summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/Library/SmmCpuFeaturesLib/SmmCpuFeaturesLib.c
blob: 9297cc5fa93a47641310d8d7f1272b201f6baf8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
/** @file
  The CPU specific programming for PiSmmCpuDxeSmm module.

  Copyright (c) 2010 - 2015, Intel Corporation. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent
**/

#include <IndustryStandard/Q35MchIch9.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/SafeIntLib.h>
#include <Library/SmmCpuFeaturesLib.h>
#include <Library/SmmServicesTableLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Pcd/CpuHotEjectData.h>
#include <PiSmm.h>
#include <Register/Intel/SmramSaveStateMap.h>
#include <Register/QemuSmramSaveStateMap.h>

//
// EFER register LMA bit
//
#define LMA  BIT10

/**
  The constructor function

  @param[in]  ImageHandle  The firmware allocated handle for the EFI image.
  @param[in]  SystemTable  A pointer to the EFI System Table.

  @retval EFI_SUCCESS      The constructor always returns EFI_SUCCESS.

**/
EFI_STATUS
EFIAPI
SmmCpuFeaturesLibConstructor (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  //
  // No need to program SMRRs on our virtual platform.
  //
  return EFI_SUCCESS;
}

/**
  Called during the very first SMI into System Management Mode to initialize
  CPU features, including SMBASE, for the currently executing CPU.  Since this
  is the first SMI, the SMRAM Save State Map is at the default address of
  SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET.  The currently executing
  CPU is specified by CpuIndex and CpuIndex can be used to access information
  about the currently executing CPU in the ProcessorInfo array and the
  HotPlugCpuData data structure.

  @param[in] CpuIndex        The index of the CPU to initialize.  The value
                             must be between 0 and the NumberOfCpus field in
                             the System Management System Table (SMST).
  @param[in] IsMonarch       TRUE if the CpuIndex is the index of the CPU that
                             was elected as monarch during System Management
                             Mode initialization.
                             FALSE if the CpuIndex is not the index of the CPU
                             that was elected as monarch during System
                             Management Mode initialization.
  @param[in] ProcessorInfo   Pointer to an array of EFI_PROCESSOR_INFORMATION
                             structures.  ProcessorInfo[CpuIndex] contains the
                             information for the currently executing CPU.
  @param[in] CpuHotPlugData  Pointer to the CPU_HOT_PLUG_DATA structure that
                             contains the ApidId and SmBase arrays.
**/
VOID
EFIAPI
SmmCpuFeaturesInitializeProcessor (
  IN UINTN                      CpuIndex,
  IN BOOLEAN                    IsMonarch,
  IN EFI_PROCESSOR_INFORMATION  *ProcessorInfo,
  IN CPU_HOT_PLUG_DATA          *CpuHotPlugData
  )
{
  QEMU_SMRAM_SAVE_STATE_MAP  *CpuState;

  //
  // Configure SMBASE.
  //
  CpuState = (QEMU_SMRAM_SAVE_STATE_MAP *)(UINTN)(
                                                  SMM_DEFAULT_SMBASE +
                                                  SMRAM_SAVE_STATE_MAP_OFFSET
                                                  );
  if ((CpuState->x86.SMMRevId & 0xFFFF) == 0) {
    CpuState->x86.SMBASE = (UINT32)CpuHotPlugData->SmBase[CpuIndex];
  } else {
    CpuState->x64.SMBASE = (UINT32)CpuHotPlugData->SmBase[CpuIndex];
  }

  //
  // No need to program SMRRs on our virtual platform.
  //
}

/**
  This function updates the SMRAM save state on the currently executing CPU
  to resume execution at a specific address after an RSM instruction.  This
  function must evaluate the SMRAM save state to determine the execution mode
  the RSM instruction resumes and update the resume execution address with
  either NewInstructionPointer32 or NewInstructionPoint.  The auto HALT restart
  flag in the SMRAM save state must always be cleared.  This function returns
  the value of the instruction pointer from the SMRAM save state that was
  replaced.  If this function returns 0, then the SMRAM save state was not
  modified.

  This function is called during the very first SMI on each CPU after
  SmmCpuFeaturesInitializeProcessor() to set a flag in normal execution mode
  to signal that the SMBASE of each CPU has been updated before the default
  SMBASE address is used for the first SMI to the next CPU.

  @param[in] CpuIndex                 The index of the CPU to hook.  The value
                                      must be between 0 and the NumberOfCpus
                                      field in the System Management System
                                      Table (SMST).
  @param[in] CpuState                 Pointer to SMRAM Save State Map for the
                                      currently executing CPU.
  @param[in] NewInstructionPointer32  Instruction pointer to use if resuming to
                                      32-bit execution mode from 64-bit SMM.
  @param[in] NewInstructionPointer    Instruction pointer to use if resuming to
                                      same execution mode as SMM.

  @retval 0    This function did modify the SMRAM save state.
  @retval > 0  The original instruction pointer value from the SMRAM save state
               before it was replaced.
**/
UINT64
EFIAPI
SmmCpuFeaturesHookReturnFromSmm (
  IN UINTN                 CpuIndex,
  IN SMRAM_SAVE_STATE_MAP  *CpuState,
  IN UINT64                NewInstructionPointer32,
  IN UINT64                NewInstructionPointer
  )
{
  UINT64                     OriginalInstructionPointer;
  QEMU_SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)CpuState;
  if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) {
    OriginalInstructionPointer = (UINT64)CpuSaveState->x86._EIP;
    CpuSaveState->x86._EIP     = (UINT32)NewInstructionPointer;
    //
    // Clear the auto HALT restart flag so the RSM instruction returns
    // program control to the instruction following the HLT instruction.
    //
    if ((CpuSaveState->x86.AutoHALTRestart & BIT0) != 0) {
      CpuSaveState->x86.AutoHALTRestart &= ~BIT0;
    }
  } else {
    OriginalInstructionPointer = CpuSaveState->x64._RIP;
    if ((CpuSaveState->x64.IA32_EFER & LMA) == 0) {
      CpuSaveState->x64._RIP = (UINT32)NewInstructionPointer32;
    } else {
      CpuSaveState->x64._RIP = (UINT32)NewInstructionPointer;
    }

    //
    // Clear the auto HALT restart flag so the RSM instruction returns
    // program control to the instruction following the HLT instruction.
    //
    if ((CpuSaveState->x64.AutoHALTRestart & BIT0) != 0) {
      CpuSaveState->x64.AutoHALTRestart &= ~BIT0;
    }
  }

  return OriginalInstructionPointer;
}

STATIC CPU_HOT_EJECT_DATA  *mCpuHotEjectData = NULL;

/**
  Initialize mCpuHotEjectData if PcdCpuMaxLogicalProcessorNumber > 1.

  Also setup the corresponding PcdCpuHotEjectDataAddress.
**/
STATIC
VOID
InitCpuHotEjectData (
  VOID
  )
{
  UINTN          Size;
  UINT32         Idx;
  UINT32         MaxNumberOfCpus;
  RETURN_STATUS  PcdStatus;

  MaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
  if (MaxNumberOfCpus == 1) {
    return;
  }

  //
  // We allocate CPU_HOT_EJECT_DATA and CPU_HOT_EJECT_DATA->QemuSelectorMap[]
  // in a single allocation, and explicitly align the QemuSelectorMap[] (which
  // is a UINT64 array) at its natural boundary.
  // Accordingly, allocate:
  //   sizeof(*mCpuHotEjectData) + (MaxNumberOfCpus * sizeof(UINT64))
  // and, add sizeof(UINT64) - 1 to use as padding if needed.
  //

  if (RETURN_ERROR (SafeUintnMult (MaxNumberOfCpus, sizeof (UINT64), &Size)) ||
      RETURN_ERROR (SafeUintnAdd (Size, sizeof (*mCpuHotEjectData), &Size)) ||
      RETURN_ERROR (SafeUintnAdd (Size, sizeof (UINT64) - 1, &Size)))
  {
    DEBUG ((DEBUG_ERROR, "%a: invalid CPU_HOT_EJECT_DATA\n", __FUNCTION__));
    goto Fatal;
  }

  mCpuHotEjectData = AllocatePool (Size);
  if (mCpuHotEjectData == NULL) {
    ASSERT (mCpuHotEjectData != NULL);
    goto Fatal;
  }

  mCpuHotEjectData->Handler     = NULL;
  mCpuHotEjectData->ArrayLength = MaxNumberOfCpus;

  mCpuHotEjectData->QemuSelectorMap = ALIGN_POINTER (
                                        mCpuHotEjectData + 1,
                                        sizeof (UINT64)
                                        );
  //
  // We use mCpuHotEjectData->QemuSelectorMap to map
  // ProcessorNum -> QemuSelector. Initialize to invalid values.
  //
  for (Idx = 0; Idx < mCpuHotEjectData->ArrayLength; Idx++) {
    mCpuHotEjectData->QemuSelectorMap[Idx] = CPU_EJECT_QEMU_SELECTOR_INVALID;
  }

  //
  // Expose address of CPU Hot eject Data structure
  //
  PcdStatus = PcdSet64S (
                PcdCpuHotEjectDataAddress,
                (UINTN)(VOID *)mCpuHotEjectData
                );
  ASSERT_RETURN_ERROR (PcdStatus);

  return;

Fatal:
  CpuDeadLoop ();
}

/**
  Hook point in normal execution mode that allows the one CPU that was elected
  as monarch during System Management Mode initialization to perform additional
  initialization actions immediately after all of the CPUs have processed their
  first SMI and called SmmCpuFeaturesInitializeProcessor() relocating SMBASE
  into a buffer in SMRAM and called SmmCpuFeaturesHookReturnFromSmm().
**/
VOID
EFIAPI
SmmCpuFeaturesSmmRelocationComplete (
  VOID
  )
{
  EFI_STATUS  Status;
  UINTN       MapPagesBase;
  UINTN       MapPagesCount;

  InitCpuHotEjectData ();

  if (!MemEncryptSevIsEnabled ()) {
    return;
  }

  //
  // Now that SMBASE relocation is complete, re-encrypt the original SMRAM save
  // state map's container pages, and release the pages to DXE. (The pages were
  // allocated in PlatformPei.)
  //
  Status = MemEncryptSevLocateInitialSmramSaveStateMapPages (
             &MapPagesBase,
             &MapPagesCount
             );
  ASSERT_EFI_ERROR (Status);

  Status = MemEncryptSevSetPageEncMask (
             0,             // Cr3BaseAddress -- use current CR3
             MapPagesBase,  // BaseAddress
             MapPagesCount  // NumPages
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((
      DEBUG_ERROR,
      "%a: MemEncryptSevSetPageEncMask(): %r\n",
      __FUNCTION__,
      Status
      ));
    ASSERT (FALSE);
    CpuDeadLoop ();
  }

  ZeroMem ((VOID *)MapPagesBase, EFI_PAGES_TO_SIZE (MapPagesCount));

  if (PcdGetBool (PcdQ35SmramAtDefaultSmbase)) {
    //
    // The initial SMRAM Save State Map has been covered as part of a larger
    // reserved memory allocation in PlatformPei's InitializeRamRegions(). That
    // allocation is supposed to survive into OS runtime; we must not release
    // any part of it. Only re-assert the containment here.
    //
    ASSERT (SMM_DEFAULT_SMBASE <= MapPagesBase);
    ASSERT (
      (MapPagesBase + EFI_PAGES_TO_SIZE (MapPagesCount) <=
       SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE)
      );
  } else {
    Status = gBS->FreePages (MapPagesBase, MapPagesCount);
    ASSERT_EFI_ERROR (Status);
  }
}

/**
  Return the size, in bytes, of a custom SMI Handler in bytes.  If 0 is
  returned, then a custom SMI handler is not provided by this library,
  and the default SMI handler must be used.

  @retval 0    Use the default SMI handler.
  @retval > 0  Use the SMI handler installed by
               SmmCpuFeaturesInstallSmiHandler(). The caller is required to
               allocate enough SMRAM for each CPU to support the size of the
               custom SMI handler.
**/
UINTN
EFIAPI
SmmCpuFeaturesGetSmiHandlerSize (
  VOID
  )
{
  return 0;
}

/**
  Install a custom SMI handler for the CPU specified by CpuIndex.  This
  function is only called if SmmCpuFeaturesGetSmiHandlerSize() returns a size
  is greater than zero and is called by the CPU that was elected as monarch
  during System Management Mode initialization.

  @param[in] CpuIndex   The index of the CPU to install the custom SMI handler.
                        The value must be between 0 and the NumberOfCpus field
                        in the System Management System Table (SMST).
  @param[in] SmBase     The SMBASE address for the CPU specified by CpuIndex.
  @param[in] SmiStack   The stack to use when an SMI is processed by the
                        the CPU specified by CpuIndex.
  @param[in] StackSize  The size, in bytes, if the stack used when an SMI is
                        processed by the CPU specified by CpuIndex.
  @param[in] GdtBase    The base address of the GDT to use when an SMI is
                        processed by the CPU specified by CpuIndex.
  @param[in] GdtSize    The size, in bytes, of the GDT used when an SMI is
                        processed by the CPU specified by CpuIndex.
  @param[in] IdtBase    The base address of the IDT to use when an SMI is
                        processed by the CPU specified by CpuIndex.
  @param[in] IdtSize    The size, in bytes, of the IDT used when an SMI is
                        processed by the CPU specified by CpuIndex.
  @param[in] Cr3        The base address of the page tables to use when an SMI
                        is processed by the CPU specified by CpuIndex.
**/
VOID
EFIAPI
SmmCpuFeaturesInstallSmiHandler (
  IN UINTN   CpuIndex,
  IN UINT32  SmBase,
  IN VOID    *SmiStack,
  IN UINTN   StackSize,
  IN UINTN   GdtBase,
  IN UINTN   GdtSize,
  IN UINTN   IdtBase,
  IN UINTN   IdtSize,
  IN UINT32  Cr3
  )
{
}

/**
  Determines if MTRR registers must be configured to set SMRAM cache-ability
  when executing in System Management Mode.

  @retval TRUE   MTRR registers must be configured to set SMRAM cache-ability.
  @retval FALSE  MTRR registers do not need to be configured to set SMRAM
                 cache-ability.
**/
BOOLEAN
EFIAPI
SmmCpuFeaturesNeedConfigureMtrrs (
  VOID
  )
{
  return FALSE;
}

/**
  Disable SMRR register if SMRR is supported and
  SmmCpuFeaturesNeedConfigureMtrrs() returns TRUE.
**/
VOID
EFIAPI
SmmCpuFeaturesDisableSmrr (
  VOID
  )
{
  //
  // No SMRR support, nothing to do
  //
}

/**
  Enable SMRR register if SMRR is supported and
  SmmCpuFeaturesNeedConfigureMtrrs() returns TRUE.
**/
VOID
EFIAPI
SmmCpuFeaturesReenableSmrr (
  VOID
  )
{
  //
  // No SMRR support, nothing to do
  //
}

/**
  Processor specific hook point each time a CPU enters System Management Mode.

  @param[in] CpuIndex  The index of the CPU that has entered SMM.  The value
                       must be between 0 and the NumberOfCpus field in the
                       System Management System Table (SMST).
**/
VOID
EFIAPI
SmmCpuFeaturesRendezvousEntry (
  IN UINTN  CpuIndex
  )
{
  //
  // No SMRR support, nothing to do
  //
}

/**
  Processor specific hook point each time a CPU exits System Management Mode.

  @param[in] CpuIndex  The index of the CPU that is exiting SMM.  The value
                       must be between 0 and the NumberOfCpus field in the
                       System Management System Table (SMST).
**/
VOID
EFIAPI
SmmCpuFeaturesRendezvousExit (
  IN UINTN  CpuIndex
  )
{
  //
  // We only call the Handler if CPU hot-eject is enabled
  // (PcdCpuMaxLogicalProcessorNumber > 1), and hot-eject is needed
  // in this SMI exit (otherwise mCpuHotEjectData->Handler is not armed.)
  //

  if (mCpuHotEjectData != NULL) {
    CPU_HOT_EJECT_HANDLER  Handler;

    //
    // As the comment above mentions, mCpuHotEjectData->Handler might be
    // written to on the BSP as part of handling of the CPU-ejection.
    //
    // We know that any initial assignment to mCpuHotEjectData->Handler
    // (on the BSP, in the CpuHotplugMmi() context) is ordered-before the
    // load below, since it is guaranteed to happen before the
    // control-dependency of the BSP's SMI exit signal -- by way of a store
    // to AllCpusInSync (on the BSP, in BspHandler()) and the corresponding
    // AllCpusInSync loop (on the APs, in SmiRendezvous()) which depends on
    // that store.
    //
    // This guarantees that these pieces of code can never execute
    // simultaneously. In addition, we ensure that the following load is
    // ordered-after the AllCpusInSync loop by using a MemoryFence() with
    // acquire semantics.
    //
    MemoryFence ();

    Handler = mCpuHotEjectData->Handler;

    if (Handler != NULL) {
      Handler (CpuIndex);
    }
  }
}

/**
  Check to see if an SMM register is supported by a specified CPU.

  @param[in] CpuIndex  The index of the CPU to check for SMM register support.
                       The value must be between 0 and the NumberOfCpus field
                       in the System Management System Table (SMST).
  @param[in] RegName   Identifies the SMM register to check for support.

  @retval TRUE   The SMM register specified by RegName is supported by the CPU
                 specified by CpuIndex.
  @retval FALSE  The SMM register specified by RegName is not supported by the
                 CPU specified by CpuIndex.
**/
BOOLEAN
EFIAPI
SmmCpuFeaturesIsSmmRegisterSupported (
  IN UINTN         CpuIndex,
  IN SMM_REG_NAME  RegName
  )
{
  ASSERT (RegName == SmmRegFeatureControl);
  return FALSE;
}

/**
  Returns the current value of the SMM register for the specified CPU.
  If the SMM register is not supported, then 0 is returned.

  @param[in] CpuIndex  The index of the CPU to read the SMM register.  The
                       value must be between 0 and the NumberOfCpus field in
                       the System Management System Table (SMST).
  @param[in] RegName   Identifies the SMM register to read.

  @return  The value of the SMM register specified by RegName from the CPU
           specified by CpuIndex.
**/
UINT64
EFIAPI
SmmCpuFeaturesGetSmmRegister (
  IN UINTN         CpuIndex,
  IN SMM_REG_NAME  RegName
  )
{
  //
  // This is called for SmmRegSmmDelayed, SmmRegSmmBlocked, SmmRegSmmEnable.
  // The last of these should actually be SmmRegSmmDisable, so we can just
  // return FALSE.
  //
  return 0;
}

/**
  Sets the value of an SMM register on a specified CPU.
  If the SMM register is not supported, then no action is performed.

  @param[in] CpuIndex  The index of the CPU to write the SMM register.  The
                       value must be between 0 and the NumberOfCpus field in
                       the System Management System Table (SMST).
  @param[in] RegName   Identifies the SMM register to write.
                       registers are read-only.
  @param[in] Value     The value to write to the SMM register.
**/
VOID
EFIAPI
SmmCpuFeaturesSetSmmRegister (
  IN UINTN         CpuIndex,
  IN SMM_REG_NAME  RegName,
  IN UINT64        Value
  )
{
  ASSERT (FALSE);
}

///
/// Macro used to simplify the lookup table entries of type
/// CPU_SMM_SAVE_STATE_LOOKUP_ENTRY
///
#define SMM_CPU_OFFSET(Field)  OFFSET_OF (QEMU_SMRAM_SAVE_STATE_MAP, Field)

///
/// Macro used to simplify the lookup table entries of type
/// CPU_SMM_SAVE_STATE_REGISTER_RANGE
///
#define SMM_REGISTER_RANGE(Start, End)  { Start, End, End - Start + 1 }

///
/// Structure used to describe a range of registers
///
typedef struct {
  EFI_SMM_SAVE_STATE_REGISTER    Start;
  EFI_SMM_SAVE_STATE_REGISTER    End;
  UINTN                          Length;
} CPU_SMM_SAVE_STATE_REGISTER_RANGE;

///
/// Structure used to build a lookup table to retrieve the widths and offsets
/// associated with each supported EFI_SMM_SAVE_STATE_REGISTER value
///

#define SMM_SAVE_STATE_REGISTER_FIRST_INDEX  1

typedef struct {
  UINT8      Width32;
  UINT8      Width64;
  UINT16     Offset32;
  UINT16     Offset64Lo;
  UINT16     Offset64Hi;
  BOOLEAN    Writeable;
} CPU_SMM_SAVE_STATE_LOOKUP_ENTRY;

///
/// Table used by GetRegisterIndex() to convert an EFI_SMM_SAVE_STATE_REGISTER
/// value to an index into a table of type CPU_SMM_SAVE_STATE_LOOKUP_ENTRY
///
STATIC CONST CPU_SMM_SAVE_STATE_REGISTER_RANGE  mSmmCpuRegisterRanges[] = {
  SMM_REGISTER_RANGE (
    EFI_SMM_SAVE_STATE_REGISTER_GDTBASE,
    EFI_SMM_SAVE_STATE_REGISTER_LDTINFO
    ),
  SMM_REGISTER_RANGE (
    EFI_SMM_SAVE_STATE_REGISTER_ES,
    EFI_SMM_SAVE_STATE_REGISTER_RIP
    ),
  SMM_REGISTER_RANGE (
    EFI_SMM_SAVE_STATE_REGISTER_RFLAGS,
    EFI_SMM_SAVE_STATE_REGISTER_CR4
    ),
  { (EFI_SMM_SAVE_STATE_REGISTER)0,     (EFI_SMM_SAVE_STATE_REGISTER)0,0 }
};

///
/// Lookup table used to retrieve the widths and offsets associated with each
/// supported EFI_SMM_SAVE_STATE_REGISTER value
///
STATIC CONST CPU_SMM_SAVE_STATE_LOOKUP_ENTRY  mSmmCpuWidthOffset[] = {
  {
    0,                                    // Width32
    0,                                    // Width64
    0,                                    // Offset32
    0,                                    // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // Reserved

  //
  // CPU Save State registers defined in PI SMM CPU Protocol.
  //
  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._GDTRBase),       // Offset64Lo
    SMM_CPU_OFFSET (x64._GDTRBase) + 4,   // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_GDTBASE = 4

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._IDTRBase),       // Offset64Lo
    SMM_CPU_OFFSET (x64._IDTRBase) + 4,   // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_IDTBASE = 5

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._LDTRBase),       // Offset64Lo
    SMM_CPU_OFFSET (x64._LDTRBase) + 4,   // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_LDTBASE = 6

  {
    0,                                    // Width32
    0,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._GDTRLimit),      // Offset64Lo
    SMM_CPU_OFFSET (x64._GDTRLimit) + 4,  // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_GDTLIMIT = 7

  {
    0,                                    // Width32
    0,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._IDTRLimit),      // Offset64Lo
    SMM_CPU_OFFSET (x64._IDTRLimit) + 4,  // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_IDTLIMIT = 8

  {
    0,                                    // Width32
    0,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._LDTRLimit),      // Offset64Lo
    SMM_CPU_OFFSET (x64._LDTRLimit) + 4,  // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_LDTLIMIT = 9

  {
    0,                                    // Width32
    0,                                    // Width64
    0,                                    // Offset32
    0,                                    // Offset64Lo
    0 + 4,                                // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_LDTINFO = 10

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._ES),             // Offset32
    SMM_CPU_OFFSET (x64._ES),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_ES = 20

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._CS),             // Offset32
    SMM_CPU_OFFSET (x64._CS),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_CS = 21

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._SS),             // Offset32
    SMM_CPU_OFFSET (x64._SS),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_SS = 22

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._DS),             // Offset32
    SMM_CPU_OFFSET (x64._DS),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_DS = 23

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._FS),             // Offset32
    SMM_CPU_OFFSET (x64._FS),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_FS = 24

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._GS),             // Offset32
    SMM_CPU_OFFSET (x64._GS),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_GS = 25

  {
    0,                                    // Width32
    4,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._LDTR),           // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_LDTR_SEL = 26

  {
    4,                                    // Width32
    4,                                    // Width64
    SMM_CPU_OFFSET (x86._TR),             // Offset32
    SMM_CPU_OFFSET (x64._TR),             // Offset64Lo
    0,                                    // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_TR_SEL = 27

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._DR7),            // Offset32
    SMM_CPU_OFFSET (x64._DR7),            // Offset64Lo
    SMM_CPU_OFFSET (x64._DR7) + 4,        // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_DR7 = 28

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._DR6),            // Offset32
    SMM_CPU_OFFSET (x64._DR6),            // Offset64Lo
    SMM_CPU_OFFSET (x64._DR6) + 4,        // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_DR6 = 29

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R8),             // Offset64Lo
    SMM_CPU_OFFSET (x64._R8) + 4,         // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R8 = 30

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R9),             // Offset64Lo
    SMM_CPU_OFFSET (x64._R9) + 4,         // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R9 = 31

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R10),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R10) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R10 = 32

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R11),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R11) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R11 = 33

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R12),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R12) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R12 = 34

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R13),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R13) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R13 = 35

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R14),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R14) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R14 = 36

  {
    0,                                    // Width32
    8,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._R15),            // Offset64Lo
    SMM_CPU_OFFSET (x64._R15) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_R15 = 37

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EAX),            // Offset32
    SMM_CPU_OFFSET (x64._RAX),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RAX) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RAX = 38

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EBX),            // Offset32
    SMM_CPU_OFFSET (x64._RBX),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RBX) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RBX = 39

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._ECX),            // Offset32
    SMM_CPU_OFFSET (x64._RCX),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RCX) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RCX = 40

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EDX),            // Offset32
    SMM_CPU_OFFSET (x64._RDX),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RDX) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RDX = 41

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._ESP),            // Offset32
    SMM_CPU_OFFSET (x64._RSP),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RSP) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RSP = 42

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EBP),            // Offset32
    SMM_CPU_OFFSET (x64._RBP),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RBP) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RBP = 43

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._ESI),            // Offset32
    SMM_CPU_OFFSET (x64._RSI),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RSI) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RSI = 44

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EDI),            // Offset32
    SMM_CPU_OFFSET (x64._RDI),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RDI) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RDI = 45

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EIP),            // Offset32
    SMM_CPU_OFFSET (x64._RIP),            // Offset64Lo
    SMM_CPU_OFFSET (x64._RIP) + 4,        // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RIP = 46

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._EFLAGS),         // Offset32
    SMM_CPU_OFFSET (x64._RFLAGS),         // Offset64Lo
    SMM_CPU_OFFSET (x64._RFLAGS) + 4,     // Offset64Hi
    TRUE                                  // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_RFLAGS = 51

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._CR0),            // Offset32
    SMM_CPU_OFFSET (x64._CR0),            // Offset64Lo
    SMM_CPU_OFFSET (x64._CR0) + 4,        // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_CR0 = 52

  {
    4,                                    // Width32
    8,                                    // Width64
    SMM_CPU_OFFSET (x86._CR3),            // Offset32
    SMM_CPU_OFFSET (x64._CR3),            // Offset64Lo
    SMM_CPU_OFFSET (x64._CR3) + 4,        // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_CR3 = 53

  {
    0,                                    // Width32
    4,                                    // Width64
    0,                                    // Offset32
    SMM_CPU_OFFSET (x64._CR4),            // Offset64Lo
    SMM_CPU_OFFSET (x64._CR4) + 4,        // Offset64Hi
    FALSE                                 // Writeable
  }, // EFI_SMM_SAVE_STATE_REGISTER_CR4 = 54
};

//
// No support for I/O restart
//

/**
  Read information from the CPU save state.

  @param  Register  Specifies the CPU register to read form the save state.

  @retval 0   Register is not valid
  @retval >0  Index into mSmmCpuWidthOffset[] associated with Register

**/
STATIC
UINTN
GetRegisterIndex (
  IN EFI_SMM_SAVE_STATE_REGISTER  Register
  )
{
  UINTN  Index;
  UINTN  Offset;

  for (Index = 0, Offset = SMM_SAVE_STATE_REGISTER_FIRST_INDEX;
       mSmmCpuRegisterRanges[Index].Length != 0;
       Index++)
  {
    if ((Register >= mSmmCpuRegisterRanges[Index].Start) &&
        (Register <= mSmmCpuRegisterRanges[Index].End))
    {
      return Register - mSmmCpuRegisterRanges[Index].Start + Offset;
    }

    Offset += mSmmCpuRegisterRanges[Index].Length;
  }

  return 0;
}

/**
  Read a CPU Save State register on the target processor.

  This function abstracts the differences that whether the CPU Save State
  register is in the IA32 CPU Save State Map or X64 CPU Save State Map.

  This function supports reading a CPU Save State register in SMBase relocation
  handler.

  @param[in]  CpuIndex       Specifies the zero-based index of the CPU save
                             state.
  @param[in]  RegisterIndex  Index into mSmmCpuWidthOffset[] look up table.
  @param[in]  Width          The number of bytes to read from the CPU save
                             state.
  @param[out] Buffer         Upon return, this holds the CPU register value
                             read from the save state.

  @retval EFI_SUCCESS           The register was read from Save State.
  @retval EFI_NOT_FOUND         The register is not defined for the Save State
                                of Processor.
  @retval EFI_INVALID_PARAMTER  This or Buffer is NULL.

**/
STATIC
EFI_STATUS
ReadSaveStateRegisterByIndex (
  IN UINTN  CpuIndex,
  IN UINTN  RegisterIndex,
  IN UINTN  Width,
  OUT VOID  *Buffer
  )
{
  QEMU_SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex];

  if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) {
    //
    // If 32-bit mode width is zero, then the specified register can not be
    // accessed
    //
    if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) {
      return EFI_NOT_FOUND;
    }

    //
    // If Width is bigger than the 32-bit mode width, then the specified
    // register can not be accessed
    //
    if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Write return buffer
    //
    ASSERT (CpuSaveState != NULL);
    CopyMem (
      Buffer,
      (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32,
      Width
      );
  } else {
    //
    // If 64-bit mode width is zero, then the specified register can not be
    // accessed
    //
    if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) {
      return EFI_NOT_FOUND;
    }

    //
    // If Width is bigger than the 64-bit mode width, then the specified
    // register can not be accessed
    //
    if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Write lower 32-bits of return buffer
    //
    CopyMem (
      Buffer,
      (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo,
      MIN (4, Width)
      );
    if (Width >= 4) {
      //
      // Write upper 32-bits of return buffer
      //
      CopyMem (
        (UINT8 *)Buffer + 4,
        (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi,
        Width - 4
        );
    }
  }

  return EFI_SUCCESS;
}

/**
  Read an SMM Save State register on the target processor.  If this function
  returns EFI_UNSUPPORTED, then the caller is responsible for reading the
  SMM Save Sate register.

  @param[in]  CpuIndex  The index of the CPU to read the SMM Save State.  The
                        value must be between 0 and the NumberOfCpus field in
                        the System Management System Table (SMST).
  @param[in]  Register  The SMM Save State register to read.
  @param[in]  Width     The number of bytes to read from the CPU save state.
  @param[out] Buffer    Upon return, this holds the CPU register value read
                        from the save state.

  @retval EFI_SUCCESS           The register was read from Save State.
  @retval EFI_INVALID_PARAMTER  Buffer is NULL.
  @retval EFI_UNSUPPORTED       This function does not support reading
                                Register.
**/
EFI_STATUS
EFIAPI
SmmCpuFeaturesReadSaveStateRegister (
  IN  UINTN                        CpuIndex,
  IN  EFI_SMM_SAVE_STATE_REGISTER  Register,
  IN  UINTN                        Width,
  OUT VOID                         *Buffer
  )
{
  UINTN                      RegisterIndex;
  QEMU_SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  //
  // Check for special EFI_SMM_SAVE_STATE_REGISTER_LMA
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) {
    //
    // Only byte access is supported for this register
    //
    if (Width != 1) {
      return EFI_INVALID_PARAMETER;
    }

    CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex];

    //
    // Check CPU mode
    //
    if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) {
      *(UINT8 *)Buffer = 32;
    } else {
      *(UINT8 *)Buffer = 64;
    }

    return EFI_SUCCESS;
  }

  //
  // Check for special EFI_SMM_SAVE_STATE_REGISTER_IO
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) {
    return EFI_NOT_FOUND;
  }

  //
  // Convert Register to a register lookup table index.  Let
  // PiSmmCpuDxeSmm implement other special registers (currently
  // there is only EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID).
  //
  RegisterIndex = GetRegisterIndex (Register);
  if (RegisterIndex == 0) {
    return (Register < EFI_SMM_SAVE_STATE_REGISTER_IO ?
            EFI_NOT_FOUND :
            EFI_UNSUPPORTED);
  }

  return ReadSaveStateRegisterByIndex (CpuIndex, RegisterIndex, Width, Buffer);
}

/**
  Writes an SMM Save State register on the target processor.  If this function
  returns EFI_UNSUPPORTED, then the caller is responsible for writing the
  SMM Save Sate register.

  @param[in] CpuIndex  The index of the CPU to write the SMM Save State.  The
                       value must be between 0 and the NumberOfCpus field in
                       the System Management System Table (SMST).
  @param[in] Register  The SMM Save State register to write.
  @param[in] Width     The number of bytes to write to the CPU save state.
  @param[in] Buffer    Upon entry, this holds the new CPU register value.

  @retval EFI_SUCCESS           The register was written to Save State.
  @retval EFI_INVALID_PARAMTER  Buffer is NULL.
  @retval EFI_UNSUPPORTED       This function does not support writing
                                Register.
**/
EFI_STATUS
EFIAPI
SmmCpuFeaturesWriteSaveStateRegister (
  IN UINTN                        CpuIndex,
  IN EFI_SMM_SAVE_STATE_REGISTER  Register,
  IN UINTN                        Width,
  IN CONST VOID                   *Buffer
  )
{
  UINTN                      RegisterIndex;
  QEMU_SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  //
  // Writes to EFI_SMM_SAVE_STATE_REGISTER_LMA are ignored
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) {
    return EFI_SUCCESS;
  }

  //
  // Writes to EFI_SMM_SAVE_STATE_REGISTER_IO are not supported
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) {
    return EFI_NOT_FOUND;
  }

  //
  // Convert Register to a register lookup table index.  Let
  // PiSmmCpuDxeSmm implement other special registers (currently
  // there is only EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID).
  //
  RegisterIndex = GetRegisterIndex (Register);
  if (RegisterIndex == 0) {
    return (Register < EFI_SMM_SAVE_STATE_REGISTER_IO ?
            EFI_NOT_FOUND :
            EFI_UNSUPPORTED);
  }

  CpuSaveState = (QEMU_SMRAM_SAVE_STATE_MAP *)gSmst->CpuSaveState[CpuIndex];

  //
  // Do not write non-writable SaveState, because it will cause exception.
  //
  if (!mSmmCpuWidthOffset[RegisterIndex].Writeable) {
    return EFI_UNSUPPORTED;
  }

  //
  // Check CPU mode
  //
  if ((CpuSaveState->x86.SMMRevId & 0xFFFF) == 0) {
    //
    // If 32-bit mode width is zero, then the specified register can not be
    // accessed
    //
    if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) {
      return EFI_NOT_FOUND;
    }

    //
    // If Width is bigger than the 32-bit mode width, then the specified
    // register can not be accessed
    //
    if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Write SMM State register
    //
    ASSERT (CpuSaveState != NULL);
    CopyMem (
      (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32,
      Buffer,
      Width
      );
  } else {
    //
    // If 64-bit mode width is zero, then the specified register can not be
    // accessed
    //
    if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) {
      return EFI_NOT_FOUND;
    }

    //
    // If Width is bigger than the 64-bit mode width, then the specified
    // register can not be accessed
    //
    if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) {
      return EFI_INVALID_PARAMETER;
    }

    //
    // Write lower 32-bits of SMM State register
    //
    CopyMem (
      (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo,
      Buffer,
      MIN (4, Width)
      );
    if (Width >= 4) {
      //
      // Write upper 32-bits of SMM State register
      //
      CopyMem (
        (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi,
        (UINT8 *)Buffer + 4,
        Width - 4
        );
    }
  }

  return EFI_SUCCESS;
}

/**
  This function is hook point called after the gEfiSmmReadyToLockProtocolGuid
  notification is completely processed.
**/
VOID
EFIAPI
SmmCpuFeaturesCompleteSmmReadyToLock (
  VOID
  )
{
}

/**
  This API provides a method for a CPU to allocate a specific region for
  storing page tables.

  This API can be called more once to allocate memory for page tables.

  Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns
  a pointer to the allocated buffer.  The buffer returned is aligned on a 4KB
  boundary.  If Pages is 0, then NULL is returned.  If there is not enough
  memory remaining to satisfy the request, then NULL is returned.

  This function can also return NULL if there is no preference on where the
  page tables are allocated in SMRAM.

  @param  Pages                 The number of 4 KB pages to allocate.

  @return A pointer to the allocated buffer for page tables.
  @retval NULL      Fail to allocate a specific region for storing page tables,
                    Or there is no preference on where the page tables are
                    allocated in SMRAM.

**/
VOID *
EFIAPI
SmmCpuFeaturesAllocatePageTableMemory (
  IN UINTN  Pages
  )
{
  return NULL;
}