summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/Library/QemuBootOrderLib/QemuBootOrderLib.c
blob: cea4b7a099e317ee4e0db1febdd5910b0dd05c36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
/** @file
  Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.

  Copyright (C) 2012 - 2014, Red Hat, Inc.
  Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent
**/

#include <Library/QemuFwCfgLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootManagerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/BaseLib.h>
#include <Library/PrintLib.h>
#include <Library/DevicePathLib.h>
#include <Library/QemuBootOrderLib.h>
#include <Library/BaseMemoryLib.h>
#include <Guid/GlobalVariable.h>
#include <Guid/VirtioMmioTransport.h>

#include "ExtraRootBusMap.h"

/**
  OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
**/
#define TRANSLATION_OUTPUT_SIZE  0x100

/**
  Output buffer size for OpenFirmware to UEFI device path fragment translation,
  in CHAR16's, for a sequence of PCI bridges.
**/
#define BRIDGE_TRANSLATION_OUTPUT_SIZE  0x40

/**
  Numbers of nodes in OpenFirmware device paths that are required and examined.
**/
#define REQUIRED_PCI_OFW_NODES   2
#define REQUIRED_MMIO_OFW_NODES  1
#define EXAMINED_OFW_NODES       6

/**
  Simple character classification routines, corresponding to POSIX class names
  and ASCII encoding.
**/
STATIC
BOOLEAN
IsAlnum (
  IN  CHAR8  Chr
  )
{
  return (('0' <= Chr && Chr <= '9') ||
          ('A' <= Chr && Chr <= 'Z') ||
          ('a' <= Chr && Chr <= 'z')
          );
}

STATIC
BOOLEAN
IsDriverNamePunct (
  IN  CHAR8  Chr
  )
{
  return (Chr == ',' ||  Chr == '.' || Chr == '_' ||
          Chr == '+' || Chr == '-'
          );
}

STATIC
BOOLEAN
IsPrintNotDelim (
  IN  CHAR8  Chr
  )
{
  return (32 <= Chr && Chr <= 126 &&
          Chr != '/' && Chr != '@' && Chr != ':');
}

/**
  Utility types and functions.
**/
typedef struct {
  CONST CHAR8    *Ptr; // not necessarily NUL-terminated
  UINTN          Len;  // number of non-NUL characters
} SUBSTRING;

/**

  Check if Substring and String have identical contents.

  The function relies on the restriction that a SUBSTRING cannot have embedded
  NULs either.

  @param[in] Substring  The SUBSTRING input to the comparison.

  @param[in] String     The ASCII string input to the comparison.


  @return  Whether the inputs have identical contents.

**/
STATIC
BOOLEAN
SubstringEq (
  IN  SUBSTRING    Substring,
  IN  CONST CHAR8  *String
  )
{
  UINTN        Pos;
  CONST CHAR8  *Chr;

  Pos = 0;
  Chr = String;

  while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
    ++Pos;
    ++Chr;
  }

  return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
}

/**

  Parse a comma-separated list of hexadecimal integers into the elements of an
  UINT64 array.

  Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
  or an empty string are not allowed; they are rejected.

  The function relies on ASCII encoding.

  @param[in]     UnitAddress  The substring to parse.

  @param[out]    Result       The array, allocated by the caller, to receive
                              the parsed values. This parameter may be NULL if
                              NumResults is zero on input.

  @param[in out] NumResults   On input, the number of elements allocated for
                              Result. On output, the number of elements it has
                              taken (or would have taken) to parse the string
                              fully.


  @retval RETURN_SUCCESS            UnitAddress has been fully parsed.
                                    NumResults is set to the number of parsed
                                    values; the corresponding elements have
                                    been set in Result. The rest of Result's
                                    elements are unchanged.

  @retval RETURN_BUFFER_TOO_SMALL   UnitAddress has been fully parsed.
                                    NumResults is set to the number of parsed
                                    values, but elements have been stored only
                                    up to the input value of NumResults, which
                                    is less than what has been parsed.

  @retval RETURN_INVALID_PARAMETER  Parse error. The contents of Results is
                                    indeterminate. NumResults has not been
                                    changed.

**/
STATIC
RETURN_STATUS
ParseUnitAddressHexList (
  IN      SUBSTRING  UnitAddress,
  OUT     UINT64     *Result,
  IN OUT  UINTN      *NumResults
  )
{
  UINTN          Entry;    // number of entry currently being parsed
  UINT64         EntryVal; // value being constructed for current entry
  CHAR8          PrevChr;  // UnitAddress character previously checked
  UINTN          Pos;      // current position within UnitAddress
  RETURN_STATUS  Status;

  Entry    = 0;
  EntryVal = 0;
  PrevChr  = ',';

  for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
    CHAR8  Chr;
    INT8   Val;

    Chr = UnitAddress.Ptr[Pos];
    Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
          ('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
          ('0' <= Chr && Chr <= '9') ? (Chr - '0') :
          -1;

    if (Val >= 0) {
      if (EntryVal > 0xFFFFFFFFFFFFFFFull) {
        return RETURN_INVALID_PARAMETER;
      }

      EntryVal = LShiftU64 (EntryVal, 4) | Val;
    } else if (Chr == ',') {
      if (PrevChr == ',') {
        return RETURN_INVALID_PARAMETER;
      }

      if (Entry < *NumResults) {
        Result[Entry] = EntryVal;
      }

      ++Entry;
      EntryVal = 0;
    } else {
      return RETURN_INVALID_PARAMETER;
    }

    PrevChr = Chr;
  }

  if (PrevChr == ',') {
    return RETURN_INVALID_PARAMETER;
  }

  if (Entry < *NumResults) {
    Result[Entry] = EntryVal;
    Status        = RETURN_SUCCESS;
  } else {
    Status = RETURN_BUFFER_TOO_SMALL;
  }

  ++Entry;

  *NumResults = Entry;
  return Status;
}

/**
  A simple array of Boot Option ID's.
**/
typedef struct {
  UINT16    *Data;
  UINTN     Allocated;
  UINTN     Produced;
} BOOT_ORDER;

/**
  Array element tracking an enumerated boot option that has the
  LOAD_OPTION_ACTIVE attribute.
**/
typedef struct {
  CONST EFI_BOOT_MANAGER_LOAD_OPTION    *BootOption; // reference only, no
                                                     //   ownership
  BOOLEAN                               Appended;    // has been added to a
                                                     //   BOOT_ORDER?
} ACTIVE_OPTION;

/**

  Append an active boot option to BootOrder, reallocating the latter if needed.

  @param[in out] BootOrder     The structure pointing to the array and holding
                               allocation and usage counters.

  @param[in]     ActiveOption  The active boot option whose ID should be
                               appended to the array.


  @retval RETURN_SUCCESS           ID of ActiveOption appended.

  @retval RETURN_OUT_OF_RESOURCES  Memory reallocation failed.

**/
STATIC
RETURN_STATUS
BootOrderAppend (
  IN OUT  BOOT_ORDER     *BootOrder,
  IN OUT  ACTIVE_OPTION  *ActiveOption
  )
{
  if (BootOrder->Produced == BootOrder->Allocated) {
    UINTN   AllocatedNew;
    UINT16  *DataNew;

    ASSERT (BootOrder->Allocated > 0);
    AllocatedNew = BootOrder->Allocated * 2;
    DataNew      = ReallocatePool (
                     BootOrder->Allocated * sizeof (*BootOrder->Data),
                     AllocatedNew         * sizeof (*DataNew),
                     BootOrder->Data
                     );
    if (DataNew == NULL) {
      return RETURN_OUT_OF_RESOURCES;
    }

    BootOrder->Allocated = AllocatedNew;
    BootOrder->Data      = DataNew;
  }

  BootOrder->Data[BootOrder->Produced++] =
    (UINT16)ActiveOption->BootOption->OptionNumber;
  ActiveOption->Appended = TRUE;
  return RETURN_SUCCESS;
}

/**

  Create an array of ACTIVE_OPTION elements for a boot option array.

  @param[in]  BootOptions      A boot option array, created with
                               EfiBootManagerRefreshAllBootOption () and
                               EfiBootManagerGetLoadOptions ().

  @param[in]  BootOptionCount  The number of elements in BootOptions.

  @param[out] ActiveOption     Pointer to the first element in the new array.
                               The caller is responsible for freeing the array
                               with FreePool() after use.

  @param[out] Count            Number of elements in the new array.


  @retval RETURN_SUCCESS           The ActiveOption array has been created.

  @retval RETURN_NOT_FOUND         No active entry has been found in
                                   BootOptions.

  @retval RETURN_OUT_OF_RESOURCES  Memory allocation failed.

**/
STATIC
RETURN_STATUS
CollectActiveOptions (
  IN   CONST EFI_BOOT_MANAGER_LOAD_OPTION  *BootOptions,
  IN   UINTN                               BootOptionCount,
  OUT  ACTIVE_OPTION                       **ActiveOption,
  OUT  UINTN                               *Count
  )
{
  UINTN  Index;
  UINTN  ScanMode;

  *ActiveOption = NULL;

  //
  // Scan the list twice:
  // - count active entries,
  // - store links to active entries.
  //
  for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
    *Count = 0;
    for (Index = 0; Index < BootOptionCount; Index++) {
      if ((BootOptions[Index].Attributes & LOAD_OPTION_ACTIVE) != 0) {
        if (ScanMode == 1) {
          (*ActiveOption)[*Count].BootOption = &BootOptions[Index];
          (*ActiveOption)[*Count].Appended   = FALSE;
        }

        ++*Count;
      }
    }

    if (ScanMode == 0) {
      if (*Count == 0) {
        return RETURN_NOT_FOUND;
      }

      *ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
      if (*ActiveOption == NULL) {
        return RETURN_OUT_OF_RESOURCES;
      }
    }
  }

  return RETURN_SUCCESS;
}

/**
  OpenFirmware device path node
**/
typedef struct {
  SUBSTRING    DriverName;
  SUBSTRING    UnitAddress;
  SUBSTRING    DeviceArguments;
} OFW_NODE;

/**

  Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
  structure, and advance in the input string.

  The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
  (a leading slash is expected and not returned):

    /driver-name@unit-address[:device-arguments][<LF>]

  A single trailing <LF> character is consumed but not returned. A trailing
  <LF> or NUL character terminates the device path.

  The function relies on ASCII encoding.

  @param[in out] Ptr      Address of the pointer pointing to the start of the
                          node string. After successful parsing *Ptr is set to
                          the byte immediately following the consumed
                          characters. On error it points to the byte that
                          caused the error. The input string is never modified.

  @param[out]    OfwNode  The members of this structure point into the input
                          string, designating components of the node.
                          Separators are never included. If "device-arguments"
                          is missing, then DeviceArguments.Ptr is set to NULL.
                          All components that are present have nonzero length.

                          If the call doesn't succeed, the contents of this
                          structure is indeterminate.

  @param[out]    IsFinal  In case of successful parsing, this parameter signals
                          whether the node just parsed is the final node in the
                          device path. The call after a final node will attempt
                          to start parsing the next path. If the call doesn't
                          succeed, then this parameter is not changed.


  @retval RETURN_SUCCESS            Parsing successful.

  @retval RETURN_NOT_FOUND          Parsing terminated. *Ptr was (and is)
                                    pointing to an empty string.

  @retval RETURN_INVALID_PARAMETER  Parse error.

**/
STATIC
RETURN_STATUS
ParseOfwNode (
  IN OUT  CONST CHAR8  **Ptr,
  OUT     OFW_NODE     *OfwNode,
  OUT     BOOLEAN      *IsFinal
  )
{
  BOOLEAN  AcceptSlash = FALSE;

  //
  // A leading slash is expected. End of string is tolerated.
  //
  switch (**Ptr) {
    case '\0':
      return RETURN_NOT_FOUND;

    case '/':
      ++*Ptr;
      break;

    default:
      return RETURN_INVALID_PARAMETER;
  }

  //
  // driver-name
  //
  OfwNode->DriverName.Ptr = *Ptr;
  OfwNode->DriverName.Len = 0;
  while (OfwNode->DriverName.Len < 32 &&
         (IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
         )
  {
    ++*Ptr;
    ++OfwNode->DriverName.Len;
  }

  if ((OfwNode->DriverName.Len == 0) || (OfwNode->DriverName.Len == 32)) {
    return RETURN_INVALID_PARAMETER;
  }

  if (SubstringEq (OfwNode->DriverName, "rom")) {
    //
    // bug compatibility hack
    //
    // qemu passes fw_cfg filenames as rom unit address.
    // The filenames have slashes:
    //      /rom@genroms/linuxboot_dma.bin
    //
    // Alow slashes in the unit address to avoid the parser trip up,
    // so we can successfully parse the following lines (the rom
    // entries themself are ignored).
    //
    AcceptSlash = TRUE;
  }

  //
  // unit-address
  //
  if (**Ptr != '@') {
    return RETURN_INVALID_PARAMETER;
  }

  ++*Ptr;

  OfwNode->UnitAddress.Ptr = *Ptr;
  OfwNode->UnitAddress.Len = 0;
  while (IsPrintNotDelim (**Ptr) || (AcceptSlash && **Ptr == '/')) {
    ++*Ptr;
    ++OfwNode->UnitAddress.Len;
  }

  if (OfwNode->UnitAddress.Len == 0) {
    return RETURN_INVALID_PARAMETER;
  }

  //
  // device-arguments, may be omitted
  //
  OfwNode->DeviceArguments.Len = 0;
  if (**Ptr == ':') {
    ++*Ptr;
    OfwNode->DeviceArguments.Ptr = *Ptr;

    while (IsPrintNotDelim (**Ptr)) {
      ++*Ptr;
      ++OfwNode->DeviceArguments.Len;
    }

    if (OfwNode->DeviceArguments.Len == 0) {
      return RETURN_INVALID_PARAMETER;
    }
  } else {
    OfwNode->DeviceArguments.Ptr = NULL;
  }

  switch (**Ptr) {
    case '\n':
      ++*Ptr;
    //
    // fall through
    //

    case '\0':
      *IsFinal = TRUE;
      break;

    case '/':
      *IsFinal = FALSE;
      break;

    default:
      return RETURN_INVALID_PARAMETER;
  }

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
    __FUNCTION__,
    OfwNode->DriverName.Len,
    OfwNode->DriverName.Ptr,
    OfwNode->UnitAddress.Len,
    OfwNode->UnitAddress.Ptr,
    OfwNode->DeviceArguments.Len,
    OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
    ));
  return RETURN_SUCCESS;
}

/**

  Translate a PCI-like array of OpenFirmware device nodes to a UEFI device path
  fragment.

  @param[in]     OfwNode         Array of OpenFirmware device nodes to
                                 translate, constituting the beginning of an
                                 OpenFirmware device path.

  @param[in]     NumNodes        Number of elements in OfwNode.

  @param[in]     ExtraPciRoots   An EXTRA_ROOT_BUS_MAP object created with
                                 CreateExtraRootBusMap(), to be used for
                                 translating positions of extra root buses to
                                 bus numbers.

  @param[out]    Translated      Destination array receiving the UEFI path
                                 fragment, allocated by the caller. If the
                                 return value differs from RETURN_SUCCESS, its
                                 contents is indeterminate.

  @param[in out] TranslatedSize  On input, the number of CHAR16's in
                                 Translated. On RETURN_SUCCESS this parameter
                                 is assigned the number of non-NUL CHAR16's
                                 written to Translated. In case of other return
                                 values, TranslatedSize is indeterminate.


  @retval RETURN_SUCCESS           Translation successful.

  @retval RETURN_BUFFER_TOO_SMALL  The translation does not fit into the number
                                   of bytes provided.

  @retval RETURN_UNSUPPORTED       The array of OpenFirmware device nodes can't
                                   be translated in the current implementation.

  @retval RETURN_PROTOCOL_ERROR    The initial OpenFirmware node refers to an
                                   extra PCI root bus (by serial number) that
                                   is invalid according to ExtraPciRoots.

**/
STATIC
RETURN_STATUS
TranslatePciOfwNodes (
  IN      CONST OFW_NODE            *OfwNode,
  IN      UINTN                     NumNodes,
  IN      CONST EXTRA_ROOT_BUS_MAP  *ExtraPciRoots,
  OUT     CHAR16                    *Translated,
  IN OUT  UINTN                     *TranslatedSize
  )
{
  UINT32  PciRoot;
  CHAR8   *Comma;
  UINTN   FirstNonBridge;
  CHAR16  Bridges[BRIDGE_TRANSLATION_OUTPUT_SIZE];
  UINTN   BridgesLen;
  UINT64  PciDevFun[2];
  UINTN   NumEntries;
  UINTN   Written;

  //
  // Resolve the PCI root bus number.
  //
  // The initial OFW node for the main root bus (ie. bus number 0) is:
  //
  //   /pci@i0cf8
  //
  // For extra root buses, the initial OFW node is
  //
  //   /pci@i0cf8,4
  //              ^
  //              root bus serial number (not PCI bus number)
  //
  if ((NumNodes < REQUIRED_PCI_OFW_NODES) ||
      !SubstringEq (OfwNode[0].DriverName, "pci")
      )
  {
    return RETURN_UNSUPPORTED;
  }

  PciRoot = 0;
  Comma   = ScanMem8 (
              OfwNode[0].UnitAddress.Ptr,
              OfwNode[0].UnitAddress.Len,
              ','
              );
  if (Comma != NULL) {
    SUBSTRING  PciRootSerialSubString;
    UINT64     PciRootSerial;

    //
    // Parse the root bus serial number from the unit address after the comma.
    //
    PciRootSerialSubString.Ptr = Comma + 1;
    PciRootSerialSubString.Len = OfwNode[0].UnitAddress.Len -
                                 (PciRootSerialSubString.Ptr -
                                  OfwNode[0].UnitAddress.Ptr);
    NumEntries = 1;
    if (RETURN_ERROR (
          ParseUnitAddressHexList (
            PciRootSerialSubString,
            &PciRootSerial,
            &NumEntries
            )
          ))
    {
      return RETURN_UNSUPPORTED;
    }

    //
    // Map the extra root bus's serial number to its actual bus number.
    //
    if (EFI_ERROR (
          MapRootBusPosToBusNr (
            ExtraPciRoots,
            PciRootSerial,
            &PciRoot
            )
          ))
    {
      return RETURN_PROTOCOL_ERROR;
    }
  }

  //
  // Translate a sequence of PCI bridges. For each bridge, the OFW node is:
  //
  //   pci-bridge@1e[,0]
  //              ^   ^
  //              PCI slot & function on the parent, holding the bridge
  //
  // and the UEFI device path node is:
  //
  //   Pci(0x1E,0x0)
  //
  FirstNonBridge = 1;
  Bridges[0]     = L'\0';
  BridgesLen     = 0;
  do {
    UINT64  BridgeDevFun[2];
    UINTN   BridgesFreeBytes;

    if (!SubstringEq (OfwNode[FirstNonBridge].DriverName, "pci-bridge")) {
      break;
    }

    BridgeDevFun[1] = 0;
    NumEntries      = sizeof BridgeDevFun / sizeof BridgeDevFun[0];
    if (ParseUnitAddressHexList (
          OfwNode[FirstNonBridge].UnitAddress,
          BridgeDevFun,
          &NumEntries
          ) != RETURN_SUCCESS)
    {
      return RETURN_UNSUPPORTED;
    }

    BridgesFreeBytes = sizeof Bridges - BridgesLen * sizeof Bridges[0];
    Written          = UnicodeSPrintAsciiFormat (
                         Bridges + BridgesLen,
                         BridgesFreeBytes,
                         "/Pci(0x%Lx,0x%Lx)",
                         BridgeDevFun[0],
                         BridgeDevFun[1]
                         );
    BridgesLen += Written;

    //
    // There's no way to differentiate between "completely used up without
    // truncation" and "truncated", so treat the former as the latter.
    //
    if (BridgesLen + 1 == BRIDGE_TRANSLATION_OUTPUT_SIZE) {
      return RETURN_UNSUPPORTED;
    }

    ++FirstNonBridge;
  } while (FirstNonBridge < NumNodes);

  if (FirstNonBridge == NumNodes) {
    return RETURN_UNSUPPORTED;
  }

  //
  // Parse the OFW nodes starting with the first non-bridge node.
  //
  PciDevFun[1] = 0;
  NumEntries   = ARRAY_SIZE (PciDevFun);
  if (ParseUnitAddressHexList (
        OfwNode[FirstNonBridge].UnitAddress,
        PciDevFun,
        &NumEntries
        ) != RETURN_SUCCESS
      )
  {
    return RETURN_UNSUPPORTED;
  }

  if ((NumNodes >= FirstNonBridge + 3) &&
      SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "ide") &&
      SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
      SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
      )
  {
    //
    // OpenFirmware device path (IDE disk, IDE CD-ROM):
    //
    //   /pci@i0cf8/ide@1,1/drive@0/disk@0
    //        ^         ^ ^       ^      ^
    //        |         | |       |      master or slave
    //        |         | |       primary or secondary
    //        |         PCI slot & function holding IDE controller
    //        PCI root at system bus port, PIO
    //
    // UEFI device path:
    //
    //   PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
    //                                                ^
    //                                                fixed LUN
    //
    UINT64  Secondary;
    UINT64  Slave;

    NumEntries = 1;
    if ((ParseUnitAddressHexList (
           OfwNode[FirstNonBridge + 1].UnitAddress,
           &Secondary,
           &NumEntries
           ) != RETURN_SUCCESS) ||
        (Secondary > 1) ||
        (ParseUnitAddressHexList (
           OfwNode[FirstNonBridge + 2].UnitAddress,
           &Slave,
           &NumEntries // reuse after previous single-element call
           ) != RETURN_SUCCESS) ||
        (Slave > 1)
        )
    {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Ata(%a,%a,0x0)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                Secondary ? "Secondary" : "Primary",
                Slave ? "Slave" : "Master"
                );
  } else if ((NumNodes >= FirstNonBridge + 3) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,2922") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
             SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
             )
  {
    //
    // OpenFirmware device path (Q35 SATA disk and CD-ROM):
    //
    //   /pci@i0cf8/pci8086,2922@1f,2/drive@1/disk@0
    //        ^                  ^  ^       ^      ^
    //        |                  |  |       |      device number (fixed 0)
    //        |                  |  |       channel (port) number
    //        |                  PCI slot & function holding SATA HBA
    //        PCI root at system bus port, PIO
    //
    // UEFI device path:
    //
    //   PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x1,0xFFFF,0x0)
    //                                   ^   ^      ^
    //                                   |   |      LUN (always 0 on Q35)
    //                                   |   port multiplier port number,
    //                                   |   always 0xFFFF on Q35
    //                                   channel (port) number
    //
    UINT64  Channel;

    NumEntries = 1;
    if (RETURN_ERROR (
          ParseUnitAddressHexList (
            OfwNode[FirstNonBridge + 1].UnitAddress,
            &Channel,
            &NumEntries
            )
          ))
    {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Sata(0x%Lx,0xFFFF,0x0)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                Channel
                );
  } else if ((NumNodes >= FirstNonBridge + 3) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "isa") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "fdc") &&
             SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "floppy")
             )
  {
    //
    // OpenFirmware device path (floppy disk):
    //
    //   /pci@i0cf8/isa@1/fdc@03f0/floppy@0
    //        ^         ^     ^           ^
    //        |         |     |           A: or B:
    //        |         |     ISA controller io-port (hex)
    //        |         PCI slot holding ISA controller
    //        PCI root at system bus port, PIO
    //
    // UEFI device path:
    //
    //   PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
    //                                    ^
    //                                    ACPI UID
    //
    UINT64  AcpiUid;

    NumEntries = 1;
    if ((ParseUnitAddressHexList (
           OfwNode[FirstNonBridge + 2].UnitAddress,
           &AcpiUid,
           &NumEntries
           ) != RETURN_SUCCESS) ||
        (AcpiUid > 1)
        )
    {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Floppy(0x%Lx)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                AcpiUid
                );
  } else if ((NumNodes >= FirstNonBridge + 2) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "disk")
             )
  {
    //
    // OpenFirmware device path (virtio-blk disk):
    //
    //   /pci@i0cf8/scsi@6[,3]/disk@0,0
    //        ^          ^  ^       ^ ^
    //        |          |  |       fixed
    //        |          |  PCI function corresponding to disk (optional)
    //        |          PCI slot holding disk
    //        PCI root at system bus port, PIO
    //
    // UEFI device path prefix:
    //
    //   PciRoot(0x0)/Pci(0x6,0x0) -- if PCI function is 0 or absent
    //   PciRoot(0x0)/Pci(0x6,0x3) -- if PCI function is present and nonzero
    //
    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1]
                );
  } else if ((NumNodes >= FirstNonBridge + 3) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "channel") &&
             SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
             )
  {
    //
    // OpenFirmware device path (virtio-scsi disk):
    //
    //   /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
    //        ^          ^             ^      ^ ^
    //        |          |             |      | LUN
    //        |          |             |      target
    //        |          |             channel (unused, fixed 0)
    //        |          PCI slot[, function] holding SCSI controller
    //        PCI root at system bus port, PIO
    //
    // UEFI device path prefix:
    //
    //   PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
    //                                        -- if PCI function is 0 or absent
    //   PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
    //                                -- if PCI function is present and nonzero
    //
    UINT64  TargetLun[2];

    TargetLun[1] = 0;
    NumEntries   = ARRAY_SIZE (TargetLun);
    if (ParseUnitAddressHexList (
          OfwNode[FirstNonBridge + 2].UnitAddress,
          TargetLun,
          &NumEntries
          ) != RETURN_SUCCESS
        )
    {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Scsi(0x%Lx,0x%Lx)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                TargetLun[0],
                TargetLun[1]
                );
  } else if ((NumNodes >= FirstNonBridge + 2) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,5845") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "namespace")
             )
  {
    //
    // OpenFirmware device path (NVMe device):
    //
    //   /pci@i0cf8/pci8086,5845@6[,1]/namespace@1,0
    //        ^                  ^  ^            ^ ^
    //        |                  |  |            | Extended Unique Identifier
    //        |                  |  |            | (EUI-64), big endian interp.
    //        |                  |  |            namespace ID
    //        |                  PCI slot & function holding NVMe controller
    //        PCI root at system bus port, PIO
    //
    // UEFI device path:
    //
    //   PciRoot(0x0)/Pci(0x6,0x1)/NVMe(0x1,00-00-00-00-00-00-00-00)
    //                                  ^   ^
    //                                  |   octets of the EUI-64
    //                                  |   in address order
    //                                  namespace ID
    //
    UINT64  Namespace[2];
    UINTN   RequiredEntries;
    UINT8   *Eui64;

    RequiredEntries = ARRAY_SIZE (Namespace);
    NumEntries      = RequiredEntries;
    if ((ParseUnitAddressHexList (
           OfwNode[FirstNonBridge + 1].UnitAddress,
           Namespace,
           &NumEntries
           ) != RETURN_SUCCESS) ||
        (NumEntries != RequiredEntries) ||
        (Namespace[0] == 0) ||
        (Namespace[0] >= MAX_UINT32)
        )
    {
      return RETURN_UNSUPPORTED;
    }

    Eui64   = (UINT8 *)&Namespace[1];
    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/"
                "NVMe(0x%Lx,%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                Namespace[0],
                Eui64[7],
                Eui64[6],
                Eui64[5],
                Eui64[4],
                Eui64[3],
                Eui64[2],
                Eui64[1],
                Eui64[0]
                );
  } else if ((NumNodes >= FirstNonBridge + 2) &&
             SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "usb") &&
             SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "storage"))
  {
    //
    // OpenFirmware device path (usb-storage device in XHCI port):
    //
    //   /pci@i0cf8/usb@3[,1]/storage@2/channel@0/disk@0,0
    //        ^         ^  ^          ^         ^      ^ ^
    //        |         |  |          |         fixed  fixed
    //        |         |  |          XHCI port number, 1-based
    //        |         |  PCI function corresponding to XHCI (optional)
    //        |         PCI slot holding XHCI
    //        PCI root at system bus port, PIO
    //
    // UEFI device path prefix:
    //
    //   PciRoot(0x0)/Pci(0x3,0x1)/USB(0x1,0x0)
    //                        ^        ^
    //                        |        XHCI port number in 0-based notation
    //                        0x0 if PCI function is 0, or absent from OFW
    //
    RETURN_STATUS  ParseStatus;
    UINT64         OneBasedXhciPort;

    NumEntries  = 1;
    ParseStatus = ParseUnitAddressHexList (
                    OfwNode[FirstNonBridge + 1].UnitAddress,
                    &OneBasedXhciPort,
                    &NumEntries
                    );
    if (RETURN_ERROR (ParseStatus) || (OneBasedXhciPort == 0)) {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/USB(0x%Lx,0x0)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1],
                OneBasedXhciPort - 1
                );
  } else {
    //
    // Generic OpenFirmware device path for PCI devices:
    //
    //   /pci@i0cf8/ethernet@3[,2]
    //        ^              ^
    //        |              PCI slot[, function] holding Ethernet card
    //        PCI root at system bus port, PIO
    //
    // UEFI device path prefix (dependent on presence of nonzero PCI function):
    //
    //   PciRoot(0x0)/Pci(0x3,0x0)
    //   PciRoot(0x0)/Pci(0x3,0x2)
    //
    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
                PciRoot,
                Bridges,
                PciDevFun[0],
                PciDevFun[1]
                );
  }

  //
  // There's no way to differentiate between "completely used up without
  // truncation" and "truncated", so treat the former as the latter, and return
  // success only for "some room left unused".
  //
  if (Written + 1 < *TranslatedSize) {
    *TranslatedSize = Written;
    return RETURN_SUCCESS;
  }

  return RETURN_BUFFER_TOO_SMALL;
}

//
// A type providing easy raw access to the base address of a virtio-mmio
// transport.
//
typedef union {
  UINT64    Uint64;
  UINT8     Raw[8];
} VIRTIO_MMIO_BASE_ADDRESS;

/**

  Translate an MMIO-like array of OpenFirmware device nodes to a UEFI device
  path fragment.

  @param[in]     OfwNode         Array of OpenFirmware device nodes to
                                 translate, constituting the beginning of an
                                 OpenFirmware device path.

  @param[in]     NumNodes        Number of elements in OfwNode.

  @param[out]    Translated      Destination array receiving the UEFI path
                                 fragment, allocated by the caller. If the
                                 return value differs from RETURN_SUCCESS, its
                                 contents is indeterminate.

  @param[in out] TranslatedSize  On input, the number of CHAR16's in
                                 Translated. On RETURN_SUCCESS this parameter
                                 is assigned the number of non-NUL CHAR16's
                                 written to Translated. In case of other return
                                 values, TranslatedSize is indeterminate.


  @retval RETURN_SUCCESS           Translation successful.

  @retval RETURN_BUFFER_TOO_SMALL  The translation does not fit into the number
                                   of bytes provided.

  @retval RETURN_UNSUPPORTED       The array of OpenFirmware device nodes can't
                                   be translated in the current implementation.

**/
STATIC
RETURN_STATUS
TranslateMmioOfwNodes (
  IN      CONST OFW_NODE  *OfwNode,
  IN      UINTN           NumNodes,
  OUT     CHAR16          *Translated,
  IN OUT  UINTN           *TranslatedSize
  )
{
  VIRTIO_MMIO_BASE_ADDRESS  VirtioMmioBase;
  CHAR16                    VenHwString[60 + 1];
  UINTN                     NumEntries;
  UINTN                     Written;

  //
  // Get the base address of the virtio-mmio transport.
  //
  if ((NumNodes < REQUIRED_MMIO_OFW_NODES) ||
      !SubstringEq (OfwNode[0].DriverName, "virtio-mmio")
      )
  {
    return RETURN_UNSUPPORTED;
  }

  NumEntries = 1;
  if (ParseUnitAddressHexList (
        OfwNode[0].UnitAddress,
        &VirtioMmioBase.Uint64,
        &NumEntries
        ) != RETURN_SUCCESS
      )
  {
    return RETURN_UNSUPPORTED;
  }

  UnicodeSPrintAsciiFormat (
    VenHwString,
    sizeof VenHwString,
    "VenHw(%g,%02X%02X%02X%02X%02X%02X%02X%02X)",
    &gVirtioMmioTransportGuid,
    VirtioMmioBase.Raw[0],
    VirtioMmioBase.Raw[1],
    VirtioMmioBase.Raw[2],
    VirtioMmioBase.Raw[3],
    VirtioMmioBase.Raw[4],
    VirtioMmioBase.Raw[5],
    VirtioMmioBase.Raw[6],
    VirtioMmioBase.Raw[7]
    );

  if ((NumNodes >= 2) &&
      SubstringEq (OfwNode[1].DriverName, "disk"))
  {
    //
    // OpenFirmware device path (virtio-blk disk):
    //
    //   /virtio-mmio@000000000a003c00/disk@0,0
    //                ^                     ^ ^
    //                |                     fixed
    //                base address of virtio-mmio register block
    //
    // UEFI device path prefix:
    //
    //   <VenHwString>
    //
    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "%s",
                VenHwString
                );
  } else if ((NumNodes >= 3) &&
             SubstringEq (OfwNode[1].DriverName, "channel") &&
             SubstringEq (OfwNode[2].DriverName, "disk"))
  {
    //
    // OpenFirmware device path (virtio-scsi disk):
    //
    //   /virtio-mmio@000000000a003a00/channel@0/disk@2,3
    //                ^                        ^      ^ ^
    //                |                        |      | LUN
    //                |                        |      target
    //                |                        channel (unused, fixed 0)
    //                base address of virtio-mmio register block
    //
    // UEFI device path prefix:
    //
    //   <VenHwString>/Scsi(0x2,0x3)
    //
    UINT64  TargetLun[2];

    TargetLun[1] = 0;
    NumEntries   = ARRAY_SIZE (TargetLun);
    if (ParseUnitAddressHexList (
          OfwNode[2].UnitAddress,
          TargetLun,
          &NumEntries
          ) != RETURN_SUCCESS
        )
    {
      return RETURN_UNSUPPORTED;
    }

    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "%s/Scsi(0x%Lx,0x%Lx)",
                VenHwString,
                TargetLun[0],
                TargetLun[1]
                );
  } else if ((NumNodes >= 2) &&
             SubstringEq (OfwNode[1].DriverName, "ethernet-phy"))
  {
    //
    // OpenFirmware device path (virtio-net NIC):
    //
    //   /virtio-mmio@000000000a003e00/ethernet-phy@0
    //                ^                             ^
    //                |                             fixed
    //                base address of virtio-mmio register block
    //
    // UEFI device path prefix:
    //
    //   <VenHwString>
    //
    Written = UnicodeSPrintAsciiFormat (
                Translated,
                *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
                "%s",
                VenHwString
                );
  } else {
    return RETURN_UNSUPPORTED;
  }

  //
  // There's no way to differentiate between "completely used up without
  // truncation" and "truncated", so treat the former as the latter, and return
  // success only for "some room left unused".
  //
  if (Written + 1 < *TranslatedSize) {
    *TranslatedSize = Written;
    return RETURN_SUCCESS;
  }

  return RETURN_BUFFER_TOO_SMALL;
}

/**

  Translate an array of OpenFirmware device nodes to a UEFI device path
  fragment.

  @param[in]     OfwNode         Array of OpenFirmware device nodes to
                                 translate, constituting the beginning of an
                                 OpenFirmware device path.

  @param[in]     NumNodes        Number of elements in OfwNode.

  @param[in]     ExtraPciRoots   An EXTRA_ROOT_BUS_MAP object created with
                                 CreateExtraRootBusMap(), to be used for
                                 translating positions of extra root buses to
                                 bus numbers.

  @param[out]    Translated      Destination array receiving the UEFI path
                                 fragment, allocated by the caller. If the
                                 return value differs from RETURN_SUCCESS, its
                                 contents is indeterminate.

  @param[in out] TranslatedSize  On input, the number of CHAR16's in
                                 Translated. On RETURN_SUCCESS this parameter
                                 is assigned the number of non-NUL CHAR16's
                                 written to Translated. In case of other return
                                 values, TranslatedSize is indeterminate.


  @retval RETURN_SUCCESS           Translation successful.

  @retval RETURN_BUFFER_TOO_SMALL  The translation does not fit into the number
                                   of bytes provided.

  @retval RETURN_UNSUPPORTED       The array of OpenFirmware device nodes can't
                                   be translated in the current implementation.

  @retval RETURN_PROTOCOL_ERROR    The array of OpenFirmware device nodes has
                                   been (partially) recognized, but it contains
                                   a logic error / doesn't match system state.

**/
STATIC
RETURN_STATUS
TranslateOfwNodes (
  IN      CONST OFW_NODE            *OfwNode,
  IN      UINTN                     NumNodes,
  IN      CONST EXTRA_ROOT_BUS_MAP  *ExtraPciRoots,
  OUT     CHAR16                    *Translated,
  IN OUT  UINTN                     *TranslatedSize
  )
{
  RETURN_STATUS  Status;

  Status = RETURN_UNSUPPORTED;

  if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
    Status = TranslatePciOfwNodes (
               OfwNode,
               NumNodes,
               ExtraPciRoots,
               Translated,
               TranslatedSize
               );
  }

  if ((Status == RETURN_UNSUPPORTED) &&
      FeaturePcdGet (PcdQemuBootOrderMmioTranslation))
  {
    Status = TranslateMmioOfwNodes (
               OfwNode,
               NumNodes,
               Translated,
               TranslatedSize
               );
  }

  return Status;
}

/**

  Translate an OpenFirmware device path fragment to a UEFI device path
  fragment, and advance in the input string.

  @param[in out] Ptr             Address of the pointer pointing to the start
                                 of the path string. After successful
                                 translation (RETURN_SUCCESS) or at least
                                 successful parsing (RETURN_UNSUPPORTED,
                                 RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
                                 byte immediately following the consumed
                                 characters. In other error cases, it points to
                                 the byte that caused the error.

  @param[in]     ExtraPciRoots   An EXTRA_ROOT_BUS_MAP object created with
                                 CreateExtraRootBusMap(), to be used for
                                 translating positions of extra root buses to
                                 bus numbers.

  @param[out]    Translated      Destination array receiving the UEFI path
                                 fragment, allocated by the caller. If the
                                 return value differs from RETURN_SUCCESS, its
                                 contents is indeterminate.

  @param[in out] TranslatedSize  On input, the number of CHAR16's in
                                 Translated. On RETURN_SUCCESS this parameter
                                 is assigned the number of non-NUL CHAR16's
                                 written to Translated. In case of other return
                                 values, TranslatedSize is indeterminate.


  @retval RETURN_SUCCESS            Translation successful.

  @retval RETURN_BUFFER_TOO_SMALL   The OpenFirmware device path was parsed
                                    successfully, but its translation did not
                                    fit into the number of bytes provided.
                                    Further calls to this function are
                                    possible.

  @retval RETURN_UNSUPPORTED        The OpenFirmware device path was parsed
                                    successfully, but it can't be translated in
                                    the current implementation. Further calls
                                    to this function are possible.

  @retval RETURN_PROTOCOL_ERROR     The OpenFirmware device path has been
                                    (partially) recognized, but it contains a
                                    logic error / doesn't match system state.
                                    Further calls to this function are
                                    possible.

  @retval RETURN_NOT_FOUND          Translation terminated. On input, *Ptr was
                                    pointing to the empty string or "HALT". On
                                    output, *Ptr points to the empty string
                                    (ie. "HALT" is consumed transparently when
                                    present).

  @retval RETURN_INVALID_PARAMETER  Parse error. This is a permanent error.

**/
STATIC
RETURN_STATUS
TranslateOfwPath (
  IN OUT  CONST CHAR8               **Ptr,
  IN      CONST EXTRA_ROOT_BUS_MAP  *ExtraPciRoots,
  OUT     CHAR16                    *Translated,
  IN OUT  UINTN                     *TranslatedSize
  )
{
  UINTN          NumNodes;
  RETURN_STATUS  Status;
  OFW_NODE       Node[EXAMINED_OFW_NODES];
  BOOLEAN        IsFinal;
  OFW_NODE       Skip;

  IsFinal  = FALSE;
  NumNodes = 0;
  if (AsciiStrCmp (*Ptr, "HALT") == 0) {
    *Ptr  += 4;
    Status = RETURN_NOT_FOUND;
  } else {
    Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
  }

  if (Status == RETURN_NOT_FOUND) {
    DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
    return RETURN_NOT_FOUND;
  }

  while (Status == RETURN_SUCCESS && !IsFinal) {
    ++NumNodes;
    Status = ParseOfwNode (
               Ptr,
               (NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
               &IsFinal
               );
  }

  switch (Status) {
    case RETURN_SUCCESS:
      ++NumNodes;
      break;

    case RETURN_INVALID_PARAMETER:
      DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
      return RETURN_INVALID_PARAMETER;

    default:
      ASSERT (0);
  }

  Status = TranslateOfwNodes (
             Node,
             NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
             ExtraPciRoots,
             Translated,
             TranslatedSize
             );
  switch (Status) {
    case RETURN_SUCCESS:
      DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
      break;

    case RETURN_BUFFER_TOO_SMALL:
      DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
      break;

    case RETURN_UNSUPPORTED:
      DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
      break;

    case RETURN_PROTOCOL_ERROR:
      DEBUG ((
        DEBUG_VERBOSE,
        "%a: logic error / system state mismatch\n",
        __FUNCTION__
        ));
      break;

    default:
      ASSERT (0);
  }

  return Status;
}

/**
  Connect devices based on the boot order retrieved from QEMU.

  Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
  OpenFirmware device paths therein to UEFI device path fragments. Connect the
  devices identified by the UEFI devpath prefixes as narrowly as possible, then
  connect all their child devices, recursively.

  If this function fails, then platform BDS should fall back to
  EfiBootManagerConnectAll(), or some other method for connecting any expected
  boot devices.

  @retval RETURN_SUCCESS            The "bootorder" fw_cfg file has been
                                    parsed, and the referenced device-subtrees
                                    have been connected.

  @retval RETURN_UNSUPPORTED        QEMU's fw_cfg is not supported.

  @retval RETURN_NOT_FOUND          Empty or nonexistent "bootorder" fw_cfg
                                    file.

  @retval RETURN_INVALID_PARAMETER  Parse error in the "bootorder" fw_cfg file.

  @retval RETURN_OUT_OF_RESOURCES   Memory allocation failed.

  @return                           Error statuses propagated from underlying
                                    functions.
**/
RETURN_STATUS
EFIAPI
ConnectDevicesFromQemu (
  VOID
  )
{
  RETURN_STATUS         Status;
  FIRMWARE_CONFIG_ITEM  FwCfgItem;
  UINTN                 FwCfgSize;
  CHAR8                 *FwCfg;
  EFI_STATUS            EfiStatus;
  EXTRA_ROOT_BUS_MAP    *ExtraPciRoots;
  CONST CHAR8           *FwCfgPtr;
  UINTN                 NumConnected;
  UINTN                 TranslatedSize;
  CHAR16                Translated[TRANSLATION_OUTPUT_SIZE];

  Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
  if (RETURN_ERROR (Status)) {
    return Status;
  }

  if (FwCfgSize == 0) {
    return RETURN_NOT_FOUND;
  }

  FwCfg = AllocatePool (FwCfgSize);
  if (FwCfg == NULL) {
    return RETURN_OUT_OF_RESOURCES;
  }

  QemuFwCfgSelectItem (FwCfgItem);
  QemuFwCfgReadBytes (FwCfgSize, FwCfg);
  if (FwCfg[FwCfgSize - 1] != '\0') {
    Status = RETURN_INVALID_PARAMETER;
    goto FreeFwCfg;
  }

  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
  DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));

  if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
    EfiStatus = CreateExtraRootBusMap (&ExtraPciRoots);
    if (EFI_ERROR (EfiStatus)) {
      Status = (RETURN_STATUS)EfiStatus;
      goto FreeFwCfg;
    }
  } else {
    ExtraPciRoots = NULL;
  }

  //
  // Translate each OpenFirmware path to a UEFI devpath prefix.
  //
  FwCfgPtr       = FwCfg;
  NumConnected   = 0;
  TranslatedSize = ARRAY_SIZE (Translated);
  Status         = TranslateOfwPath (
                     &FwCfgPtr,
                     ExtraPciRoots,
                     Translated,
                     &TranslatedSize
                     );
  while (!RETURN_ERROR (Status)) {
    EFI_DEVICE_PATH_PROTOCOL  *DevicePath;
    EFI_HANDLE                Controller;

    //
    // Convert the UEFI devpath prefix to binary representation.
    //
    ASSERT (Translated[TranslatedSize] == L'\0');
    DevicePath = ConvertTextToDevicePath (Translated);
    if (DevicePath == NULL) {
      Status = RETURN_OUT_OF_RESOURCES;
      goto FreeExtraPciRoots;
    }

    //
    // Advance along DevicePath, connecting the nodes individually, and asking
    // drivers not to produce sibling nodes. Retrieve the controller handle
    // associated with the full DevicePath -- this is the device that QEMU's
    // OFW devpath refers to.
    //
    EfiStatus = EfiBootManagerConnectDevicePath (DevicePath, &Controller);
    FreePool (DevicePath);
    if (EFI_ERROR (EfiStatus)) {
      Status = (RETURN_STATUS)EfiStatus;
      goto FreeExtraPciRoots;
    }

    //
    // Because QEMU's OFW devpaths have lesser expressive power than UEFI
    // devpaths (i.e., DevicePath is considered a prefix), connect the tree
    // rooted at Controller, recursively. If no children are produced
    // (EFI_NOT_FOUND), that's OK.
    //
    EfiStatus = gBS->ConnectController (Controller, NULL, NULL, TRUE);
    if (EFI_ERROR (EfiStatus) && (EfiStatus != EFI_NOT_FOUND)) {
      Status = (RETURN_STATUS)EfiStatus;
      goto FreeExtraPciRoots;
    }

    ++NumConnected;
    //
    // Move to the next OFW devpath.
    //
    TranslatedSize = ARRAY_SIZE (Translated);
    Status         = TranslateOfwPath (
                       &FwCfgPtr,
                       ExtraPciRoots,
                       Translated,
                       &TranslatedSize
                       );
  }

  if ((Status == RETURN_NOT_FOUND) && (NumConnected > 0)) {
    DEBUG ((
      DEBUG_INFO,
      "%a: %Lu OpenFirmware device path(s) connected\n",
      __FUNCTION__,
      (UINT64)NumConnected
      ));
    Status = RETURN_SUCCESS;
  }

FreeExtraPciRoots:
  if (ExtraPciRoots != NULL) {
    DestroyExtraRootBusMap (ExtraPciRoots);
  }

FreeFwCfg:
  FreePool (FwCfg);

  return Status;
}

/**
  Write qemu boot order to uefi variables.

  Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate
  the OpenFirmware device paths therein to UEFI device path fragments.

  On Success store the device path in VMMBootOrderNNNN variables.
**/
VOID
EFIAPI
StoreQemuBootOrder (
  VOID
  )
{
  RETURN_STATUS         Status;
  FIRMWARE_CONFIG_ITEM  FwCfgItem;
  UINTN                 FwCfgSize;
  CHAR8                 *FwCfg;
  EFI_STATUS            EfiStatus;
  EXTRA_ROOT_BUS_MAP    *ExtraPciRoots;
  CONST CHAR8           *FwCfgPtr;
  UINTN                 TranslatedSize;
  CHAR16                Translated[TRANSLATION_OUTPUT_SIZE];
  UINTN                 VariableIndex = 0;
  CHAR16                VariableName[20];

  Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
  if (RETURN_ERROR (Status)) {
    return;
  }

  if (FwCfgSize == 0) {
    return;
  }

  FwCfg = AllocatePool (FwCfgSize);
  if (FwCfg == NULL) {
    return;
  }

  QemuFwCfgSelectItem (FwCfgItem);
  QemuFwCfgReadBytes (FwCfgSize, FwCfg);
  if (FwCfg[FwCfgSize - 1] != '\0') {
    Status = RETURN_INVALID_PARAMETER;
    goto FreeFwCfg;
  }

  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
  DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));

  if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
    EfiStatus = CreateExtraRootBusMap (&ExtraPciRoots);
    if (EFI_ERROR (EfiStatus)) {
      Status = (RETURN_STATUS)EfiStatus;
      goto FreeFwCfg;
    }
  } else {
    ExtraPciRoots = NULL;
  }

  //
  // Translate each OpenFirmware path to a UEFI devpath prefix.
  //
  FwCfgPtr       = FwCfg;
  TranslatedSize = ARRAY_SIZE (Translated);
  Status         = TranslateOfwPath (
                     &FwCfgPtr,
                     ExtraPciRoots,
                     Translated,
                     &TranslatedSize
                     );
  while (Status == EFI_SUCCESS ||
         Status == EFI_UNSUPPORTED)
  {
    if (Status == EFI_SUCCESS) {
      EFI_DEVICE_PATH_PROTOCOL  *DevicePath;

      //
      // Convert the UEFI devpath prefix to binary representation.
      //
      ASSERT (Translated[TranslatedSize] == L'\0');
      DevicePath = ConvertTextToDevicePath (Translated);
      if (DevicePath == NULL) {
        Status = RETURN_OUT_OF_RESOURCES;
        goto FreeExtraPciRoots;
      }

      UnicodeSPrint (
        VariableName,
        sizeof (VariableName),
        L"VMMBootOrder%04x",
        VariableIndex++
        );
      DEBUG ((DEBUG_INFO, "%a: %s = %s\n", __FUNCTION__, VariableName, Translated));
      gRT->SetVariable (
             VariableName,
             &gVMMBootOrderGuid,
             EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
             GetDevicePathSize (DevicePath),
             DevicePath
             );
      FreePool (DevicePath);
    }

    //
    // Move to the next OFW devpath.
    //
    TranslatedSize = ARRAY_SIZE (Translated);
    Status         = TranslateOfwPath (
                       &FwCfgPtr,
                       ExtraPciRoots,
                       Translated,
                       &TranslatedSize
                       );
  }

FreeExtraPciRoots:
  if (ExtraPciRoots != NULL) {
    DestroyExtraRootBusMap (ExtraPciRoots);
  }

FreeFwCfg:
  FreePool (FwCfg);
}

/**

  Convert the UEFI DevicePath to full text representation with DevPathToText,
  then match the UEFI device path fragment in Translated against it.

  @param[in] Translated        UEFI device path fragment, translated from
                               OpenFirmware format, to search for.

  @param[in] TranslatedLength  The length of Translated in CHAR16's.

  @param[in] DevicePath        Boot option device path whose textual rendering
                               to search in.

  @param[in] DevPathToText  Binary-to-text conversion protocol for DevicePath.


  @retval TRUE   If Translated was found at the beginning of DevicePath after
                 converting the latter to text.

  @retval FALSE  If DevicePath was NULL, or it could not be converted, or there
                 was no match.

**/
STATIC
BOOLEAN
Match (
  IN  CONST CHAR16              *Translated,
  IN  UINTN                     TranslatedLength,
  IN  EFI_DEVICE_PATH_PROTOCOL  *DevicePath
  )
{
  CHAR16                    *Converted;
  BOOLEAN                   Result;
  VOID                      *FileBuffer;
  UINTN                     FileSize;
  EFI_DEVICE_PATH_PROTOCOL  *AbsDevicePath;
  CHAR16                    *AbsConverted;
  BOOLEAN                   Shortform;
  EFI_DEVICE_PATH_PROTOCOL  *Node;

  Converted = ConvertDevicePathToText (
                DevicePath,
                FALSE, // DisplayOnly
                FALSE  // AllowShortcuts
                );
  if (Converted == NULL) {
    return FALSE;
  }

  Result    = FALSE;
  Shortform = FALSE;
  //
  // Expand the short-form device path to full device path
  //
  if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
      (DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP))
  {
    //
    // Harddrive shortform device path
    //
    Shortform = TRUE;
  } else if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
             (DevicePathSubType (DevicePath) == MEDIA_FILEPATH_DP))
  {
    //
    // File-path shortform device path
    //
    Shortform = TRUE;
  } else if ((DevicePathType (DevicePath) == MESSAGING_DEVICE_PATH) &&
             (DevicePathSubType (DevicePath) == MSG_URI_DP))
  {
    //
    // URI shortform device path
    //
    Shortform = TRUE;
  } else {
    for ( Node = DevicePath
          ; !IsDevicePathEnd (Node)
          ; Node = NextDevicePathNode (Node)
          )
    {
      if ((DevicePathType (Node) == MESSAGING_DEVICE_PATH) &&
          ((DevicePathSubType (Node) == MSG_USB_CLASS_DP) ||
           (DevicePathSubType (Node) == MSG_USB_WWID_DP)))
      {
        Shortform = TRUE;
        break;
      }
    }
  }

  //
  // Attempt to expand any relative UEFI device path to
  // an absolute device path first.
  //
  if (Shortform) {
    FileBuffer = EfiBootManagerGetLoadOptionBuffer (
                   DevicePath,
                   &AbsDevicePath,
                   &FileSize
                   );
    if (FileBuffer == NULL) {
      goto Exit;
    }

    FreePool (FileBuffer);
    AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
    FreePool (AbsDevicePath);
    if (AbsConverted == NULL) {
      goto Exit;
    }

    DEBUG ((
      DEBUG_VERBOSE,
      "%a: expanded relative device path \"%s\" for prefix matching\n",
      __FUNCTION__,
      Converted
      ));
    FreePool (Converted);
    Converted = AbsConverted;
  }

  //
  // Is Translated a prefix of Converted?
  //
  Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
  DEBUG ((
    DEBUG_VERBOSE,
    "%a: against \"%s\": %a\n",
    __FUNCTION__,
    Converted,
    Result ? "match" : "no match"
    ));
Exit:
  FreePool (Converted);
  return Result;
}

/**
  Append some of the unselected active boot options to the boot order.

  This function should accommodate any further policy changes in "boot option
  survival". Currently we're adding back everything that starts with neither
  PciRoot() nor HD() nor a virtio-mmio VenHw() node.

  @param[in,out] BootOrder     The structure holding the boot order to
                               complete. The caller is responsible for
                               initializing (and potentially populating) it
                               before calling this function.

  @param[in,out] ActiveOption  The array of active boot options to scan.
                               Entries marked as Appended will be skipped.
                               Those of the rest that satisfy the survival
                               policy will be added to BootOrder with
                               BootOrderAppend().

  @param[in]     ActiveCount   Number of elements in ActiveOption.


  @retval RETURN_SUCCESS  BootOrder has been extended with any eligible boot
                          options.

  @return                 Error codes returned by BootOrderAppend().
**/
STATIC
RETURN_STATUS
BootOrderComplete (
  IN OUT  BOOT_ORDER     *BootOrder,
  IN OUT  ACTIVE_OPTION  *ActiveOption,
  IN      UINTN          ActiveCount
  )
{
  RETURN_STATUS  Status;
  UINTN          Idx;

  Status = RETURN_SUCCESS;
  Idx    = 0;
  while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
    if (!ActiveOption[Idx].Appended) {
      CONST EFI_BOOT_MANAGER_LOAD_OPTION  *Current;
      CONST EFI_DEVICE_PATH_PROTOCOL      *FirstNode;

      Current   = ActiveOption[Idx].BootOption;
      FirstNode = Current->FilePath;
      if (FirstNode != NULL) {
        CHAR16         *Converted;
        STATIC CHAR16  ConvFallBack[] = L"<unable to convert>";
        BOOLEAN        Keep;

        Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
        if (Converted == NULL) {
          Converted = ConvFallBack;
        }

        Keep = TRUE;
        if ((DevicePathType (FirstNode) == MEDIA_DEVICE_PATH) &&
            (DevicePathSubType (FirstNode) == MEDIA_HARDDRIVE_DP))
        {
          //
          // drop HD()
          //
          Keep = FALSE;
        } else if ((DevicePathType (FirstNode) == ACPI_DEVICE_PATH) &&
                   (DevicePathSubType (FirstNode) == ACPI_DP))
        {
          ACPI_HID_DEVICE_PATH  *Acpi;

          Acpi = (ACPI_HID_DEVICE_PATH *)FirstNode;
          if (((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST) &&
              (EISA_ID_TO_NUM (Acpi->HID) == 0x0a03))
          {
            //
            // drop PciRoot() if we enabled the user to select PCI-like boot
            // options, by providing translation for such OFW device path
            // fragments
            //
            Keep = !FeaturePcdGet (PcdQemuBootOrderPciTranslation);
          }
        } else if ((DevicePathType (FirstNode) == HARDWARE_DEVICE_PATH) &&
                   (DevicePathSubType (FirstNode) == HW_VENDOR_DP))
        {
          VENDOR_DEVICE_PATH  *VenHw;

          VenHw = (VENDOR_DEVICE_PATH *)FirstNode;
          if (CompareGuid (&VenHw->Guid, &gVirtioMmioTransportGuid)) {
            //
            // drop virtio-mmio if we enabled the user to select boot options
            // referencing such device paths
            //
            Keep = !FeaturePcdGet (PcdQemuBootOrderMmioTranslation);
          }
        }

        if (Keep) {
          Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
          if (!RETURN_ERROR (Status)) {
            DEBUG ((
              DEBUG_VERBOSE,
              "%a: keeping \"%s\"\n",
              __FUNCTION__,
              Converted
              ));
          }
        } else {
          DEBUG ((
            DEBUG_VERBOSE,
            "%a: dropping \"%s\"\n",
            __FUNCTION__,
            Converted
            ));
        }

        if (Converted != ConvFallBack) {
          FreePool (Converted);
        }
      }
    }

    ++Idx;
  }

  return Status;
}

/**
  Delete Boot#### variables that stand for such active boot options that have
  been dropped (ie. have not been selected by either matching or "survival
  policy").

  @param[in]  ActiveOption  The array of active boot options to scan. Each
                            entry not marked as appended will trigger the
                            deletion of the matching Boot#### variable.

  @param[in]  ActiveCount   Number of elements in ActiveOption.
**/
STATIC
VOID
PruneBootVariables (
  IN  CONST ACTIVE_OPTION  *ActiveOption,
  IN  UINTN                ActiveCount
  )
{
  UINTN  Idx;

  for (Idx = 0; Idx < ActiveCount; ++Idx) {
    if (!ActiveOption[Idx].Appended) {
      CHAR16  VariableName[9];

      UnicodeSPrintAsciiFormat (
        VariableName,
        sizeof VariableName,
        "Boot%04x",
        ActiveOption[Idx].BootOption->OptionNumber
        );

      //
      // "The space consumed by the deleted variable may not be available until
      // the next power cycle", but that's good enough.
      //
      gRT->SetVariable (
             VariableName,
             &gEfiGlobalVariableGuid,
             0,   // Attributes, 0 means deletion
             0,   // DataSize, 0 means deletion
             NULL // Data
             );
    }
  }
}

/**

  Set the boot order based on configuration retrieved from QEMU.

  Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
  OpenFirmware device paths therein to UEFI device path fragments. Match the
  translated fragments against the current list of boot options, and rewrite
  the BootOrder NvVar so that it corresponds to the order described in fw_cfg.

  Platform BDS should call this function after connecting any expected boot
  devices and calling EfiBootManagerRefreshAllBootOption ().

  @retval RETURN_SUCCESS            BootOrder NvVar rewritten.

  @retval RETURN_UNSUPPORTED        QEMU's fw_cfg is not supported.

  @retval RETURN_NOT_FOUND          Empty or nonexistent "bootorder" fw_cfg
                                    file, or no match found between the
                                    "bootorder" fw_cfg file and BootOptionList.

  @retval RETURN_INVALID_PARAMETER  Parse error in the "bootorder" fw_cfg file.

  @retval RETURN_OUT_OF_RESOURCES   Memory allocation failed.

  @return                           Values returned by gBS->LocateProtocol ()
                                    or gRT->SetVariable ().

**/
RETURN_STATUS
EFIAPI
SetBootOrderFromQemu (
  VOID
  )
{
  RETURN_STATUS         Status;
  FIRMWARE_CONFIG_ITEM  FwCfgItem;
  UINTN                 FwCfgSize;
  CHAR8                 *FwCfg;
  CONST CHAR8           *FwCfgPtr;

  BOOT_ORDER     BootOrder;
  ACTIVE_OPTION  *ActiveOption;
  UINTN          ActiveCount;

  EXTRA_ROOT_BUS_MAP  *ExtraPciRoots;

  UINTN                         TranslatedSize;
  CHAR16                        Translated[TRANSLATION_OUTPUT_SIZE];
  EFI_BOOT_MANAGER_LOAD_OPTION  *BootOptions;
  UINTN                         BootOptionCount;

  Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
  if (Status != RETURN_SUCCESS) {
    return Status;
  }

  if (FwCfgSize == 0) {
    return RETURN_NOT_FOUND;
  }

  FwCfg = AllocatePool (FwCfgSize);
  if (FwCfg == NULL) {
    return RETURN_OUT_OF_RESOURCES;
  }

  QemuFwCfgSelectItem (FwCfgItem);
  QemuFwCfgReadBytes (FwCfgSize, FwCfg);
  if (FwCfg[FwCfgSize - 1] != '\0') {
    Status = RETURN_INVALID_PARAMETER;
    goto ErrorFreeFwCfg;
  }

  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
  DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
  DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
  FwCfgPtr = FwCfg;

  BootOrder.Produced  = 0;
  BootOrder.Allocated = 1;
  BootOrder.Data      = AllocatePool (
                          BootOrder.Allocated * sizeof (*BootOrder.Data)
                          );
  if (BootOrder.Data == NULL) {
    Status = RETURN_OUT_OF_RESOURCES;
    goto ErrorFreeFwCfg;
  }

  BootOptions = EfiBootManagerGetLoadOptions (
                  &BootOptionCount,
                  LoadOptionTypeBoot
                  );
  if (BootOptions == NULL) {
    Status = RETURN_NOT_FOUND;
    goto ErrorFreeBootOrder;
  }

  Status = CollectActiveOptions (
             BootOptions,
             BootOptionCount,
             &ActiveOption,
             &ActiveCount
             );
  if (RETURN_ERROR (Status)) {
    goto ErrorFreeBootOptions;
  }

  if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
    Status = CreateExtraRootBusMap (&ExtraPciRoots);
    if (EFI_ERROR (Status)) {
      goto ErrorFreeActiveOption;
    }
  } else {
    ExtraPciRoots = NULL;
  }

  //
  // translate each OpenFirmware path
  //
  TranslatedSize = ARRAY_SIZE (Translated);
  Status         = TranslateOfwPath (
                     &FwCfgPtr,
                     ExtraPciRoots,
                     Translated,
                     &TranslatedSize
                     );
  while (Status == RETURN_SUCCESS ||
         Status == RETURN_UNSUPPORTED ||
         Status == RETURN_PROTOCOL_ERROR ||
         Status == RETURN_BUFFER_TOO_SMALL)
  {
    if (Status == RETURN_SUCCESS) {
      UINTN  Idx;

      //
      // match translated OpenFirmware path against all active boot options
      //
      for (Idx = 0; Idx < ActiveCount; ++Idx) {
        if (!ActiveOption[Idx].Appended &&
            Match (
              Translated,
              TranslatedSize, // contains length, not size, in CHAR16's here
              ActiveOption[Idx].BootOption->FilePath
              )
            )
        {
          //
          // match found, store ID and continue with next OpenFirmware path
          //
          Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
          if (Status != RETURN_SUCCESS) {
            goto ErrorFreeExtraPciRoots;
          }
        }
      } // scanned all active boot options
    }   // translation successful

    TranslatedSize = ARRAY_SIZE (Translated);
    Status         = TranslateOfwPath (
                       &FwCfgPtr,
                       ExtraPciRoots,
                       Translated,
                       &TranslatedSize
                       );
  } // scanning of OpenFirmware paths done

  if ((Status == RETURN_NOT_FOUND) && (BootOrder.Produced > 0)) {
    //
    // No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
    // Some of the active boot options that have not been selected over fw_cfg
    // should be preserved at the end of the boot order.
    //
    Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
    if (RETURN_ERROR (Status)) {
      goto ErrorFreeExtraPciRoots;
    }

    //
    // See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
    // attributes.
    //
    Status = gRT->SetVariable (
                    L"BootOrder",
                    &gEfiGlobalVariableGuid,
                    EFI_VARIABLE_NON_VOLATILE |
                    EFI_VARIABLE_BOOTSERVICE_ACCESS |
                    EFI_VARIABLE_RUNTIME_ACCESS,
                    BootOrder.Produced * sizeof (*BootOrder.Data),
                    BootOrder.Data
                    );
    if (EFI_ERROR (Status)) {
      DEBUG ((
        DEBUG_ERROR,
        "%a: setting BootOrder: %r\n",
        __FUNCTION__,
        Status
        ));
      goto ErrorFreeExtraPciRoots;
    }

    DEBUG ((DEBUG_INFO, "%a: setting BootOrder: success\n", __FUNCTION__));
    PruneBootVariables (ActiveOption, ActiveCount);
  }

ErrorFreeExtraPciRoots:
  if (ExtraPciRoots != NULL) {
    DestroyExtraRootBusMap (ExtraPciRoots);
  }

ErrorFreeActiveOption:
  FreePool (ActiveOption);

ErrorFreeBootOptions:
  EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);

ErrorFreeBootOrder:
  FreePool (BootOrder.Data);

ErrorFreeFwCfg:
  FreePool (FwCfg);

  return Status;
}

/**
  Calculate the number of seconds we should be showing the FrontPage progress
  bar for.

  @return  The TimeoutDefault argument for PlatformBdsEnterFrontPage().
**/
UINT16
EFIAPI
GetFrontPageTimeoutFromQemu (
  VOID
  )
{
  FIRMWARE_CONFIG_ITEM  BootMenuWaitItem;
  UINTN                 BootMenuWaitSize;
  UINT16                Timeout = PcdGet16 (PcdPlatformBootTimeOut);

  if (!QemuFwCfgIsAvailable ()) {
    return Timeout;
  }

  QemuFwCfgSelectItem (QemuFwCfgItemBootMenu);
  if (QemuFwCfgRead16 () == 0) {
    //
    // The user specified "-boot menu=off", or didn't specify "-boot
    // menu=(on|off)" at all. Return the platform default.
    //
    return PcdGet16 (PcdPlatformBootTimeOut);
  }

  if (RETURN_ERROR (
        QemuFwCfgFindFile (
          "etc/boot-menu-wait",
          &BootMenuWaitItem,
          &BootMenuWaitSize
          )
        ) ||
      (BootMenuWaitSize != sizeof (UINT16)))
  {
    //
    // "-boot menu=on" was specified without "splash-time=N". In this case,
    // return three seconds if the platform default would cause us to skip the
    // front page, and return the platform default otherwise.
    //
    if (Timeout == 0) {
      Timeout = 3;
    }

    return Timeout;
  }

  //
  // "-boot menu=on,splash-time=N" was specified, where N is in units of
  // milliseconds. The Intel BDS Front Page progress bar only supports whole
  // seconds, round N up.
  //
  QemuFwCfgSelectItem (BootMenuWaitItem);
  return (UINT16)((QemuFwCfgRead16 () + 999) / 1000);
}