdOvmfSecPeiTempRamSize),
EfiACPIMemoryNVS
);
//
// SEC stores its table of GUIDed section handlers here.
//
BuildMemoryAllocationHob (
PcdGet64 (PcdGuidedExtractHandlerTableAddress),
PcdGet32 (PcdGuidedExtractHandlerTableSize),
EfiACPIMemoryNVS
);
#ifdef MDE_CPU_X64
//
// Reserve the initial page tables built by the reset vector code.
//
// Since this memory range will be used by the Reset Vector on S3
// resume, it must be reserved as ACPI NVS.
//
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecPageTablesBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecPageTablesSize),
EfiACPIMemoryNVS
);
if (PlatformInfoHob->SevEsIsEnabled) {
//
// If SEV-ES is enabled, reserve the GHCB-related memory area. This
// includes the extra page table used to break down the 2MB page
// mapping into 4KB page entries where the GHCB resides and the
// GHCB area itself.
//
// Since this memory range will be used by the Reset Vector on S3
// resume, it must be reserved as ACPI NVS.
//
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbPageTableSize),
EfiACPIMemoryNVS
);
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbSize),
EfiACPIMemoryNVS
);
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfSecGhcbBackupSize),
EfiACPIMemoryNVS
);
}
#endif
}
if (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME) {
if (!PlatformInfoHob->SmmSmramRequire) {
//
// Reserve the lock box storage area
//
// Since this memory range will be used on S3 resume, it must be
// reserved as ACPI NVS.
//
// If S3 is unsupported, then various drivers might still write to the
// LockBox area. We ought to prevent DXE from serving allocation requests
// such that they would overlap the LockBox storage.
//
ZeroMem (
(VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)
);
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),
PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
);
}
if (PlatformInfoHob->SmmSmramRequire) {
UINT32 TsegSize;
//
// Make sure the TSEG area that we reported as a reserved memory resource
// cannot be used for reserved memory allocations.
//
PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
TsegSize = PlatformInfoHob->Q35TsegMbytes * SIZE_1MB;
BuildMemoryAllocationHob (
PlatformInfoHob->LowMemory - TsegSize,
TsegSize,
EfiReservedMemoryType
);
//
// Similarly, allocate away the (already reserved) SMRAM at the default
// SMBASE, if it exists.
//
if (PlatformInfoHob->Q35SmramAtDefaultSmbase) {
BuildMemoryAllocationHob (
SMM_DEFAULT_SMBASE,
MCH_DEFAULT_SMBASE_SIZE,
EfiReservedMemoryType
);
}
}
#ifdef MDE_CPU_X64
if (FixedPcdGet32 (PcdOvmfWorkAreaSize) != 0) {
//
// Reserve the work area.
//
// Since this memory range will be used by the Reset Vector on S3
// resume, it must be reserved as ACPI NVS.
//
// If S3 is unsupported, then various drivers might still write to the
// work area. We ought to prevent DXE from serving allocation requests
// such that they would overlap the work area.
//
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaBase),
(UINT64)(UINTN)FixedPcdGet32 (PcdOvmfWorkAreaSize),
PlatformInfoHob->S3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
);
}
#endif
}
}
|