summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/Library/PlatformInitLib/Platform.c
blob: 77f22de046f2c1e62b7a9eeceec8b19c5bc77491 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/**@file

  Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
  Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

//
// The package level header files this module uses
//
#include <PiPei.h>

//
// The Library classes this module consumes
//
#include <Library/BaseMemoryLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <IndustryStandard/I440FxPiix4.h>
#include <IndustryStandard/Microvm.h>
#include <IndustryStandard/Pci22.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <IndustryStandard/QemuCpuHotplug.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/QemuFwCfgS3Lib.h>
#include <Library/QemuFwCfgSimpleParserLib.h>
#include <Library/PciLib.h>
#include <Guid/SystemNvDataGuid.h>
#include <Guid/VariableFormat.h>
#include <OvmfPlatforms.h>

#include <Library/PlatformInitLib.h>

VOID
EFIAPI
PlatformAddIoMemoryBaseSizeHob (
  IN EFI_PHYSICAL_ADDRESS  MemoryBase,
  IN UINT64                MemorySize
  )
{
  BuildResourceDescriptorHob (
    EFI_RESOURCE_MEMORY_MAPPED_IO,
    EFI_RESOURCE_ATTRIBUTE_PRESENT     |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
    EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
    EFI_RESOURCE_ATTRIBUTE_TESTED,
    MemoryBase,
    MemorySize
    );
}

VOID
EFIAPI
PlatformAddReservedMemoryBaseSizeHob (
  IN EFI_PHYSICAL_ADDRESS  MemoryBase,
  IN UINT64                MemorySize,
  IN BOOLEAN               Cacheable
  )
{
  BuildResourceDescriptorHob (
    EFI_RESOURCE_MEMORY_RESERVED,
    EFI_RESOURCE_ATTRIBUTE_PRESENT     |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
    EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
    (Cacheable ?
     EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
     EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
     EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE :
     0
    ) |
    EFI_RESOURCE_ATTRIBUTE_TESTED,
    MemoryBase,
    MemorySize
    );
}

VOID
EFIAPI
PlatformAddIoMemoryRangeHob (
  IN EFI_PHYSICAL_ADDRESS  MemoryBase,
  IN EFI_PHYSICAL_ADDRESS  MemoryLimit
  )
{
  PlatformAddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}

VOID
EFIAPI
PlatformAddMemoryBaseSizeHob (
  IN EFI_PHYSICAL_ADDRESS  MemoryBase,
  IN UINT64                MemorySize
  )
{
  BuildResourceDescriptorHob (
    EFI_RESOURCE_SYSTEM_MEMORY,
    EFI_RESOURCE_ATTRIBUTE_PRESENT |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
    EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
    EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
    EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
    EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE |
    EFI_RESOURCE_ATTRIBUTE_TESTED,
    MemoryBase,
    MemorySize
    );
}

VOID
EFIAPI
PlatformAddMemoryRangeHob (
  IN EFI_PHYSICAL_ADDRESS  MemoryBase,
  IN EFI_PHYSICAL_ADDRESS  MemoryLimit
  )
{
  PlatformAddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase));
}

VOID
EFIAPI
PlatformMemMapInitialization (
  IN OUT EFI_HOB_PLATFORM_INFO  *PlatformInfoHob
  )
{
  UINT64  PciIoBase;
  UINT64  PciIoSize;
  UINT32  TopOfLowRam;
  UINT64  PciExBarBase;
  UINT32  PciBase;
  UINT32  PciSize;

  PciIoBase = 0xC000;
  PciIoSize = 0x4000;

  //
  // Video memory + Legacy BIOS region
  //
  if (!TdIsEnabled ()) {
    PlatformAddIoMemoryRangeHob (0x0A0000, BASE_1MB);
  }

  if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) {
    PlatformAddIoMemoryBaseSizeHob (MICROVM_GED_MMIO_BASE, SIZE_4KB);
    PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); /* ioapic #1 */
    PlatformAddIoMemoryBaseSizeHob (0xFEC10000, SIZE_4KB); /* ioapic #2 */
    return;
  }

  TopOfLowRam  = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob);
  PciExBarBase = 0;
  if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
    //
    // The MMCONFIG area is expected to fall between the top of low RAM and
    // the base of the 32-bit PCI host aperture.
    //
    PciExBarBase = PcdGet64 (PcdPciExpressBaseAddress);
    ASSERT (TopOfLowRam <= PciExBarBase);
    ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB);
    PciBase = (UINT32)(PciExBarBase + SIZE_256MB);
  } else {
    ASSERT (TopOfLowRam <= PlatformInfoHob->Uc32Base);
    PciBase = PlatformInfoHob->Uc32Base;
  }

  //
  // address       purpose   size
  // ------------  --------  -------------------------
  // max(top, 2g)  PCI MMIO  0xFC000000 - max(top, 2g)
  // 0xFC000000    gap                           44 MB
  // 0xFEC00000    IO-APIC                        4 KB
  // 0xFEC01000    gap                         1020 KB
  // 0xFED00000    HPET                           1 KB
  // 0xFED00400    gap                          111 KB
  // 0xFED1C000    gap (PIIX4) / RCRB (ICH9)     16 KB
  // 0xFED20000    gap                          896 KB
  // 0xFEE00000    LAPIC                          1 MB
  //
  PciSize = 0xFC000000 - PciBase;
  PlatformAddIoMemoryBaseSizeHob (PciBase, PciSize);

  PlatformInfoHob->PcdPciMmio32Base = PciBase;
  PlatformInfoHob->PcdPciMmio32Size = PciSize;

  PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
  PlatformAddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
  if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
    PlatformAddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB);
    //
    // Note: there should be an
    //
    //   PlatformAddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB);
    //
    // call below, just like the one above for RCBA. However, Linux insists
    // that the MMCONFIG area be marked in the E820 or UEFI memory map as
    // "reserved memory" -- Linux does not content itself with a simple gap
    // in the memory map wherever the MCFG ACPI table points to.
    //
    // This appears to be a safety measure. The PCI Firmware Specification
    // (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can
    // *optionally* be returned in [...] EFIGetMemoryMap as reserved memory
    // [...]". (Emphasis added here.)
    //
    // Normally we add memory resource descriptor HOBs in
    // QemuInitializeRam(), and pre-allocate from those with memory
    // allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area
    // is most definitely not RAM; so, as an exception, cover it with
    // uncacheable reserved memory right here.
    //
    PlatformAddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE);
    BuildMemoryAllocationHob (
      PciExBarBase,
      SIZE_256MB,
      EfiReservedMemoryType
      );
  }

  PlatformAddIoMemoryBaseSizeHob (PcdGet32 (PcdCpuLocalApicBaseAddress), SIZE_1MB);

  //
  // On Q35, the IO Port space is available for PCI resource allocations from
  // 0x6000 up.
  //
  if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
    PciIoBase = 0x6000;
    PciIoSize = 0xA000;
    ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase);
  }

  //
  // Add PCI IO Port space available for PCI resource allocations.
  //
  BuildResourceDescriptorHob (
    EFI_RESOURCE_IO,
    EFI_RESOURCE_ATTRIBUTE_PRESENT     |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
    PciIoBase,
    PciIoSize
    );

  PlatformInfoHob->PcdPciIoBase = PciIoBase;
  PlatformInfoHob->PcdPciIoSize = PciIoSize;
}

/**
 * Fetch "opt/ovmf/PcdSetNxForStack" from QEMU
 *
 * @param Setting     The pointer to the setting of "/opt/ovmf/PcdSetNxForStack".
 * @return EFI_SUCCESS  Successfully fetch the settings.
 */
EFI_STATUS
EFIAPI
PlatformNoexecDxeInitialization (
  IN OUT EFI_HOB_PLATFORM_INFO  *PlatformInfoHob
  )
{
  return QemuFwCfgParseBool ("opt/ovmf/PcdSetNxForStack", &PlatformInfoHob->PcdSetNxForStack);
}

VOID
PciExBarInitialization (
  VOID
  )
{
  union {
    UINT64    Uint64;
    UINT32    Uint32[2];
  } PciExBarBase;

  //
  // We only support the 256MB size for the MMCONFIG area:
  // 256 buses * 32 devices * 8 functions * 4096 bytes config space.
  //
  // The masks used below enforce the Q35 requirements that the MMCONFIG area
  // be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB.
  //
  // Note that (b) also ensures that the minimum address width we have
  // determined in AddressWidthInitialization(), i.e., 36 bits, will suffice
  // for DXE's page tables to cover the MMCONFIG area.
  //
  PciExBarBase.Uint64 = PcdGet64 (PcdPciExpressBaseAddress);
  ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0);
  ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0);

  //
  // Clear the PCIEXBAREN bit first, before programming the high register.
  //
  PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0);

  //
  // Program the high register. Then program the low register, setting the
  // MMCONFIG area size and enabling decoding at once.
  //
  PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]);
  PciWrite32 (
    DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW),
    PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN
    );
}

VOID
EFIAPI
PlatformMiscInitialization (
  IN EFI_HOB_PLATFORM_INFO  *PlatformInfoHob
  )
{
  UINTN   PmCmd;
  UINTN   Pmba;
  UINT32  PmbaAndVal;
  UINT32  PmbaOrVal;
  UINTN   AcpiCtlReg;
  UINT8   AcpiEnBit;

  //
  // Disable A20 Mask
  //
  if (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID) {
    IoOr8 (0x92, BIT1);
  }

  //
  // Build the CPU HOB with guest RAM size dependent address width and 16-bits
  // of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during
  // S3 resume as well, so we build it unconditionally.)
  //
  BuildCpuHob (PlatformInfoHob->PhysMemAddressWidth, 16);

  //
  // Determine platform type and save Host Bridge DID to PCD
  //
  switch (PlatformInfoHob->HostBridgeDevId) {
    case INTEL_82441_DEVICE_ID:
      PmCmd      = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET);
      Pmba       = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA);
      PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK;
      PmbaOrVal  = PIIX4_PMBA_VALUE;
      AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC);
      AcpiEnBit  = PIIX4_PMREGMISC_PMIOSE;
      break;
    case INTEL_Q35_MCH_DEVICE_ID:
      PmCmd      = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET);
      Pmba       = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE);
      PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK;
      PmbaOrVal  = ICH9_PMBASE_VALUE;
      AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL);
      AcpiEnBit  = ICH9_ACPI_CNTL_ACPI_EN;
      break;
    case CLOUDHV_DEVICE_ID:
      break;
    default:
      DEBUG ((
        DEBUG_ERROR,
        "%a: Unknown Host Bridge Device ID: 0x%04x\n",
        __FUNCTION__,
        PlatformInfoHob->HostBridgeDevId
        ));
      ASSERT (FALSE);
      return;
  }

  if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) {
    DEBUG ((DEBUG_INFO, "%a: Cloud Hypervisor is done.\n", __FUNCTION__));
    return;
  }

  //
  // If the appropriate IOspace enable bit is set, assume the ACPI PMBA has
  // been configured and skip the setup here. This matches the logic in
  // AcpiTimerLibConstructor ().
  //
  if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) {
    //
    // The PEI phase should be exited with fully accessibe ACPI PM IO space:
    // 1. set PMBA
    //
    PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal);

    //
    // 2. set PCICMD/IOSE
    //
    PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE);

    //
    // 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN)
    //
    PciOr8 (AcpiCtlReg, AcpiEnBit);
  }

  if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
    //
    // Set Root Complex Register Block BAR
    //
    PciWrite32 (
      POWER_MGMT_REGISTER_Q35 (ICH9_RCBA),
      ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN
      );

    //
    // Set PCI Express Register Range Base Address
    //
    PciExBarInitialization ();
  }
}

/**
  Fetch the boot CPU count and the possible CPU count from QEMU, and expose
  them to UefiCpuPkg modules.
**/
VOID
EFIAPI
PlatformMaxCpuCountInitialization (
  IN OUT EFI_HOB_PLATFORM_INFO  *PlatformInfoHob
  )
{
  UINT16  BootCpuCount = 0;
  UINT32  MaxCpuCount;

  //
  // Try to fetch the boot CPU count.
  //
  if (QemuFwCfgIsAvailable ()) {
    QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount);
    BootCpuCount = QemuFwCfgRead16 ();
  }

  if (BootCpuCount == 0) {
    //
    // QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let
    // MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or
    // until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached
    // first).
    //
    DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__));
    MaxCpuCount = PlatformInfoHob->DefaultMaxCpuNumber;
  } else {
    //
    // We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to
    // (BootCpuCount - 1) precisely, regardless of timeout.
    //
    // Now try to fetch the possible CPU count.
    //
    UINTN   CpuHpBase;
    UINT32  CmdData2;

    CpuHpBase = ((PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ?
                 ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE);

    //
    // If only legacy mode is available in the CPU hotplug register block, or
    // the register block is completely missing, then the writes below are
    // no-ops.
    //
    // 1. Switch the hotplug register block to modern mode.
    //
    IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
    //
    // 2. Select a valid CPU for deterministic reading of
    //    QEMU_CPUHP_R_CMD_DATA2.
    //
    //    CPU#0 is always valid; it is the always present and non-removable
    //    BSP.
    //
    IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0);
    //
    // 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to
    //    read as zero, and which does not invalidate the selector. (The
    //    selector may change, but it must not become invalid.)
    //
    //    Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later.
    //
    IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING);
    //
    // 4. Read QEMU_CPUHP_R_CMD_DATA2.
    //
    //    If the register block is entirely missing, then this is an unassigned
    //    IO read, returning all-bits-one.
    //
    //    If only legacy mode is available, then bit#0 stands for CPU#0 in the
    //    "CPU present bitmap". CPU#0 is always present.
    //
    //    Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning
    //    all-bits-zero), or it is specified to read as zero after the above
    //    steps. Both cases confirm modern mode.
    //
    CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2);
    DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2));
    if (CmdData2 != 0) {
      //
      // QEMU doesn't support the modern CPU hotplug interface. Assume that the
      // possible CPU count equals the boot CPU count (precluding hotplug).
      //
      DEBUG ((
        DEBUG_WARN,
        "%a: modern CPU hotplug interface unavailable\n",
        __FUNCTION__
        ));
      MaxCpuCount = BootCpuCount;
    } else {
      //
      // Grab the possible CPU count from the modern CPU hotplug interface.
      //
      UINT32  Present, Possible, Selected;

      Present  = 0;
      Possible = 0;

      //
      // We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures
      // QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However,
      // QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending
      // hotplug events; therefore, select CPU#0 forcibly.
      //
      IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);

      do {
        UINT8  CpuStatus;

        //
        // Read the status of the currently selected CPU. This will help with a
        // sanity check against "BootCpuCount".
        //
        CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT);
        if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) {
          ++Present;
        }

        //
        // Attempt to select the next CPU.
        //
        ++Possible;
        IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible);
        //
        // If the selection is successful, then the following read will return
        // the selector (which we know is positive at this point). Otherwise,
        // the read will return 0.
        //
        Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA);
        ASSERT (Selected == Possible || Selected == 0);
      } while (Selected > 0);

      //
      // Sanity check: fw_cfg and the modern CPU hotplug interface should
      // return the same boot CPU count.
      //
      if (BootCpuCount != Present) {
        DEBUG ((
          DEBUG_WARN,
          "%a: QEMU v2.7 reset bug: BootCpuCount=%d "
          "Present=%u\n",
          __FUNCTION__,
          BootCpuCount,
          Present
          ));
        //
        // The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus
        // platform reset (including S3), was corrected in QEMU commit
        // e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added
        // CPUs", 2016-11-16), part of release v2.8.0.
        //
        BootCpuCount = (UINT16)Present;
      }

      MaxCpuCount = Possible;
    }
  }

  DEBUG ((
    DEBUG_INFO,
    "%a: BootCpuCount=%d MaxCpuCount=%u\n",
    __FUNCTION__,
    BootCpuCount,
    MaxCpuCount
    ));
  ASSERT (BootCpuCount <= MaxCpuCount);

  PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber  = MaxCpuCount;
  PlatformInfoHob->PcdCpuBootLogicalProcessorNumber = BootCpuCount;
}

/**
  Check padding data all bit should be 1.

  @param[in] Buffer     - A pointer to buffer header
  @param[in] BufferSize - Buffer size

  @retval  TRUE   - The padding data is valid.
  @retval  TRUE  - The padding data is invalid.

**/
BOOLEAN
CheckPaddingData (
  IN UINT8   *Buffer,
  IN UINT32  BufferSize
  )
{
  UINT32  index;

  for (index = 0; index < BufferSize; index++) {
    if (Buffer[index] != 0xFF) {
      return FALSE;
    }
  }

  return TRUE;
}

/**
  Check the integrity of NvVarStore.

  @param[in] NvVarStoreBase - A pointer to NvVarStore header
  @param[in] NvVarStoreSize - NvVarStore size

  @retval  TRUE   - The NvVarStore is valid.
  @retval  FALSE  - The NvVarStore is invalid.

**/
BOOLEAN
EFIAPI
PlatformValidateNvVarStore (
  IN UINT8   *NvVarStoreBase,
  IN UINT32  NvVarStoreSize
  )
{
  UINT16                         Checksum;
  UINTN                          VariableBase;
  UINT32                         VariableOffset;
  UINT32                         VariableOffsetBeforeAlign;
  EFI_FIRMWARE_VOLUME_HEADER     *NvVarStoreFvHeader;
  VARIABLE_STORE_HEADER          *NvVarStoreHeader;
  AUTHENTICATED_VARIABLE_HEADER  *VariableHeader;

  static EFI_GUID  FvHdrGUID       = EFI_SYSTEM_NV_DATA_FV_GUID;
  static EFI_GUID  VarStoreHdrGUID = EFI_AUTHENTICATED_VARIABLE_GUID;

  VariableOffset = 0;

  if (NvVarStoreBase == NULL) {
    DEBUG ((DEBUG_ERROR, "NvVarStore pointer is NULL.\n"));
    return FALSE;
  }

  //
  // Verify the header zerovetor, filesystemguid,
  // revision, signature, attributes, fvlength, checksum
  // HeaderLength cannot be an odd number
  //
  NvVarStoreFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)NvVarStoreBase;

  if ((!IsZeroBuffer (NvVarStoreFvHeader->ZeroVector, 16)) ||
      (!CompareGuid (&FvHdrGUID, &NvVarStoreFvHeader->FileSystemGuid)) ||
      (NvVarStoreFvHeader->Signature != EFI_FVH_SIGNATURE) ||
      (NvVarStoreFvHeader->Attributes != 0x4feff) ||
      ((NvVarStoreFvHeader->HeaderLength & 0x01) != 0) ||
      (NvVarStoreFvHeader->Revision != EFI_FVH_REVISION) ||
      (NvVarStoreFvHeader->FvLength != NvVarStoreSize)
      )
  {
    DEBUG ((DEBUG_ERROR, "NvVarStore FV headers were invalid.\n"));
    return FALSE;
  }

  //
  // Verify the header checksum
  //
  Checksum = CalculateSum16 ((VOID *)NvVarStoreFvHeader, NvVarStoreFvHeader->HeaderLength);

  if (Checksum != 0) {
    DEBUG ((DEBUG_ERROR, "NvVarStore FV checksum was invalid.\n"));
    return FALSE;
  }

  //
  // Verify the header signature, size, format, state
  //
  NvVarStoreHeader = (VARIABLE_STORE_HEADER *)(NvVarStoreBase + NvVarStoreFvHeader->HeaderLength);
  if ((!CompareGuid (&VarStoreHdrGUID, &NvVarStoreHeader->Signature)) ||
      (NvVarStoreHeader->Format != VARIABLE_STORE_FORMATTED) ||
      (NvVarStoreHeader->State != VARIABLE_STORE_HEALTHY) ||
      (NvVarStoreHeader->Size > (NvVarStoreFvHeader->FvLength - NvVarStoreFvHeader->HeaderLength)) ||
      (NvVarStoreHeader->Size < sizeof (VARIABLE_STORE_HEADER))
      )
  {
    DEBUG ((DEBUG_ERROR, "NvVarStore header signature/size/format/state were invalid.\n"));
    return FALSE;
  }

  //
  // Verify the header startId, state
  // Verify data to the end
  //
  VariableBase = (UINTN)NvVarStoreBase + NvVarStoreFvHeader->HeaderLength + sizeof (VARIABLE_STORE_HEADER);
  while (VariableOffset  < (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) {
    VariableHeader = (AUTHENTICATED_VARIABLE_HEADER *)(VariableBase + VariableOffset);
    if (VariableHeader->StartId != VARIABLE_DATA) {
      if (!CheckPaddingData ((UINT8 *)VariableHeader, NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - VariableOffset)) {
        DEBUG ((DEBUG_ERROR, "NvVarStore variable header StartId was invalid.\n"));
        return FALSE;
      }

      VariableOffset = NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
    } else {
      if (!((VariableHeader->State == VAR_IN_DELETED_TRANSITION) ||
            (VariableHeader->State == VAR_DELETED) ||
            (VariableHeader->State == VAR_HEADER_VALID_ONLY) ||
            (VariableHeader->State == VAR_ADDED)))
      {
        DEBUG ((DEBUG_ERROR, "NvVarStore Variable header State was invalid.\n"));
        return FALSE;
      }

      VariableOffset += sizeof (AUTHENTICATED_VARIABLE_HEADER) + VariableHeader->NameSize + VariableHeader->DataSize;
      // Verify VariableOffset should be less than or equal NvVarStoreHeader->Size - sizeof(VARIABLE_STORE_HEADER)
      if (VariableOffset > (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) {
        DEBUG ((DEBUG_ERROR, "NvVarStore Variable header VariableOffset was invalid.\n"));
        return FALSE;
      }

      VariableOffsetBeforeAlign = VariableOffset;
      // 4 byte align
      VariableOffset = (VariableOffset  + 3) & (UINTN)(~3);

      if (!CheckPaddingData ((UINT8 *)(VariableBase + VariableOffsetBeforeAlign), VariableOffset - VariableOffsetBeforeAlign)) {
        DEBUG ((DEBUG_ERROR, "NvVarStore Variable header PaddingData was invalid.\n"));
        return FALSE;
      }
    }
  }

  return TRUE;
}

/**
 Allocate storage for NV variables early on so it will be
 at a consistent address.  Since VM memory is preserved
 across reboots, this allows the NV variable storage to survive
 a VM reboot.

 *
 * @retval VOID* The pointer to the storage for NV Variables
 */
VOID *
EFIAPI
PlatformReserveEmuVariableNvStore (
  VOID
  )
{
  VOID    *VariableStore;
  UINT32  VarStoreSize;

  VarStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize);
  //
  // Allocate storage for NV variables early on so it will be
  // at a consistent address.  Since VM memory is preserved
  // across reboots, this allows the NV variable storage to survive
  // a VM reboot.
  //
  VariableStore =
    AllocateRuntimePages (
      EFI_SIZE_TO_PAGES (VarStoreSize)
      );
  DEBUG ((
    DEBUG_INFO,
    "Reserved variable store memory: 0x%p; size: %dkb\n",
    VariableStore,
    VarStoreSize / 1024
    ));

  return VariableStore;
}

/**
 When OVMF is lauched with -bios parameter, UEFI variables will be
 partially emulated, and non-volatile variables may lose their contents
 after a reboot. This makes the secure boot feature not working.

 This function is used to initialize the EmuVariableNvStore
 with the conent in PcdOvmfFlashNvStorageVariableBase.

 @param[in] EmuVariableNvStore      - A pointer to EmuVariableNvStore

 @retval  EFI_SUCCESS   - Successfully init the EmuVariableNvStore
 @retval  Others        - As the error code indicates
 */
EFI_STATUS
EFIAPI
PlatformInitEmuVariableNvStore (
  IN VOID  *EmuVariableNvStore
  )
{
  UINT8   *Base;
  UINT32  Size;
  UINT32  EmuVariableNvStoreSize;

  EmuVariableNvStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize);
  if ((EmuVariableNvStore == NULL) || (EmuVariableNvStoreSize == 0)) {
    DEBUG ((DEBUG_ERROR, "Invalid EmuVariableNvStore parameter.\n"));
    return EFI_INVALID_PARAMETER;
  }

  Base = (UINT8 *)(UINTN)PcdGet32 (PcdOvmfFlashNvStorageVariableBase);
  Size = (UINT32)PcdGet32 (PcdFlashNvStorageVariableSize);
  ASSERT (Size < EmuVariableNvStoreSize);

  if (!PlatformValidateNvVarStore (Base, PcdGet32 (PcdCfvRawDataSize))) {
    ASSERT (FALSE);
    return EFI_INVALID_PARAMETER;
  }

  DEBUG ((DEBUG_INFO, "Init EmuVariableNvStore with the content in FlashNvStorage\n"));

  CopyMem (EmuVariableNvStore, Base, Size);

  return EFI_SUCCESS;
}