summaryrefslogtreecommitdiffstats
path: root/PcAtChipsetPkg/Library/AcpiTimerLib/AcpiTimerLib.c
blob: b184c49ee7d0e75556b876ca7a7d4b7b5b0e7e9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/** @file
  ACPI Timer implements one instance of Timer Library.

  Copyright (c) 2013 - 2014, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include <Base.h>
#include <Library/TimerLib.h>
#include <Library/BaseLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/IoLib.h>
#include <Library/DebugLib.h>
#include <IndustryStandard/Acpi.h>

/**
  Internal function to retrieves the 64-bit frequency in Hz.

  Internal function to retrieves the 64-bit frequency in Hz.

  @return The frequency in Hz.

**/
UINT64
InternalGetPerformanceCounterFrequency (
  VOID
  );

/**
  The constructor function enables ACPI IO space.

  If ACPI I/O space not enabled, this function will enable it.
  It will always return RETURN_SUCCESS.

  @retval EFI_SUCCESS   The constructor always returns RETURN_SUCCESS.

**/
RETURN_STATUS
EFIAPI
AcpiTimerLibConstructor (
  VOID
  )
{
  UINTN   Bus;
  UINTN   Device;
  UINTN   Function;
  UINTN   EnableRegister;
  UINT8   EnableMask;

  //
  // ASSERT for the invalid PCD values. They must be configured to the real value. 
  //
  ASSERT (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0xFFFF);
  ASSERT (PcdGet16 (PcdAcpiIoPortBaseAddress)      != 0xFFFF);

  //
  // If the register offset to the BAR for the ACPI I/O Port Base Address is 0x0000, then 
  // no PCI register programming is required to enable access to the the ACPI registers
  // specified by PcdAcpiIoPortBaseAddress
  //
  if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) == 0x0000) {
    return RETURN_SUCCESS;
  }

  //
  // ASSERT for the invalid PCD values. They must be configured to the real value. 
  //
  ASSERT (PcdGet8  (PcdAcpiIoPciDeviceNumber)   != 0xFF);
  ASSERT (PcdGet8  (PcdAcpiIoPciFunctionNumber) != 0xFF);
  ASSERT (PcdGet16 (PcdAcpiIoPciEnableRegisterOffset) != 0xFFFF);

  //
  // Retrieve the PCD values for the PCI configuration space required to program the ACPI I/O Port Base Address
  //
  Bus            = PcdGet8  (PcdAcpiIoPciBusNumber);
  Device         = PcdGet8  (PcdAcpiIoPciDeviceNumber);
  Function       = PcdGet8  (PcdAcpiIoPciFunctionNumber);
  EnableRegister = PcdGet16 (PcdAcpiIoPciEnableRegisterOffset);
  EnableMask     = PcdGet8  (PcdAcpiIoBarEnableMask);

  //
  // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.
  //
  if ((PciRead8 (PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister) & EnableMask) != EnableMask)) {
    PciWrite16 (
      PCI_LIB_ADDRESS (Bus, Device, Function, PcdGet16 (PcdAcpiIoPciBarRegisterOffset)),
      PcdGet16 (PcdAcpiIoPortBaseAddress)
      );
    PciOr8 (
      PCI_LIB_ADDRESS (Bus, Device, Function, EnableRegister),
      EnableMask
      );
  }
  
  return RETURN_SUCCESS;
}

/**
  Internal function to retrieve the ACPI I/O Port Base Address.

  Internal function to retrieve the ACPI I/O Port Base Address.

  @return The 16-bit ACPI I/O Port Base Address.

**/
UINT16
InternalAcpiGetAcpiTimerIoPort (
  VOID
  )
{
  UINT16  Port;
  
  Port = PcdGet16 (PcdAcpiIoPciBarRegisterOffset);
  
  //
  // If the register offset to the BAR for the ACPI I/O Port Base Address is not 0x0000, then 
  // read the PCI register for the APCI BAR value in case the BAR has been programmed to a 
  // value other than PcdAcpiIoPortBaseAddress
  //
  if (PcdGet16 (PcdAcpiIoPciBarRegisterOffset) != 0x0000) {
    Port = PciRead16 (PCI_LIB_ADDRESS (
                        PcdGet8  (PcdAcpiIoPciBusNumber), 
                        PcdGet8  (PcdAcpiIoPciDeviceNumber), 
                        PcdGet8  (PcdAcpiIoPciFunctionNumber), 
                        PcdGet16 (PcdAcpiIoPciBarRegisterOffset)
                        ));
  }
  
  return (Port & ~BIT0) + PcdGet16 (PcdAcpiPm1TmrOffset);
}

/**
  Stalls the CPU for at least the given number of ticks.

  Stalls the CPU for at least the given number of ticks. It's invoked by
  MicroSecondDelay() and NanoSecondDelay().

  @param  Delay     A period of time to delay in ticks.

**/
VOID
InternalAcpiDelay (
  IN UINT32  Delay
  )
{
  UINT16   Port;
  UINT32   Ticks;
  UINT32   Times;

  Port   = InternalAcpiGetAcpiTimerIoPort ();
  Times  = Delay >> 22;
  Delay &= BIT22 - 1;
  do {
    //
    // The target timer count is calculated here
    //
    Ticks = IoRead32 (Port) + Delay;
    Delay = BIT22;
    //
    // Wait until time out
    // Delay >= 2^23 could not be handled by this function
    // Timer wrap-arounds are handled correctly by this function
    //
    while (((Ticks - IoRead32 (Port)) & BIT23) == 0) {
      CpuPause ();
    }
  } while (Times-- > 0);
}

/**
  Stalls the CPU for at least the given number of microseconds.

  Stalls the CPU for the number of microseconds specified by MicroSeconds.

  @param  MicroSeconds  The minimum number of microseconds to delay.

  @return MicroSeconds

**/
UINTN
EFIAPI
MicroSecondDelay (
  IN UINTN  MicroSeconds
  )
{
  InternalAcpiDelay (
    (UINT32)DivU64x32 (
              MultU64x32 (
                MicroSeconds,
                ACPI_TIMER_FREQUENCY
                ),
              1000000u
              )
    );
  return MicroSeconds;
}

/**
  Stalls the CPU for at least the given number of nanoseconds.

  Stalls the CPU for the number of nanoseconds specified by NanoSeconds.

  @param  NanoSeconds The minimum number of nanoseconds to delay.

  @return NanoSeconds

**/
UINTN
EFIAPI
NanoSecondDelay (
  IN UINTN  NanoSeconds
  )
{
  InternalAcpiDelay (
    (UINT32)DivU64x32 (
              MultU64x32 (
                NanoSeconds,
                ACPI_TIMER_FREQUENCY
                ),
              1000000000u
              )
    );
  return NanoSeconds;
}

/**
  Retrieves the current value of a 64-bit free running performance counter.

  Retrieves the current value of a 64-bit free running performance counter. The
  counter can either count up by 1 or count down by 1. If the physical
  performance counter counts by a larger increment, then the counter values
  must be translated. The properties of the counter can be retrieved from
  GetPerformanceCounterProperties().

  @return The current value of the free running performance counter.

**/
UINT64
EFIAPI
GetPerformanceCounter (
  VOID
  )
{
  return AsmReadTsc ();
}

/**
  Retrieves the 64-bit frequency in Hz and the range of performance counter
  values.

  If StartValue is not NULL, then the value that the performance counter starts
  with immediately after is it rolls over is returned in StartValue. If
  EndValue is not NULL, then the value that the performance counter end with
  immediately before it rolls over is returned in EndValue. The 64-bit
  frequency of the performance counter in Hz is always returned. If StartValue
  is less than EndValue, then the performance counter counts up. If StartValue
  is greater than EndValue, then the performance counter counts down. For
  example, a 64-bit free running counter that counts up would have a StartValue
  of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
  that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.

  @param  StartValue  The value the performance counter starts with when it
                      rolls over.
  @param  EndValue    The value that the performance counter ends with before
                      it rolls over.

  @return The frequency in Hz.

**/
UINT64
EFIAPI
GetPerformanceCounterProperties (
  OUT UINT64  *StartValue,  OPTIONAL
  OUT UINT64  *EndValue     OPTIONAL
  )
{
  if (StartValue != NULL) {
    *StartValue = 0;
  }

  if (EndValue != NULL) {
    *EndValue = 0xffffffffffffffffULL;
  }
  return InternalGetPerformanceCounterFrequency ();
}

/**
  Converts elapsed ticks of performance counter to time in nanoseconds.

  This function converts the elapsed ticks of running performance counter to
  time value in unit of nanoseconds.

  @param  Ticks     The number of elapsed ticks of running performance counter.

  @return The elapsed time in nanoseconds.

**/
UINT64
EFIAPI
GetTimeInNanoSecond (
  IN UINT64  Ticks
  )
{
  UINT64  Frequency;
  UINT64  NanoSeconds;
  UINT64  Remainder;
  INTN    Shift;

  Frequency = GetPerformanceCounterProperties (NULL, NULL);

  //
  //          Ticks
  // Time = --------- x 1,000,000,000
  //        Frequency
  //
  NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);

  //
  // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.
  // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,
  // i.e. highest bit set in Remainder should <= 33.
  //
  Shift = MAX (0, HighBitSet64 (Remainder) - 33);
  Remainder = RShiftU64 (Remainder, (UINTN) Shift);
  Frequency = RShiftU64 (Frequency, (UINTN) Shift);
  NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);

  return NanoSeconds;
}