1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/** @file
A sample PRM Module implementation. This PRM Module provides PRM handlers that perform various types
of hardware access. This is simply meant to demonstrate hardware access capabilities from a PRM handler.
Copyright (c) Microsoft Corporation
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PrmModule.h>
#include <Library/BaseLib.h>
#include <Library/MtrrLib.h>
#include <Library/UefiLib.h>
#include <Register/Intel/ArchitecturalMsr.h>
#include <Register/Intel/Cpuid.h>
#include "Hpet.h"
//
// PRM Handler GUIDs
//
// {2120cd3c-848b-4d8f-abbb-4b74ce64ac89}
#define MSR_ACCESS_MICROCODE_SIGNATURE_PRM_HANDLER_GUID {0x2120cd3c, 0x848b, 0x4d8f, {0xab, 0xbb, 0x4b, 0x74, 0xce, 0x64, 0xac, 0x89}}
// {ea0935a7-506b-4159-bbbb-48deeecb6f58}
#define MSR_ACCESS_MTRR_DUMP_PRM_HANDLER_GUID {0xea0935a7, 0x506b, 0x4159, {0xbb, 0xbb, 0x48, 0xde, 0xee, 0xcb, 0x6f, 0x58}}
// {1bd1bda9-909a-4614-9699-25ec0c2783f7}
#define MMIO_ACCESS_HPET_PRM_HANDLER_GUID {0x1bd1bda9, 0x909a, 0x4614, {0x96, 0x99, 0x25, 0xec, 0x0c, 0x27, 0x83, 0xf7}}
//
// BEGIN: MtrrLib internal library globals and function prototypes here for testing
//
extern CONST CHAR8 *mMtrrMemoryCacheTypeShortName[];
/**
Initializes the valid bits mask and valid address mask for MTRRs.
This function initializes the valid bits mask and valid address mask for MTRRs.
@param[out] MtrrValidBitsMask The mask for the valid bit of the MTRR
@param[out] MtrrValidAddressMask The valid address mask for the MTRR
**/
VOID
MtrrLibInitializeMtrrMask (
OUT UINT64 *MtrrValidBitsMask,
OUT UINT64 *MtrrValidAddressMask
);
/**
Convert variable MTRRs to a RAW MTRR_MEMORY_RANGE array.
One MTRR_MEMORY_RANGE element is created for each MTRR setting.
The routine doesn't remove the overlap or combine the near-by region.
@param[in] VariableSettings The variable MTRR values to shadow
@param[in] VariableMtrrCount The number of variable MTRRs
@param[in] MtrrValidBitsMask The mask for the valid bit of the MTRR
@param[in] MtrrValidAddressMask The valid address mask for MTRR
@param[out] VariableMtrr The array to shadow variable MTRRs content
@return Number of MTRRs which has been used.
**/
UINT32
MtrrLibGetRawVariableRanges (
IN MTRR_VARIABLE_SETTINGS *VariableSettings,
IN UINTN VariableMtrrCount,
IN UINT64 MtrrValidBitsMask,
IN UINT64 MtrrValidAddressMask,
OUT MTRR_MEMORY_RANGE *VariableMtrr
);
/**
Apply the fixed MTRR settings to memory range array.
@param Fixed The fixed MTRR settings.
@param Ranges Return the memory range array holding memory type
settings for all memory address.
@param RangeCapacity The capacity of memory range array.
@param RangeCount Return the count of memory range.
@retval RETURN_SUCCESS The memory range array is returned successfully.
@retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity.
**/
RETURN_STATUS
MtrrLibApplyFixedMtrrs (
IN MTRR_FIXED_SETTINGS *Fixed,
IN OUT MTRR_MEMORY_RANGE *Ranges,
IN UINTN RangeCapacity,
IN OUT UINTN *RangeCount
);
/**
Apply the variable MTRR settings to memory range array.
@param VariableMtrr The variable MTRR array.
@param VariableMtrrCount The count of variable MTRRs.
@param Ranges Return the memory range array with new MTRR settings applied.
@param RangeCapacity The capacity of memory range array.
@param RangeCount Return the count of memory range.
@retval RETURN_SUCCESS The memory range array is returned successfully.
@retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity.
**/
RETURN_STATUS
MtrrLibApplyVariableMtrrs (
IN CONST MTRR_MEMORY_RANGE *VariableMtrr,
IN UINT32 VariableMtrrCount,
IN OUT MTRR_MEMORY_RANGE *Ranges,
IN UINTN RangeCapacity,
IN OUT UINTN *RangeCount
);
//
// END: MtrrLib internal library function prototypes here for testing
//
/**
Accesses MTRR values including architectural and variable MTRRs.
**/
VOID
EFIAPI
AccessAllMtrrs (
VOID
)
{
MTRR_SETTINGS LocalMtrrs;
MTRR_SETTINGS *Mtrrs;
UINTN RangeCount;
UINT64 MtrrValidBitsMask;
UINT64 MtrrValidAddressMask;
UINT32 VariableMtrrCount;
MTRR_MEMORY_RANGE Ranges[
MTRR_NUMBER_OF_FIXED_MTRR * sizeof (UINT64) + 2 * ARRAY_SIZE (Mtrrs->Variables.Mtrr) + 1
];
MTRR_MEMORY_RANGE RawVariableRanges[ARRAY_SIZE (Mtrrs->Variables.Mtrr)];
if (!IsMtrrSupported ()) {
return;
}
VariableMtrrCount = GetVariableMtrrCount ();
MtrrGetAllMtrrs (&LocalMtrrs);
Mtrrs = &LocalMtrrs;
MtrrLibInitializeMtrrMask (&MtrrValidBitsMask, &MtrrValidAddressMask);
Ranges[0].BaseAddress = 0;
Ranges[0].Length = MtrrValidBitsMask + 1;
Ranges[0].Type = MtrrGetDefaultMemoryType ();
RangeCount = 1;
MtrrLibGetRawVariableRanges (
&Mtrrs->Variables, VariableMtrrCount,
MtrrValidBitsMask, MtrrValidAddressMask, RawVariableRanges
);
MtrrLibApplyVariableMtrrs (
RawVariableRanges, VariableMtrrCount,
Ranges, ARRAY_SIZE (Ranges), &RangeCount
);
MtrrLibApplyFixedMtrrs (&Mtrrs->Fixed, Ranges, ARRAY_SIZE (Ranges), &RangeCount);
}
/**
Reads a HPET MMIO register.
Reads the 64-bit HPET MMIO register specified by Address.
This function must guarantee that all MMIO read and write
operations are serialized.
If Address is not aligned on a 64-bit boundary, zero will be returned.
@param Offset Specifies the offset of the HPET register to read.
@return The value read.
**/
UINT64
EFIAPI
HpetRead (
IN UINTN Offset
)
{
UINTN Address;
UINT64 Value;
Address = HPET_BASE_ADDRESS + Offset;
if ((Address & 7) == 0) {
return 0;
}
MemoryFence ();
Value = *(volatile UINT64*)Address;
MemoryFence ();
return Value;
}
/**
Accesses HPET configuration information.
**/
VOID
EFIAPI
AccessHpetConfiguration (
VOID
)
{
HpetRead (HPET_GENERAL_CAPABILITIES_ID_OFFSET);
HpetRead (HPET_GENERAL_CONFIGURATION_OFFSET);
}
/**
Reads the microcode signature from architectural MSR 0x8B.
@retval MicrocodeSignature The microcode signature value.
**/
UINT32
GetMicrocodeSignature (
VOID
)
{
MSR_IA32_BIOS_SIGN_ID_REGISTER BiosSignIdMsr;
AsmWriteMsr64 (MSR_IA32_BIOS_SIGN_ID, 0);
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, NULL);
BiosSignIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_BIOS_SIGN_ID);
return BiosSignIdMsr.Bits.MicrocodeUpdateSignature;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read the microcode update signature.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MsrAccessMicrocodeSignaturePrmHandler)
{
UINT32 MicrocodeSignature;
MicrocodeSignature = 0;
MicrocodeSignature = GetMicrocodeSignature ();
if (MicrocodeSignature == 0) {
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read the current MTRR settings.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MsrAccessMtrrDumpPrmHandler)
{
AccessAllMtrrs ();
return EFI_SUCCESS;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read from a HPET MMIO resource.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MmioAccessHpetPrmHandler)
{
AccessHpetConfiguration ();
return EFI_SUCCESS;
}
//
// Register the PRM export information for this PRM Module
//
PRM_MODULE_EXPORT (
PRM_HANDLER_EXPORT_ENTRY (MSR_ACCESS_MICROCODE_SIGNATURE_PRM_HANDLER_GUID, MsrAccessMicrocodeSignaturePrmHandler),
PRM_HANDLER_EXPORT_ENTRY (MSR_ACCESS_MTRR_DUMP_PRM_HANDLER_GUID, MsrAccessMtrrDumpPrmHandler),
PRM_HANDLER_EXPORT_ENTRY (MMIO_ACCESS_HPET_PRM_HANDLER_GUID, MmioAccessHpetPrmHandler)
);
/**
Module entry point.
@param[in] ImageHandle The image handle.
@param[in] SystemTable A pointer to the system table.
@retval EFI_SUCCESS This function always returns success.
**/
EFI_STATUS
EFIAPI
PrmSampleHardwareAccessModuleInit (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return EFI_SUCCESS;
}
|