1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
|
/************************************************************************
*
* Copyright (c) 2013-2015 Intel Corporation.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
* This file contains all of the Cat Mountain Memory Reference Code (MRC).
*
* These functions are generic and should work for any Cat Mountain config.
*
* MRC requires two data structures to be passed in which are initialised by "PreMemInit()".
*
* The basic flow is as follows:
* 01) Check for supported DDR speed configuration
* 02) Set up MEMORY_MANAGER buffer as pass-through (POR)
* 03) Set Channel Interleaving Mode and Channel Stride to the most aggressive setting possible
* 04) Set up the MCU logic
* 05) Set up the DDR_PHY logic
* 06) Initialise the DRAMs (JEDEC)
* 07) Perform the Receive Enable Calibration algorithm
* 08) Perform the Write Leveling algorithm
* 09) Perform the Read Training algorithm (includes internal Vref)
* 10) Perform the Write Training algorithm
* 11) Set Channel Interleaving Mode and Channel Stride to the desired settings
*
* Dunit configuration based on Valleyview MRC.
*
***************************************************************************/
#include "mrc.h"
#include "memory_options.h"
#include "meminit.h"
#include "meminit_utils.h"
#include "hte.h"
#include "io.h"
// Override ODT to off state if requested
#define DRMC_DEFAULT (mrc_params->rd_odt_value==0?BIT12:0)
// tRFC values (in picoseconds) per density
const uint32_t tRFC[5] =
{
90000, // 512Mb
110000, // 1Gb
160000, // 2Gb
300000, // 4Gb
350000, // 8Gb
};
// tCK clock period in picoseconds per speed index 800, 1066, 1333
const uint32_t tCK[3] =
{
2500,
1875,
1500
};
#ifdef SIM
// Select static timings specific to simulation environment
#define PLATFORM_ID 0
#else
// Select static timings specific to ClantonPeek platform
#define PLATFORM_ID 1
#endif
// Global variables
const uint16_t ddr_wclk[] =
{193, 158};
const uint16_t ddr_wctl[] =
{ 1, 217};
const uint16_t ddr_wcmd[] =
{ 1, 220};
#ifdef BACKUP_RCVN
const uint16_t ddr_rcvn[] =
{129, 498};
#endif // BACKUP_RCVN
#ifdef BACKUP_WDQS
const uint16_t ddr_wdqs[] =
{ 65, 289};
#endif // BACKUP_WDQS
#ifdef BACKUP_RDQS
const uint8_t ddr_rdqs[] =
{ 32, 24};
#endif // BACKUP_RDQS
#ifdef BACKUP_WDQ
const uint16_t ddr_wdq[] =
{ 32, 257};
#endif // BACKUP_WDQ
// Select MEMORY_MANAGER as the source for PRI interface
static void select_memory_manager(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Select HTE as the source for PRI interface
void select_hte(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 1; //1 - PRI owned by HTE
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Send DRAM command, data should be formated
// using DCMD_Xxxx macro or emrsXCommand structure.
static void dram_init_command(
uint32_t data)
{
Wr32(DCMD, 0, data);
}
// Send DRAM wake command using special MCU side-band WAKE opcode
static void dram_wake_command(
void)
{
ENTERFN();
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG),
(uint32_t) SB_COMMAND(SB_WAKE_CMND_OPCODE, MCU, 0));
LEAVEFN();
}
// Stop self refresh driven by MCU
static void clear_self_refresh(
MRCParams_t *mrc_params)
{
ENTERFN();
// clear the PMSTS Channel Self Refresh bits
isbM32m(MCU, PMSTS, BIT0, BIT0);
LEAVEFN();
}
// Configure MCU before jedec init sequence
static void prog_decode_before_jedec(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDRCF Drfc;
RegDCAL Dcal;
RegDSCH Dsch;
RegDPMC0 Dpmc0;
ENTERFN();
// Disable power saving features
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.CLKGTDIS = 1;
Dpmc0.field.DISPWRDN = 1;
Dpmc0.field.DYNSREN = 0;
Dpmc0.field.PCLSTO = 0;
isbW32m(MCU, DPMC0, Dpmc0.raw);
// Disable out of order transactions
Dsch.raw = isbR32m(MCU, DSCH);
Dsch.field.OOODIS = 1;
Dsch.field.NEWBYPDIS = 1;
isbW32m(MCU, DSCH, Dsch.raw);
// Disable issuing the REF command
Drfc.raw = isbR32m(MCU, DRFC);
Drfc.field.tREFI = 0;
isbW32m(MCU, DRFC, Drfc.raw);
// Disable ZQ calibration short
Dcal.raw = isbR32m(MCU, DCAL);
Dcal.field.ZQCINT = 0;
Dcal.field.SRXZQCL = 0;
isbW32m(MCU, DCAL, Dcal.raw);
// Training performed in address mode 0, rank population has limited impact, however
// simulator complains if enabled non-existing rank.
Drp.raw = 0;
if (mrc_params->rank_enables & 1)
Drp.field.rank0Enabled = 1;
if (mrc_params->rank_enables & 2)
Drp.field.rank1Enabled = 1;
isbW32m(MCU, DRP, Drp.raw);
LEAVEFN();
}
// After Cold Reset, BIOS should set COLDWAKE bit to 1 before
// sending the WAKE message to the Dunit.
// For Standby Exit, or any other mode in which the DRAM is in
// SR, this bit must be set to 0.
static void perform_ddr_reset(
MRCParams_t *mrc_params)
{
ENTERFN();
// Set COLDWAKE bit before sending the WAKE message
isbM32m(MCU, DRMC, BIT16, BIT16);
// Send wake command to DUNIT (MUST be done before JEDEC)
dram_wake_command();
// Set default value
isbW32m(MCU, DRMC, DRMC_DEFAULT);
LEAVEFN();
}
// Dunit Initialisation Complete.
// Indicates that initialisation of the Dunit has completed.
// Memory accesses are permitted and maintenance operation
// begins. Until this bit is set to a 1, the memory controller will
// not accept DRAM requests from the MEMORY_MANAGER or HTE.
static void set_ddr_init_complete(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.IC = 1; //1 - initialisation complete
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
static void prog_page_ctrl(
MRCParams_t *mrc_params)
{
RegDPMC0 Dpmc0;
ENTERFN();
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.PCLSTO = 0x4;
Dpmc0.field.PREAPWDEN = 1;
isbW32m(MCU, DPMC0, Dpmc0.raw);
}
// Configure MCU Power Management Control Register
// and Scheduler Control Register.
static void prog_ddr_control(
MRCParams_t *mrc_params)
{
RegDSCH Dsch;
RegDPMC0 Dpmc0;
ENTERFN();
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dsch.raw = isbR32m(MCU, DSCH);
Dpmc0.field.DISPWRDN = mrc_params->power_down_disable;
Dpmc0.field.CLKGTDIS = 0;
Dpmc0.field.PCLSTO = 4;
Dpmc0.field.PREAPWDEN = 1;
Dsch.field.OOODIS = 0;
Dsch.field.OOOST3DIS = 0;
Dsch.field.NEWBYPDIS = 0;
isbW32m(MCU, DSCH, Dsch.raw);
isbW32m(MCU, DPMC0, Dpmc0.raw);
// CMDTRIST = 2h - CMD/ADDR are tristated when no valid command
isbM32m(MCU, DPMC1, 2 << 4, BIT5|BIT4);
LEAVEFN();
}
// After training complete configure MCU Rank Population Register
// specifying: ranks enabled, device width, density, address mode.
static void prog_dra_drb(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.IC = 0;
isbW32m(MCU, DCO, Dco.raw);
Drp.raw = 0;
if (mrc_params->rank_enables & 1)
Drp.field.rank0Enabled = 1;
if (mrc_params->rank_enables & 2)
Drp.field.rank1Enabled = 1;
if (mrc_params->dram_width == x16)
{
Drp.field.dimm0DevWidth = 1;
Drp.field.dimm1DevWidth = 1;
}
// Density encoding in DRAMParams_t 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb
// has to be mapped RANKDENSx encoding (0=1Gb)
Drp.field.dimm0DevDensity = mrc_params->params.DENSITY - 1;
Drp.field.dimm1DevDensity = mrc_params->params.DENSITY - 1;
// Address mode can be overwritten if ECC enabled
Drp.field.addressMap = mrc_params->address_mode;
isbW32m(MCU, DRP, Drp.raw);
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.IC = 1; //1 - initialisation complete
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
// Configure refresh rate and short ZQ calibration interval.
// Activate dynamic self refresh.
static void change_refresh_period(
MRCParams_t *mrc_params)
{
RegDRCF Drfc;
RegDCAL Dcal;
RegDPMC0 Dpmc0;
ENTERFN();
Drfc.raw = isbR32m(MCU, DRFC);
Drfc.field.tREFI = mrc_params->refresh_rate;
Drfc.field.REFDBTCLR = 1;
isbW32m(MCU, DRFC, Drfc.raw);
Dcal.raw = isbR32m(MCU, DCAL);
Dcal.field.ZQCINT = 3; // 63ms
isbW32m(MCU, DCAL, Dcal.raw);
Dpmc0.raw = isbR32m(MCU, DPMC0);
Dpmc0.field.ENPHYCLKGATE = 1;
Dpmc0.field.DYNSREN = 1;
isbW32m(MCU, DPMC0, Dpmc0.raw);
LEAVEFN();
}
// Send DRAM wake command
static void perform_wake(
MRCParams_t *mrc_params)
{
ENTERFN();
dram_wake_command();
LEAVEFN();
}
// prog_ddr_timing_control (aka mcu_init):
// POST_CODE[major] == 0x02
//
// It will initialise timing registers in the MCU (DTR0..DTR4).
static void prog_ddr_timing_control(
MRCParams_t *mrc_params)
{
uint8_t TCL, WL;
uint8_t TRP, TRCD, TRAS, TRFC, TWR, TWTR, TRRD, TRTP, TFAW;
uint32_t TCK;
RegDTR0 Dtr0;
RegDTR1 Dtr1;
RegDTR2 Dtr2;
RegDTR3 Dtr3;
RegDTR4 Dtr4;
ENTERFN();
// mcu_init starts
post_code(0x02, 0x00);
Dtr0.raw = isbR32m(MCU, DTR0);
Dtr1.raw = isbR32m(MCU, DTR1);
Dtr2.raw = isbR32m(MCU, DTR2);
Dtr3.raw = isbR32m(MCU, DTR3);
Dtr4.raw = isbR32m(MCU, DTR4);
TCK = tCK[mrc_params->ddr_speed]; // Clock in picoseconds
TCL = mrc_params->params.tCL; // CAS latency in clocks
TRP = TCL; // Per CAT MRC
TRCD = TCL; // Per CAT MRC
TRAS = MCEIL(mrc_params->params.tRAS, TCK);
TRFC = MCEIL(tRFC[mrc_params->params.DENSITY], TCK);
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600
TWTR = MCEIL(mrc_params->params.tWTR, TCK);
TRRD = MCEIL(mrc_params->params.tRRD, TCK);
TRTP = 4; // Valid for 800 and 1066, use 5 for 1333
TFAW = MCEIL(mrc_params->params.tFAW, TCK);
WL = 5 + mrc_params->ddr_speed;
Dtr0.field.dramFrequency = mrc_params->ddr_speed;
Dtr0.field.tCL = TCL - 5; //Convert from TCL (DRAM clocks) to VLV indx
Dtr0.field.tRP = TRP - 5; //5 bit DRAM Clock
Dtr0.field.tRCD = TRCD - 5; //5 bit DRAM Clock
Dtr1.field.tWCL = WL - 3; //Convert from WL (DRAM clocks) to VLV indx
Dtr1.field.tWTP = WL + 4 + TWR - 14; //Change to tWTP
Dtr1.field.tRTP = MMAX(TRTP, 4) - 3; //4 bit DRAM Clock
Dtr1.field.tRRD = TRRD - 4; //4 bit DRAM Clock
Dtr1.field.tCMD = 1; //2N
Dtr1.field.tRAS = TRAS - 14; //6 bit DRAM Clock
Dtr1.field.tFAW = ((TFAW + 1) >> 1) - 5; //4 bit DRAM Clock
Dtr1.field.tCCD = 0; //Set 4 Clock CAS to CAS delay (multi-burst)
Dtr2.field.tRRDR = 1;
Dtr2.field.tWWDR = 2;
Dtr2.field.tRWDR = 2;
Dtr3.field.tWRDR = 2;
Dtr3.field.tWRDD = 2;
if (mrc_params->ddr_speed == DDRFREQ_800)
{
// Extended RW delay (+1)
Dtr3.field.tRWSR = TCL - 5 + 1;
}
else if(mrc_params->ddr_speed == DDRFREQ_1066)
{
// Extended RW delay (+1)
Dtr3.field.tRWSR = TCL - 5 + 1;
}
Dtr3.field.tWRSR = 4 + WL + TWTR - 11;
if (mrc_params->ddr_speed == DDRFREQ_800)
{
Dtr3.field.tXP = MMAX(0, 1 - Dtr1.field.tCMD);
}
else
{
Dtr3.field.tXP = MMAX(0, 2 - Dtr1.field.tCMD);
}
Dtr4.field.WRODTSTRT = Dtr1.field.tCMD;
Dtr4.field.WRODTSTOP = Dtr1.field.tCMD;
Dtr4.field.RDODTSTRT = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2; //Convert from WL (DRAM clocks) to VLV indx
Dtr4.field.RDODTSTOP = Dtr1.field.tCMD + Dtr0.field.tCL - Dtr1.field.tWCL + 2;
Dtr4.field.TRGSTRDIS = 0;
Dtr4.field.ODTDIS = 0;
isbW32m(MCU, DTR0, Dtr0.raw);
isbW32m(MCU, DTR1, Dtr1.raw);
isbW32m(MCU, DTR2, Dtr2.raw);
isbW32m(MCU, DTR3, Dtr3.raw);
isbW32m(MCU, DTR4, Dtr4.raw);
LEAVEFN();
}
// ddrphy_init:
// POST_CODE[major] == 0x03
//
// This function performs some initialisation on the DDRIO unit.
// This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES.
static void ddrphy_init(MRCParams_t *mrc_params)
{
uint32_t tempD; // temporary DWORD
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_grp_i; // byte lane group counter (2 BLs per module)
uint8_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1; // byte lane divisor
uint8_t speed = mrc_params->ddr_speed & (BIT1|BIT0); // For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333
uint8_t tCAS;
uint8_t tCWL;
ENTERFN();
tCAS = mrc_params->params.tCL;
tCWL = 5 + mrc_params->ddr_speed;
// ddrphy_init starts
post_code(0x03, 0x00);
// HSD#231531
// Make sure IOBUFACT is deasserted before initialising the DDR PHY.
// HSD#234845
// Make sure WRPTRENABLE is deasserted before initialising the DDR PHY.
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// Deassert DDRPHY Initialisation Complete
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT20, BIT20); // SPID_INIT_COMPLETE=0
// Deassert IOBUFACT
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT2, BIT2); // IOBUFACTRST_N=0
// Disable WRPTR
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), ~BIT0, BIT0); // WRPTRENABLE=0
} // if channel enabled
} // channel_i loop
// Put PHY in reset
isbM32m(DDRPHY, MASTERRSTN, 0, BIT0); // PHYRSTN=0
// Initialise DQ01,DQ23,CMD,CLK-CTL,COMP modules
// STEP0:
post_code(0x03, 0x10);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQOBSCKEBBCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i) ? (0x00) : (BIT22)), (BIT22)); // Analog MUX select - IO2xCLKSEL
// ODT Strength
switch (mrc_params->rd_odt_value) {
case 1: tempD = 0x3; break; // 60 ohm
case 2: tempD = 0x3; break; // 120 ohm
case 3: tempD = 0x3; break; // 180 ohm
default: tempD = 0x3; break; // 120 ohm
}
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD<<5), (BIT6|BIT5)); // ODT strength
// Dynamic ODT/DIFFAMP
tempD = (((tCAS)<<24)|((tCAS)<<16)|((tCAS)<<8)|((tCAS)<<0));
switch (speed) {
case 0: tempD -= 0x01010101; break; // 800
case 1: tempD -= 0x02020202; break; // 1066
case 2: tempD -= 0x03030303; break; // 1333
case 3: tempD -= 0x04040404; break; // 1600
}
isbM32m(DDRPHY, (B01LATCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // Launch Time: ODT, DIFFAMP, ODT, DIFFAMP
switch (speed) {
// HSD#234715
case 0: tempD = ((0x06<<16)|(0x07<<8)); break; // 800
case 1: tempD = ((0x07<<16)|(0x08<<8)); break; // 1066
case 2: tempD = ((0x09<<16)|(0x0A<<8)); break; // 1333
case 3: tempD = ((0x0A<<16)|(0x0B<<8)); break; // 1600
}
isbM32m(DDRPHY, (B0ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP
isbM32m(DDRPHY, (B1ONDURCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8))); // On Duration: ODT, DIFFAMP
switch (mrc_params->rd_odt_value) {
case 0: tempD = ((0x3F<<16)|(0x3f<<10)); break; // override DIFFAMP=on, ODT=off
default: tempD = ((0x3F<<16)|(0x2A<<10)); break; // override DIFFAMP=on, ODT=on
}
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
isbM32m(DDRPHY, (B1OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), tempD, ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
// DLL Setup
// 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO)
isbM32m(DDRPHY, (B0LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS
isbM32m(DDRPHY, (B1LATCTL0 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (((tCAS+7)<<16)|((tCAS-4)<<8)|((tCWL-2)<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // 1xCLK: tEDP, RCVEN, WDQS
// RCVEN Bypass (PO)
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x0<<7)|(0x0<<0)), (BIT7|BIT0)); // AFE Bypass, RCVEN DIFFAMP
// TX
isbM32m(DDRPHY, (DQCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT16), (BIT16)); // 0 means driving DQ during DQS-preamble
isbM32m(DDRPHY, (B01PTRCTL1 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT8), (BIT8)); // WR_LVL mode disable
// RX (PO)
isbM32m(DDRPHY, (B0VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext)
isbM32m(DDRPHY, (B1VREFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((0x03<<2)|(0x0<<1)|(0x0<<0)), ((BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|BIT1|BIT0)); // Internal Vref Code, Enable#, Ext_or_Int (1=Ext)
isbM32m(DDRPHY, (B0RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable
isbM32m(DDRPHY, (B1RXIOBUFCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (0), (BIT4)); // Per-Bit De-Skew Enable
}
// CLKEBB
isbM32m(DDRPHY, (CMDOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT23));
// Enable tristate control of cmd/address bus
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT1|BIT0));
// ODT RCOMP
isbM32m(DDRPHY, (CMDRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<5)|(0x03<<0)), ((BIT9|BIT8|BIT7|BIT6|BIT5)|(BIT4|BIT3|BIT2|BIT1|BIT0)));
// CMDPM* registers must be programmed in this order...
isbM32m(DDRPHY, (CMDPMDLYREG4 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFFFU<<16)|(0xFFFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: SFR (regulator), MPLL
isbM32m(DDRPHY, (CMDPMDLYREG3 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFU<<28)|(0xFFF<<16)|(0xF<<12)|(0x616<<0)), ((BIT31|BIT30|BIT29|BIT28)|(BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8|BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3, VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT_for_PM_MSG_gt0, MDLL Turn On
isbM32m(DDRPHY, (CMDPMDLYREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // MPLL Divider Reset Delays
isbM32m(DDRPHY, (CMDPMDLYREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn Off Delays: VREG, Staggered MDLL, MDLL, PI
isbM32m(DDRPHY, (CMDPMDLYREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xFFU<<24)|(0xFF<<16)|(0xFF<<8)|(0xFF<<0)), ((BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT23|BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x6<<8)|BIT6|(0x4<<0)), (BIT31|BIT30|BIT29|BIT28|BIT27|BIT26|BIT25|BIT24|BIT23|BIT22|BIT21|(BIT11|BIT10|BIT9|BIT8)|BIT6|(BIT3|BIT2|BIT1|BIT0))); // Allow PUnit signals
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG
// CLK-CTL
isbM32m(DDRPHY, (CCOBSCKEBBCTL + (channel_i * DDRIOCCC_CH_OFFSET)), 0, (BIT24)); // CLKEBB
isbM32m(DDRPHY, (CCCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x0<<16)|(0x0<<12)|(0x0<<8)|(0xF<<4)|BIT0), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|BIT0)); // Buffer Enable: CS,CKE,ODT,CLK
isbM32m(DDRPHY, (CCRCOMPODT + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT RCOMP
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x3<<4)|(0x7<<0)), ((BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DLL_VREG Bias Trim, VREF Tuning for DLL_VREG
// COMP (RON channel specific)
// - DQ/DQS/DM RON: 32 Ohm
// - CTRL/CMD RON: 27 Ohm
// - CLK RON: 26 Ohm
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CMDVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0F<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x08<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
isbM32m(DDRPHY, (CTLVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0C<<24)|(0x03<<16)), ((BIT29|BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP Vref PU/PD
// DQS Swapped Input Enable
isbM32m(DDRPHY, (COMPEN1CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT19|BIT17), ((BIT31|BIT30)|BIT19|BIT17|(BIT15|BIT14)));
// ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50)
isbM32m(DDRPHY, (DQVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
isbM32m(DDRPHY, (DQSVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x32<<8)|(0x03<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
isbM32m(DDRPHY, (CLKVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x0E<<8)|(0x05<<0)), ((BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // ODT Vref PU/PD
// Slew rate settings are frequency specific, numbers below are for 800Mhz (speed == 0)
// - DQ/DQS/DM/CLK SR: 4V/ns,
// - CTRL/CMD SR: 1.5V/ns
tempD = (0x0E<<16)|(0x0E<<12)|(0x08<<8)|(0x0B<<4)|(0x0B<<0);
isbM32m(DDRPHY, (DLYSELCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (tempD), ((BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ
isbM32m(DDRPHY, (TCOVREFCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x05<<16)|(0x05<<8)|(0x05<<0)), ((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0))); // TCO Vref CLK,DQS,DQ
isbM32m(DDRPHY, (CCBUFODTCH0 + (channel_i * DDRCOMP_CH_OFFSET)), ((0x03<<8)|(0x03<<0)), ((BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT4|BIT3|BIT2|BIT1|BIT0))); // ODTCOMP CMD/CTL PU/PD
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), (0), ((BIT31|BIT30)|BIT8)); // COMP
#ifdef BACKUP_COMPS
// DQ COMP Overrides
isbM32m(DDRPHY, (DQDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (DQDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (DQDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (DQDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (DQODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (DQODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// DQS COMP Overrides
isbM32m(DDRPHY, (DQSDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (DQSDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (DQSDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (DQSDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x10<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (DQSODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (DQSODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// CLK COMP Overrides
isbM32m(DDRPHY, (CLKDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CLKDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0C<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CLKDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CLKDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x07<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
isbM32m(DDRPHY, (CLKODTPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PU
isbM32m(DDRPHY, (CLKODTPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0B<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODTCOMP PD
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PU
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31), (BIT31)); // TCOCOMP PD
// CMD COMP Overrides
isbM32m(DDRPHY, (CMDDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CMDDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CMDDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CMDDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
// CTL COMP Overrides
isbM32m(DDRPHY, (CTLDRVPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PU
isbM32m(DDRPHY, (CTLDRVPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0D<<16)), (BIT31|(BIT21|BIT20|BIT19|BIT18|BIT17|BIT16))); // RCOMP PD
isbM32m(DDRPHY, (CTLDLYPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PU
isbM32m(DDRPHY, (CTLDLYPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x0A<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // DCOMP PD
#else
// DQ TCOCOMP Overrides
isbM32m(DDRPHY, (DQTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (DQTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
// DQS TCOCOMP Overrides
isbM32m(DDRPHY, (DQSTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (DQSTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
// CLK TCOCOMP Overrides
isbM32m(DDRPHY, (CLKTCOPUCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PU
isbM32m(DDRPHY, (CLKTCOPDCTLCH0 + (channel_i * DDRCOMP_CH_OFFSET)), (BIT31|(0x1F<<16)), (BIT31|(BIT20|BIT19|BIT18|BIT17|BIT16))); // TCOCOMP PD
#endif // BACKUP_COMPS
// program STATIC delays
#ifdef BACKUP_WCMD
set_wcmd(channel_i, ddr_wcmd[PLATFORM_ID]);
#else
set_wcmd(channel_i, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif // BACKUP_WCMD
for (rank_i=0; rank_i<NUM_RANKS; rank_i++) {
if (mrc_params->rank_enables & (1<<rank_i)) {
set_wclk(channel_i, rank_i, ddr_wclk[PLATFORM_ID]);
#ifdef BACKUP_WCTL
set_wctl(channel_i, rank_i, ddr_wctl[PLATFORM_ID]);
#else
set_wctl(channel_i, rank_i, ddr_wclk[PLATFORM_ID] + HALF_CLK);
#endif // BACKUP_WCTL
}
}
}
}
// COMP (non channel specific)
//isbM32m(DDRPHY, (), (), ());
isbM32m(DDRPHY, (DQANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CMDANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CMDANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CLKANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CLKANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQSANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQSANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (CTLANADRVPUCTL), (BIT30), (BIT30)); // RCOMP: Dither PU Enable
isbM32m(DDRPHY, (CTLANADRVPDCTL), (BIT30), (BIT30)); // RCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (DQANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (CLKANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (CLKANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (DQSANAODTPUCTL), (BIT30), (BIT30)); // ODT: Dither PU Enable
isbM32m(DDRPHY, (DQSANAODTPDCTL), (BIT30), (BIT30)); // ODT: Dither PD Enable
isbM32m(DDRPHY, (DQANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CMDANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CMDANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CLKANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CLKANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQSANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (DQSANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (CTLANADLYPUCTL), (BIT30), (BIT30)); // DCOMP: Dither PU Enable
isbM32m(DDRPHY, (CTLANADLYPDCTL), (BIT30), (BIT30)); // DCOMP: Dither PD Enable
isbM32m(DDRPHY, (DQANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (DQANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (CLKANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (CLKANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (DQSANATCOPUCTL), (BIT30), (BIT30)); // TCO: Dither PU Enable
isbM32m(DDRPHY, (DQSANATCOPDCTL), (BIT30), (BIT30)); // TCO: Dither PD Enable
isbM32m(DDRPHY, (TCOCNTCTRL), (0x1<<0), (BIT1|BIT0)); // TCOCOMP: Pulse Count
isbM32m(DDRPHY, (CHNLBUFSTATIC), ((0x03<<24)|(0x03<<16)), ((BIT28|BIT27|BIT26|BIT25|BIT24)|(BIT20|BIT19|BIT18|BIT17|BIT16))); // ODT: CMD/CTL PD/PU
isbM32m(DDRPHY, (MSCNTR), (0x64<<0), (BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0)); // Set 1us counter
isbM32m(DDRPHY, (LATCH1CTL), (0x1<<28), (BIT30|BIT29|BIT28)); // ???
// Release PHY from reset
isbM32m(DDRPHY, MASTERRSTN, BIT0, BIT0); // PHYRSTN=1
// STEP1:
post_code(0x03, 0x11);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
}
// ECC
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
// CMD
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
// CLK-CTL
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT13), (BIT13)); // Enable VREG
delay_n(3);
}
}
// STEP2:
post_code(0x03, 0x12);
delay_n(200);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQMDLLCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT17), (BIT17)); // Enable MCDLL
delay_n(50);
}
// ECC
isbM32m(DDRPHY, (ECCMDLLCTL), (BIT17), (BIT17)); // Enable MCDLL
delay_n(50);
// CMD
isbM32m(DDRPHY, (CMDMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL
delay_n(50);
// CLK-CTL
isbM32m(DDRPHY, (CCMDLLCTL + (channel_i * DDRIOCCC_CH_OFFSET)), (BIT18), (BIT18)); // Enable MCDLL
delay_n(50);
}
}
// STEP3:
post_code(0x03, 0x13);
delay_n(100);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// DQ01-DQ23
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
#ifdef FORCE_16BIT_DDRIO
tempD = ((bl_grp_i) && (mrc_params->channel_width == x16)) ? ((0x1<<12)|(0x1<<8)|(0xF<<4)|(0xF<<0)) : ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
#else
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
#endif
isbM32m(DDRPHY, (DQDLLTXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
isbM32m(DDRPHY, (DQDLLRXCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL
delay_n(3);
isbM32m(DDRPHY, (B0OVRCTL + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), (BIT3|BIT2|BIT1|BIT0), (BIT3|BIT2|BIT1|BIT0)); // Enable RXDLL Overrides BL0
}
// ECC
tempD = ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0));
isbM32m(DDRPHY, (ECCDLLTXCTL), (tempD), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
// CMD (PO)
isbM32m(DDRPHY, (CMDDLLTXCTL + (channel_i * DDRIOCCC_CH_OFFSET)), ((0xF<<12)|(0xF<<8)|(0xF<<4)|(0xF<<0)), ((BIT15|BIT14|BIT13|BIT12)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4)|(BIT3|BIT2|BIT1|BIT0))); // Enable TXDLL
delay_n(3);
}
}
// STEP4:
post_code(0x03, 0x14);
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++) {
if (mrc_params->channel_enables & (1<<channel_i)) {
// Host To Memory Clock Alignment (HMC) for 800/1066
for (bl_grp_i=0; bl_grp_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_grp_i++) {
isbM32m(DDRPHY, (DQCLKALIGNREG2 + (bl_grp_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), ((bl_grp_i)?(0x3):(0x1)), (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
}
isbM32m(DDRPHY, (ECCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x0, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CCCLKALIGNREG2 + (channel_i * DDRIODQ_CH_OFFSET)), 0x2, (BIT3|BIT2|BIT1|BIT0)); // CLK_ALIGN_MOD_ID
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), (0x2<<4), (BIT5|BIT4)); // CLK_ALIGN_MODE
isbM32m(DDRPHY, (CMDCLKALIGNREG1 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x18<<16)|(0x10<<8)|(0x8<<2)|(0x1<<0)), ((BIT22|BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT14|BIT13|BIT12|BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4|BIT3|BIT2)|(BIT1|BIT0))); // NUM_SAMPLES, MAX_SAMPLES, MACRO_PI_STEP, MICRO_PI_STEP
isbM32m(DDRPHY, (CMDCLKALIGNREG2 + (channel_i * DDRIOCCC_CH_OFFSET)), ((0x10<<16)|(0x4<<8)|(0x2<<4)), ((BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT11|BIT10|BIT9|BIT8)|(BIT7|BIT6|BIT5|BIT4))); // ???, TOTAL_NUM_MODULES, FIRST_U_PARTITION
#ifdef HMC_TEST
isbM32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT24, BIT24); // START_CLK_ALIGN=1
while (isbR32m(DDRPHY, (CMDCLKALIGNREG0 + (channel_i * DDRIOCCC_CH_OFFSET))) & BIT24); // wait for START_CLK_ALIGN=0
#endif // HMC_TEST
// Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN
isbM32m(DDRPHY, (CMDPTRREG + (channel_i * DDRIOCCC_CH_OFFSET)), BIT0, BIT0); // WRPTRENABLE=1
#ifdef SIM
// comp is not working on simulator
#else
// COMP initial
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), BIT5, BIT5); // enable bypass for CLK buffer (PO)
isbM32m(DDRPHY, (CMPCTRL), (BIT0), (BIT0)); // Initial COMP Enable
while (isbR32m(DDRPHY, (CMPCTRL)) & BIT0); // wait for Initial COMP Enable = 0
isbM32m(DDRPHY, (COMPEN0CH0 + (channel_i * DDRCOMP_CH_OFFSET)), ~BIT5, BIT5); // disable bypass for CLK buffer (PO)
#endif
// IOBUFACT
// STEP4a
isbM32m(DDRPHY, (CMDCFGREG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT2, BIT2); // IOBUFACTRST_N=1
// DDRPHY initialisation complete
isbM32m(DDRPHY, (CMDPMCONFIG0 + (channel_i * DDRIOCCC_CH_OFFSET)), BIT20, BIT20); // SPID_INIT_COMPLETE=1
}
}
LEAVEFN();
return;
}
// jedec_init (aka PerformJedecInit):
// This function performs JEDEC initialisation on all enabled channels.
static void jedec_init(
MRCParams_t *mrc_params,
uint32_t silent)
{
uint8_t TWR, WL, Rank;
uint32_t TCK;
RegDTR0 DTR0reg;
DramInitDDR3MRS0 mrs0Command;
DramInitDDR3EMR1 emrs1Command;
DramInitDDR3EMR2 emrs2Command;
DramInitDDR3EMR3 emrs3Command;
ENTERFN();
// jedec_init starts
if (!silent)
{
post_code(0x04, 0x00);
}
// Assert RESET# for 200us
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT1, (BIT8|BIT1)); // DDR3_RESET_SET=0, DDR3_RESET_RESET=1
#ifdef QUICKSIM
// Don't waste time during simulation
delay_u(2);
#else
delay_u(200);
#endif
isbM32m(DDRPHY, CCDDR3RESETCTL, BIT8, (BIT8|BIT1)); // DDR3_RESET_SET=1, DDR3_RESET_RESET=0
DTR0reg.raw = isbR32m(MCU, DTR0);
// Set CKEVAL for populated ranks
// then send NOP to each rank (#4550197)
{
uint32_t DRPbuffer;
uint32_t DRMCbuffer;
DRPbuffer = isbR32m(MCU, DRP);
DRPbuffer &= 0x3;
DRMCbuffer = isbR32m(MCU, DRMC);
DRMCbuffer &= 0xFFFFFFFC;
DRMCbuffer |= (BIT4 | DRPbuffer);
isbW32m(MCU, DRMC, DRMCbuffer);
for (Rank = 0; Rank < NUM_RANKS; Rank++)
{
// Skip to next populated rank
if ((mrc_params->rank_enables & (1 << Rank)) == 0)
{
continue;
}
dram_init_command(DCMD_NOP(Rank));
}
isbW32m(MCU, DRMC, DRMC_DEFAULT);
}
// setup for emrs 2
// BIT[15:11] --> Always "0"
// BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0)
// BIT[08] --> Always "0"
// BIT[07] --> SRT: use sr_temp_range
// BIT[06] --> ASR: want "Manual SR Reference" (0)
// BIT[05:03] --> CWL: use oem_tCWL
// BIT[02:00] --> PASR: want "Full Array" (0)
emrs2Command.raw = 0;
emrs2Command.field.bankAddress = 2;
WL = 5 + mrc_params->ddr_speed;
emrs2Command.field.CWL = WL - 5;
emrs2Command.field.SRT = mrc_params->sr_temp_range;
// setup for emrs 3
// BIT[15:03] --> Always "0"
// BIT[02] --> MPR: want "Normal Operation" (0)
// BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0)
emrs3Command.raw = 0;
emrs3Command.field.bankAddress = 3;
// setup for emrs 1
// BIT[15:13] --> Always "0"
// BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0)
// BIT[11:11] --> TDQS: want "Disabled" (0)
// BIT[10:10] --> Always "0"
// BIT[09,06,02] --> Rtt_nom: use rtt_nom_value
// BIT[08] --> Always "0"
// BIT[07] --> WR_LVL: want "Disabled" (0)
// BIT[05,01] --> DIC: use ron_value
// BIT[04:03] --> AL: additive latency want "0" (0)
// BIT[00] --> DLL: want "Enable" (0)
//
// (BIT5|BIT1) set Ron value
// 00 --> RZQ/6 (40ohm)
// 01 --> RZQ/7 (34ohm)
// 1* --> RESERVED
//
// (BIT9|BIT6|BIT2) set Rtt_nom value
// 000 --> Disabled
// 001 --> RZQ/4 ( 60ohm)
// 010 --> RZQ/2 (120ohm)
// 011 --> RZQ/6 ( 40ohm)
// 1** --> RESERVED
emrs1Command.raw = 0;
emrs1Command.field.bankAddress = 1;
emrs1Command.field.dllEnabled = 0; // 0 = Enable , 1 = Disable
if (mrc_params->ron_value == 0)
{
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_34;
}
else
{
emrs1Command.field.DIC0 = DDR3_EMRS1_DIC_40;
}
if (mrc_params->rtt_nom_value == 0)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_40 << 6);
}
else if (mrc_params->rtt_nom_value == 1)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_60 << 6);
}
else if (mrc_params->rtt_nom_value == 2)
{
emrs1Command.raw |= (DDR3_EMRS1_RTTNOM_120 << 6);
}
// save MRS1 value (excluding control fields)
mrc_params->mrs1 = emrs1Command.raw >> 6;
// setup for mrs 0
// BIT[15:13] --> Always "0"
// BIT[12] --> PPD: for Quark (1)
// BIT[11:09] --> WR: use oem_tWR
// BIT[08] --> DLL: want "Reset" (1, self clearing)
// BIT[07] --> MODE: want "Normal" (0)
// BIT[06:04,02] --> CL: use oem_tCAS
// BIT[03] --> RD_BURST_TYPE: want "Interleave" (1)
// BIT[01:00] --> BL: want "8 Fixed" (0)
// WR:
// 0 --> 16
// 1 --> 5
// 2 --> 6
// 3 --> 7
// 4 --> 8
// 5 --> 10
// 6 --> 12
// 7 --> 14
// CL:
// BIT[02:02] "0" if oem_tCAS <= 11 (1866?)
// BIT[06:04] use oem_tCAS-4
mrs0Command.raw = 0;
mrs0Command.field.bankAddress = 0;
mrs0Command.field.dllReset = 1;
mrs0Command.field.BL = 0;
mrs0Command.field.PPD = 1;
mrs0Command.field.casLatency = DTR0reg.field.tCL + 1;
TCK = tCK[mrc_params->ddr_speed];
TWR = MCEIL(15000, TCK); // Per JEDEC: tWR=15000ps DDR2/3 from 800-1600
mrs0Command.field.writeRecovery = TWR - 4;
for (Rank = 0; Rank < NUM_RANKS; Rank++)
{
// Skip to next populated rank
if ((mrc_params->rank_enables & (1 << Rank)) == 0)
{
continue;
}
emrs2Command.field.rankSelect = Rank;
dram_init_command(emrs2Command.raw);
emrs3Command.field.rankSelect = Rank;
dram_init_command(emrs3Command.raw);
emrs1Command.field.rankSelect = Rank;
dram_init_command(emrs1Command.raw);
mrs0Command.field.rankSelect = Rank;
dram_init_command(mrs0Command.raw);
dram_init_command(DCMD_ZQCL(Rank));
}
LEAVEFN();
return;
}
// rcvn_cal:
// POST_CODE[major] == 0x05
//
// This function will perform our RCVEN Calibration Algorithm.
// We will only use the 2xCLK domain timings to perform RCVEN Calibration.
// All byte lanes will be calibrated "simultaneously" per channel per rank.
static void rcvn_cal(
MRCParams_t *mrc_params)
{
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
#ifndef BACKUP_RCVN
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // BACKUP_RCVN
#endif // R2R_SHARING
#ifdef BACKUP_RCVN
#else
uint32_t tempD; // temporary DWORD
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane
RegDTR1 dtr1;
RegDTR1 dtr1save;
#endif // BACKUP_RCVN
ENTERFN();
// rcvn_cal starts
post_code(0x05, 0x00);
#ifndef BACKUP_RCVN
// need separate burst to sample DQS preamble
dtr1.raw = dtr1save.raw = isbR32m(MCU, DTR1);
dtr1.field.tCCD = 1;
isbW32m(MCU, DTR1, dtr1.raw);
#endif
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// loop through each enabled channel
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// perform RCVEN Calibration on a per rank basis
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
// POST_CODE here indicates the current channel and rank being calibrated
post_code(0x05, (0x10 + ((channel_i << 4) | rank_i)));
#ifdef BACKUP_RCVN
// set hard-coded timing values
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_rcvn(channel_i, rank_i, bl_i, ddr_rcvn[PLATFORM_ID]);
}
#else
// enable FIFORST
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2)
{
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), 0,
BIT8); // 0 is enabled
} // bl_i loop
// initialise the starting delay to 128 PI (tCAS +1 CLK)
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
#ifdef SIM
// Original value was late at the end of DQS sequence
delay[bl_i] = 3 * FULL_CLK;
#else
delay[bl_i] = (4 + 1) * FULL_CLK; // 1x CLK domain timing is tCAS-4
#endif
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// now find the rising edge
find_rising_edge(mrc_params, delay, channel_i, rank_i, true);
// Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse.
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// Now decrement delay by 128 PI (1 CLK) until we sample a "0"
do
{
tempD = sample_dqs(mrc_params, channel_i, rank_i, true);
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (tempD & (1 << bl_i))
{
if (delay[bl_i] >= FULL_CLK)
{
delay[bl_i] -= FULL_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
}
else
{
// not enough delay
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, 0x50);
}
}
} // bl_i loop
} while (tempD & 0xFF);
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble.
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
// add "delay[]" values to "final_delay[][]" for rolling average
final_delay[channel_i][bl_i] += delay[bl_i];
// set timing based on rolling average values
set_rcvn(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
} // bl_i loop
#else
// Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble.
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
delay[bl_i] += QRTR_CLK;
set_rcvn(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
#endif // R2R_SHARING
// disable FIFORST
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i += 2)
{
isbM32m(DDRPHY, (B01PTRCTL1 + ((bl_i >> 1) * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)), BIT8,
BIT8); // 1 is disabled
} // bl_i loop
#endif // BACKUP_RCVN
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#ifndef BACKUP_RCVN
// restore original
isbW32m(MCU, DTR1, dtr1save.raw);
#endif
#ifdef MRC_SV
if (mrc_params->tune_rcvn)
{
uint32_t rcven, val;
uint32_t rdcmd2rcven;
/*
Formulas for RDCMD2DATAVALID & DIFFAMP dynamic timings
1. Set after RCVEN training
//Tune RDCMD2DATAVALID
x80/x84[21:16]
MAX OF 2 RANKS : round up (rdcmd2rcven (rcven 1x) + 2x x 2 + PI/128) + 5
//rdcmd2rcven x80/84[12:8]
//rcven 2x x70[23:20] & [11:8]
//Tune DIFFAMP Timings
//diffampen launch x88[20:16] & [4:0] -- B01LATCTL1
MIN OF 2 RANKS : round down (rcven 1x + 2x x 2 + PI/128) - 1
//diffampen length x8C/x90 [13:8] -- B0ONDURCTL B1ONDURCTL
MAX OF 2 RANKS : roundup (rcven 1x + 2x x 2 + PI/128) + 5
2. need to do a fiforst after settings these values
*/
DPF(D_INFO, "BEFORE\n");
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL));
rcven = get_rcvn(0, 0, 0) / 128;
rdcmd2rcven = (isbR32m(DDRPHY, B0LATCTL0) >> 8) & 0x1F;
val = rdcmd2rcven + rcven + 6;
isbM32m(DDRPHY, B0LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven - 1;
isbM32m(DDRPHY, B01LATCTL1, val << 0, (BIT4|BIT3|BIT2|BIT1|BIT0));
val = rdcmd2rcven + rcven + 5;
isbM32m(DDRPHY, B0ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8));
rcven = get_rcvn(0, 0, 1) / 128;
rdcmd2rcven = (isbR32m(DDRPHY, B1LATCTL0) >> 8) & 0x1F;
val = rdcmd2rcven + rcven + 6;
isbM32m(DDRPHY, B1LATCTL0, val << 16, (BIT21|BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven - 1;
isbM32m(DDRPHY, B01LATCTL1, val << 16, (BIT20|BIT19|BIT18|BIT17|BIT16));
val = rdcmd2rcven + rcven + 5;
isbM32m(DDRPHY, B1ONDURCTL, val << 8, (BIT13|BIT12|BIT11|BIT10|BIT9|BIT8));
DPF(D_INFO, "AFTER\n");
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B01LATCTL1));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B0ONDURCTL));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1LATCTL0));
DPF(D_INFO, "### %x\n", isbR32m(DDRPHY, B1ONDURCTL));
DPF(D_INFO, "\nPress a key\n");
mgetc();
// fifo reset
isbM32m(DDRPHY, B01PTRCTL1, 0, BIT8); // 0 is enabled
delay_n(3);
isbM32m(DDRPHY, B01PTRCTL1, BIT8, BIT8); // 1 is disabled
}
#endif
LEAVEFN();
return;
}
// Check memory executing write/read/verify of many data patterns
// at the specified address. Bits in the result indicate failure
// on specific byte lane.
static uint32_t check_bls_ex(
MRCParams_t *mrc_params,
uint32_t address)
{
uint32_t result;
uint8_t first_run = 0;
if (mrc_params->hte_setup)
{
mrc_params->hte_setup = 0;
first_run = 1;
select_hte(mrc_params);
}
result = WriteStressBitLanesHTE(mrc_params, address, first_run);
DPF(D_TRN, "check_bls_ex result is %x\n", result);
return result;
}
// Check memory executing simple write/read/verify at
// the specified address. Bits in the result indicate failure
// on specific byte lane.
static uint32_t check_rw_coarse(
MRCParams_t *mrc_params,
uint32_t address)
{
uint32_t result = 0;
uint8_t first_run = 0;
if (mrc_params->hte_setup)
{
mrc_params->hte_setup = 0;
first_run = 1;
select_hte(mrc_params);
}
result = BasicWriteReadHTE(mrc_params, address, first_run, WRITE_TRAIN);
DPF(D_TRN, "check_rw_coarse result is %x\n", result);
return result;
}
// wr_level:
// POST_CODE[major] == 0x06
//
// This function will perform the Write Levelling algorithm (align WCLK and WDQS).
// This algorithm will act on each rank in each channel separately.
static void wr_level(
MRCParams_t *mrc_params)
{
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
#ifndef BACKUP_WDQS
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // BACKUP_WDQS
#endif // R2R_SHARING
#ifdef BACKUP_WDQS
#else
bool all_edges_found; // determines stop condition for CRS_WR_LVL
uint32_t delay[NUM_BYTE_LANES]; // absolute PI value to be programmed on the byte lane
// static makes it so the data is loaded in the heap once by shadow(), where
// non-static copies the data onto the stack every time this function is called.
uint32_t address; // address to be checked during COARSE_WR_LVL
RegDTR4 dtr4;
RegDTR4 dtr4save;
#endif // BACKUP_WDQS
ENTERFN();
// wr_level starts
post_code(0x06, 0x00);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// loop through each enabled channel
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// perform WRITE LEVELING algorithm on a per rank basis
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
// POST_CODE here indicates the current rank and channel being calibrated
post_code(0x06, (0x10 + ((channel_i << 4) | rank_i)));
#ifdef BACKUP_WDQS
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_wdqs(channel_i, rank_i, bl_i, ddr_wdqs[PLATFORM_ID]);
set_wdq(channel_i, rank_i, bl_i, (ddr_wdqs[PLATFORM_ID] - QRTR_CLK));
}
#else
{ // Begin product specific code
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state
dram_init_command(DCMD_PREA(rank_i));
// enable Write Levelling Mode (EMRS1 w/ Write Levelling Mode Enable)
dram_init_command(DCMD_MRS1(rank_i,0x0082));
// set ODT DRAM Full Time Termination disable in MCU
dtr4.raw = dtr4save.raw = isbR32m(MCU, DTR4);
dtr4.field.ODTDIS = 1;
isbW32m(MCU, DTR4, dtr4.raw);
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++)
{
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i),
(BIT28 | (0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)),
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Enable Sandy Bridge Mode (WDQ Tri-State) & Ensure 5 WDQS pulses during Write Leveling
}
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (BIT16), (BIT16)); // Write Leveling Mode enabled in IO
} // End product specific code
// Initialise the starting delay to WCLK
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
{ // Begin product specific code
// CLK0 --> RK0
// CLK1 --> RK1
delay[bl_i] = get_wclk(channel_i, rank_i);
} // End product specific code
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
} // bl_i loop
// now find the rising edge
find_rising_edge(mrc_params, delay, channel_i, rank_i, false);
{ // Begin product specific code
// disable Write Levelling Mode
isbM32m(DDRPHY, CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * channel_i), (0), (BIT16)); // Write Leveling Mode disabled in IO
for (bl_i = 0; bl_i < ((NUM_BYTE_LANES / bl_divisor) / 2); bl_i++)
{
isbM32m(DDRPHY, DQCTL + (DDRIODQ_BL_OFFSET * bl_i) + (DDRIODQ_CH_OFFSET * channel_i),
((0x1 << 8) | (0x1 << 6) | (0x1 << 4) | (0x1 << 2)),
(BIT28 | (BIT9|BIT8) | (BIT7|BIT6) | (BIT5|BIT4) | (BIT3|BIT2))); // Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation
} // bl_i loop
// restore original DTR4
isbW32m(MCU, DTR4, dtr4save.raw);
// restore original value (Write Levelling Mode Disable)
dram_init_command(DCMD_MRS1(rank_i, mrc_params->mrs1));
// perform a single PRECHARGE_ALL command to make DRAM state machine go to IDLE state
dram_init_command(DCMD_PREA(rank_i));
} // End product specific code
post_code(0x06, (0x30 + ((channel_i << 4) | rank_i)));
// COARSE WRITE LEVEL:
// check that we're on the correct clock edge
// hte reconfiguration request
mrc_params->hte_setup = 1;
// start CRS_WR_LVL with WDQS = WDQS + 128 PI
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
delay[bl_i] = get_wdqs(channel_i, rank_i, bl_i) + FULL_CLK;
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK));
} // bl_i loop
// get an address in the targeted channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
do
{
uint32_t coarse_result = 0x00;
uint32_t coarse_result_mask = byte_lane_mask(mrc_params);
all_edges_found = true; // assume pass
#ifdef SIM
// need restore memory to idle state as write can be in bad sync
dram_init_command (DCMD_PREA(rank_i));
#endif
mrc_params->hte_setup = 1;
coarse_result = check_rw_coarse(mrc_params, address);
// check for failures and margin the byte lane back 128 PI (1 CLK)
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (coarse_result & (coarse_result_mask << bl_i))
{
all_edges_found = false;
delay[bl_i] -= FULL_CLK;
set_wdqs(channel_i, rank_i, bl_i, delay[bl_i]);
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, (delay[bl_i] - QRTR_CLK));
}
} // bl_i loop
} while (!all_edges_found);
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
// accumulate "final_delay[][]" values from "delay[]" values for rolling average
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
final_delay[channel_i][bl_i] += delay[bl_i];
set_wdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
// program WDQ timings based on WDQS (WDQ = WDQS - 32 PI)
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled) - QRTR_CLK);
} // bl_i loop
#endif // R2R_SHARING
#endif // BACKUP_WDQS
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
LEAVEFN();
return;
}
// rd_train:
// POST_CODE[major] == 0x07
//
// This function will perform the READ TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time.
// The idea here is to train the VREF and RDQS (and eventually RDQ) values to achieve maximum READ margins.
// The algorithm will first determine the X coordinate (RDQS setting).
// This is done by collapsing the VREF eye until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX.
// Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX, then average those; this will be the final X coordinate.
// The algorithm will then determine the Y coordinate (VREF setting).
// This is done by collapsing the RDQS eye until we find a minimum required VREF eye for RDQS_MIN and RDQS_MAX.
// Then we take the averages of the VREF eye at RDQS_MIN and RDQS_MAX, then average those; this will be the final Y coordinate.
// NOTE: this algorithm assumes the eye curves have a one-to-one relationship, meaning for each X the curve has only one Y and vice-a-versa.
static void rd_train(
MRCParams_t *mrc_params)
{
#define MIN_RDQS_EYE 10 // in PI Codes
#define MIN_VREF_EYE 10 // in VREF Codes
#define RDQS_STEP 1 // how many RDQS codes to jump while margining
#define VREF_STEP 1 // how many VREF codes to jump while margining
#define VREF_MIN (0x00) // offset into "vref_codes[]" for minimum allowed VREF setting
#define VREF_MAX (0x3F) // offset into "vref_codes[]" for maximum allowed VREF setting
#define RDQS_MIN (0x00) // minimum RDQS delay value
#define RDQS_MAX (0x3F) // maximum RDQS delay value
#define B 0 // BOTTOM VREF
#define T 1 // TOP VREF
#define L 0 // LEFT RDQS
#define R 1 // RIGHT RDQS
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef BACKUP_RDQS
#else
uint8_t side_x; // tracks LEFT/RIGHT approach vectors
uint8_t side_y; // tracks BOTTOM/TOP approach vectors
uint8_t x_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // X coordinate data (passing RDQS values) for approach vectors
uint8_t y_coordinate[2/*side_x*/][2/*side_y*/][NUM_CHANNELS][NUM_BYTE_LANES]; // Y coordinate data (passing VREF values) for approach vectors
uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // centered X (RDQS)
uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES]; // centered Y (VREF)
uint32_t address; // target address for "check_bls_ex()"
uint32_t result; // result of "check_bls_ex()"
uint32_t bl_mask; // byte lane mask for "result" checking
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // R2R_SHARING
#endif // BACKUP_RDQS
// rd_train starts
post_code(0x07, 0x00);
ENTERFN();
#ifdef BACKUP_RDQS
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_rdqs(channel_i, rank_i, bl_i, ddr_rdqs[PLATFORM_ID]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#else
// initialise x/y_coordinate arrays
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// x_coordinate:
x_coordinate[L][B][channel_i][rank_i][bl_i] = RDQS_MIN;
x_coordinate[R][B][channel_i][rank_i][bl_i] = RDQS_MAX;
x_coordinate[L][T][channel_i][rank_i][bl_i] = RDQS_MIN;
x_coordinate[R][T][channel_i][rank_i][bl_i] = RDQS_MAX;
// y_coordinate:
y_coordinate[L][B][channel_i][bl_i] = VREF_MIN;
y_coordinate[R][B][channel_i][bl_i] = VREF_MIN;
y_coordinate[L][T][channel_i][bl_i] = VREF_MAX;
y_coordinate[R][T][channel_i][bl_i] = VREF_MAX;
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// initialise other variables
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(mrc_params, 0, 0);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// look for passing coordinates
for (side_y = B; side_y <= T; side_y++)
{
for (side_x = L; side_x <= R; side_x++)
{
post_code(0x07, (0x10 + (side_y * 2) + (side_x)));
// find passing values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (0x1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (0x1 << rank_i))
{
// set x/y_coordinate search starting settings
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]);
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]);
} // bl_i loop
// get an address in the target channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// test the settings
do
{
// result[07:00] == failing byte lane (MAX 8)
result = check_bls_ex( mrc_params, address);
// check for failures
if (result & 0xFF)
{
// at least 1 byte lane failed
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (result & (bl_mask << bl_i))
{
// adjust the RDQS values accordingly
if (side_x == L)
{
x_coordinate[L][side_y][channel_i][rank_i][bl_i] += RDQS_STEP;
}
else
{
x_coordinate[R][side_y][channel_i][rank_i][bl_i] -= RDQS_STEP;
}
// check that we haven't closed the RDQS_EYE too much
if ((x_coordinate[L][side_y][channel_i][rank_i][bl_i] > (RDQS_MAX - MIN_RDQS_EYE)) ||
(x_coordinate[R][side_y][channel_i][rank_i][bl_i] < (RDQS_MIN + MIN_RDQS_EYE))
||
(x_coordinate[L][side_y][channel_i][rank_i][bl_i]
== x_coordinate[R][side_y][channel_i][rank_i][bl_i]))
{
// not enough RDQS margin available at this VREF
// update VREF values accordingly
if (side_y == B)
{
y_coordinate[side_x][B][channel_i][bl_i] += VREF_STEP;
}
else
{
y_coordinate[side_x][T][channel_i][bl_i] -= VREF_STEP;
}
// check that we haven't closed the VREF_EYE too much
if ((y_coordinate[side_x][B][channel_i][bl_i] > (VREF_MAX - MIN_VREF_EYE)) ||
(y_coordinate[side_x][T][channel_i][bl_i] < (VREF_MIN + MIN_VREF_EYE)) ||
(y_coordinate[side_x][B][channel_i][bl_i] == y_coordinate[side_x][T][channel_i][bl_i]))
{
// VREF_EYE collapsed below MIN_VREF_EYE
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, (0x70 + (side_y * 2) + (side_x)));
}
else
{
// update the VREF setting
set_vref(channel_i, bl_i, y_coordinate[side_x][side_y][channel_i][bl_i]);
// reset the X coordinate to begin the search at the new VREF
x_coordinate[side_x][side_y][channel_i][rank_i][bl_i] =
(side_x == L) ? (RDQS_MIN) : (RDQS_MAX);
}
}
// update the RDQS setting
set_rdqs(channel_i, rank_i, bl_i, x_coordinate[side_x][side_y][channel_i][rank_i][bl_i]);
} // if bl_i failed
} // bl_i loop
} // at least 1 byte lane failed
} while (result & 0xFF);
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
} // side_x loop
} // side_y loop
post_code(0x07, 0x20);
// find final RDQS (X coordinate) & final VREF (Y coordinate)
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
uint32_t tempD1;
uint32_t tempD2;
// x_coordinate:
DPF(D_INFO, "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n", rank_i, bl_i,
x_coordinate[L][T][channel_i][rank_i][bl_i],
x_coordinate[R][T][channel_i][rank_i][bl_i],
x_coordinate[L][B][channel_i][rank_i][bl_i],
x_coordinate[R][B][channel_i][rank_i][bl_i]);
tempD1 = (x_coordinate[R][T][channel_i][rank_i][bl_i] + x_coordinate[L][T][channel_i][rank_i][bl_i]) / 2; // average the TOP side LEFT & RIGHT values
tempD2 = (x_coordinate[R][B][channel_i][rank_i][bl_i] + x_coordinate[L][B][channel_i][rank_i][bl_i]) / 2; // average the BOTTOM side LEFT & RIGHT values
x_center[channel_i][rank_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages
// y_coordinate:
DPF(D_INFO, "VREF R/L eye lane%d : %d-%d %d-%d\n", bl_i,
y_coordinate[R][B][channel_i][bl_i],
y_coordinate[R][T][channel_i][bl_i],
y_coordinate[L][B][channel_i][bl_i],
y_coordinate[L][T][channel_i][bl_i]);
tempD1 = (y_coordinate[R][T][channel_i][bl_i] + y_coordinate[R][B][channel_i][bl_i]) / 2; // average the RIGHT side TOP & BOTTOM values
tempD2 = (y_coordinate[L][T][channel_i][bl_i] + y_coordinate[L][B][channel_i][bl_i]) / 2; // average the LEFT side TOP & BOTTOM values
y_center[channel_i][bl_i] = (uint8_t) ((tempD1 + tempD2) / 2); // average the above averages
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#ifdef RX_EYE_CHECK
// perform an eye check
for (side_y=B; side_y<=T; side_y++)
{
for (side_x=L; side_x<=R; side_x++)
{
post_code(0x07, (0x30 + (side_y * 2) + (side_x)));
// update the settings for the eye check
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
if (side_x == L)
{
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] - (MIN_RDQS_EYE / 2)));
}
else
{
set_rdqs(channel_i, rank_i, bl_i, (x_center[channel_i][rank_i][bl_i] + (MIN_RDQS_EYE / 2)));
}
if (side_y == B)
{
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] - (MIN_VREF_EYE / 2)));
}
else
{
set_vref(channel_i, bl_i, (y_center[channel_i][bl_i] + (MIN_VREF_EYE / 2)));
}
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// check the eye
if (check_bls_ex( mrc_params, address) & 0xFF)
{
// one or more byte lanes failed
post_code(0xEE, (0x74 + (side_x * 2) + (side_y)));
}
} // side_x loop
} // side_y loop
#endif // RX_EYE_CHECK
post_code(0x07, 0x40);
// set final placements
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
#endif // R2R_SHARING
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// x_coordinate:
#ifdef R2R_SHARING
final_delay[channel_i][bl_i] += x_center[channel_i][rank_i][bl_i];
set_rdqs(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
#else
set_rdqs(channel_i, rank_i, bl_i, x_center[channel_i][rank_i][bl_i]);
#endif // R2R_SHARING
// y_coordinate:
set_vref(channel_i, bl_i, y_center[channel_i][bl_i]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#endif // BACKUP_RDQS
LEAVEFN();
return;
}
// wr_train:
// POST_CODE[major] == 0x08
//
// This function will perform the WRITE TRAINING Algorithm on all channels/ranks/byte_lanes simultaneously to minimize execution time.
// The idea here is to train the WDQ timings to achieve maximum WRITE margins.
// The algorithm will start with WDQ at the current WDQ setting (tracks WDQS in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data patterns pass.
// This is because WDQS will be aligned to WCLK by the Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window of validity.
static void wr_train(
MRCParams_t *mrc_params)
{
#define WDQ_STEP 1 // how many WDQ codes to jump while margining
#define L 0 // LEFT side loop value definition
#define R 1 // RIGHT side loop value definition
uint8_t channel_i; // channel counter
uint8_t rank_i; // rank counter
uint8_t bl_i; // byte lane counter
uint8_t bl_divisor = (mrc_params->channel_width == x16) ? 2 : 1; // byte lane divisor
#ifdef BACKUP_WDQ
#else
uint8_t side_i; // LEFT/RIGHT side indicator (0=L, 1=R)
uint32_t tempD; // temporary DWORD
uint32_t delay[2/*side_i*/][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES]; // 2 arrays, for L & R side passing delays
uint32_t address; // target address for "check_bls_ex()"
uint32_t result; // result of "check_bls_ex()"
uint32_t bl_mask; // byte lane mask for "result" checking
#ifdef R2R_SHARING
uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES]; // used to find placement for rank2rank sharing configs
uint32_t num_ranks_enabled = 0; // used to find placement for rank2rank sharing configs
#endif // R2R_SHARING
#endif // BACKUP_WDQ
// wr_train starts
post_code(0x08, 0x00);
ENTERFN();
#ifdef BACKUP_WDQ
for (channel_i=0; channel_i<NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1<<channel_i))
{
for (rank_i=0; rank_i<NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1<<rank_i))
{
for (bl_i=0; bl_i<(NUM_BYTE_LANES/bl_divisor); bl_i++)
{
set_wdq(channel_i, rank_i, bl_i, ddr_wdq[PLATFORM_ID]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#else
// initialise "delay"
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
// want to start with WDQ = (WDQS - QRTR_CLK) +/- QRTR_CLK
tempD = get_wdqs(channel_i, rank_i, bl_i) - QRTR_CLK;
delay[L][channel_i][rank_i][bl_i] = tempD - QRTR_CLK;
delay[R][channel_i][rank_i][bl_i] = tempD + QRTR_CLK;
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// initialise other variables
bl_mask = byte_lane_mask(mrc_params);
address = get_addr(mrc_params, 0, 0);
#ifdef R2R_SHARING
// need to set "final_delay[][]" elements to "0"
memset((void *) (final_delay), 0x00, (size_t) sizeof(final_delay));
#endif // R2R_SHARING
// start algorithm on the LEFT side and train each channel/bl until no failures are observed, then repeat for the RIGHT side.
for (side_i = L; side_i <= R; side_i++)
{
post_code(0x08, (0x10 + (side_i)));
// set starting values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]);
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
// find passing values
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (0x1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (0x1 << rank_i))
{
// get an address in the target channel/rank
address = get_addr(mrc_params, channel_i, rank_i);
// request HTE reconfiguration
mrc_params->hte_setup = 1;
// check the settings
do
{
#ifdef SIM
// need restore memory to idle state as write can be in bad sync
dram_init_command (DCMD_PREA(rank_i));
#endif
// result[07:00] == failing byte lane (MAX 8)
result = check_bls_ex( mrc_params, address);
// check for failures
if (result & 0xFF)
{
// at least 1 byte lane failed
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
if (result & (bl_mask << bl_i))
{
if (side_i == L)
{
delay[L][channel_i][rank_i][bl_i] += WDQ_STEP;
}
else
{
delay[R][channel_i][rank_i][bl_i] -= WDQ_STEP;
}
// check for algorithm failure
if (delay[L][channel_i][rank_i][bl_i] != delay[R][channel_i][rank_i][bl_i])
{
// margin available, update delay setting
set_wdq(channel_i, rank_i, bl_i, delay[side_i][channel_i][rank_i][bl_i]);
}
else
{
// no margin available, notify the user and halt
training_message(channel_i, rank_i, bl_i);
post_code(0xEE, (0x80 + side_i));
}
} // if bl_i failed
} // bl_i loop
} // at least 1 byte lane failed
} while (result & 0xFF); // stop when all byte lanes pass
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
} // side_i loop
// program WDQ to the middle of passing window
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
#ifdef R2R_SHARING
// increment "num_ranks_enabled"
num_ranks_enabled++;
#endif // R2R_SHARING
for (bl_i = 0; bl_i < (NUM_BYTE_LANES / bl_divisor); bl_i++)
{
DPF(D_INFO, "WDQ eye rank%d lane%d : %d-%d\n", rank_i, bl_i,
delay[L][channel_i][rank_i][bl_i],
delay[R][channel_i][rank_i][bl_i]);
tempD = (delay[R][channel_i][rank_i][bl_i] + delay[L][channel_i][rank_i][bl_i]) / 2;
#ifdef R2R_SHARING
final_delay[channel_i][bl_i] += tempD;
set_wdq(channel_i, rank_i, bl_i, ((final_delay[channel_i][bl_i]) / num_ranks_enabled));
#else
set_wdq(channel_i, rank_i, bl_i, tempD);
#endif // R2R_SHARING
} // bl_i loop
} // if rank is enabled
} // rank_i loop
} // if channel is enabled
} // channel_i loop
#endif // BACKUP_WDQ
LEAVEFN();
return;
}
// Wrapper for jedec initialisation routine
static void perform_jedec_init(
MRCParams_t *mrc_params)
{
jedec_init(mrc_params, 0);
}
// Configure DDRPHY for Auto-Refresh, Periodic Compensations,
// Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
static void set_auto_refresh(
MRCParams_t *mrc_params)
{
uint32_t channel_i;
uint32_t rank_i;
uint32_t bl_i;
uint32_t bl_divisor = /*(mrc_params->channel_width==x16)?2:*/1;
uint32_t tempD;
ENTERFN();
// enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
for (channel_i = 0; channel_i < NUM_CHANNELS; channel_i++)
{
if (mrc_params->channel_enables & (1 << channel_i))
{
// Enable Periodic RCOMPS
isbM32m(DDRPHY, CMPCTRL, (BIT1), (BIT1));
// Enable Dynamic DiffAmp & Set Read ODT Value
switch (mrc_params->rd_odt_value)
{
case 0: tempD = 0x3F; break; // OFF
default: tempD = 0x00; break; // Auto
} // rd_odt_value switch
for (bl_i=0; bl_i<((NUM_BYTE_LANES/bl_divisor)/2); bl_i++)
{
isbM32m(DDRPHY, (B0OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)),
((0x00<<16)|(tempD<<10)),
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10))); // Override: DIFFAMP, ODT
isbM32m(DDRPHY, (B1OVRCTL + (bl_i * DDRIODQ_BL_OFFSET) + (channel_i * DDRIODQ_CH_OFFSET)),
((0x00<<16)|(tempD<<10)),
((BIT21|BIT20|BIT19|BIT18|BIT17|BIT16)|(BIT15|BIT14|BIT13|BIT12|BIT11|BIT10)));// Override: DIFFAMP, ODT
} // bl_i loop
// Issue ZQCS command
for (rank_i = 0; rank_i < NUM_RANKS; rank_i++)
{
if (mrc_params->rank_enables & (1 << rank_i))
{
dram_init_command(DCMD_ZQCS(rank_i));
} // if rank_i enabled
} // rank_i loop
} // if channel_i enabled
} // channel_i loop
clear_pointers();
LEAVEFN();
return;
}
// Depending on configuration enables ECC support.
// Available memory size is decresed, and updated with 0s
// in order to clear error status. Address mode 2 forced.
static void ecc_enable(
MRCParams_t *mrc_params)
{
RegDRP Drp;
RegDSCH Dsch;
RegDECCCTRL Ctr;
if (mrc_params->ecc_enables == 0) return;
ENTERFN();
// Configuration required in ECC mode
Drp.raw = isbR32m(MCU, DRP);
Drp.field.addressMap = 2;
Drp.field.split64 = 1;
isbW32m(MCU, DRP, Drp.raw);
// Disable new request bypass
Dsch.raw = isbR32m(MCU, DSCH);
Dsch.field.NEWBYPDIS = 1;
isbW32m(MCU, DSCH, Dsch.raw);
// Enable ECC
Ctr.raw = 0;
Ctr.field.SBEEN = 1;
Ctr.field.DBEEN = 1;
Ctr.field.ENCBGEN = 1;
isbW32m(MCU, DECCCTRL, Ctr.raw);
#ifdef SIM
// Read back to be sure writing took place
Ctr.raw = isbR32m(MCU, DECCCTRL);
#endif
// Assume 8 bank memory, one bank is gone for ECC
mrc_params->mem_size -= mrc_params->mem_size / 8;
// For S3 resume memory content has to be preserved
if (mrc_params->boot_mode != bmS3)
{
select_hte(mrc_params);
HteMemInit(mrc_params, MrcMemInit, MrcHaltHteEngineOnError);
select_memory_manager(mrc_params);
}
LEAVEFN();
return;
}
// Lock MCU registers at the end of initialisation sequence.
static void lock_registers(
MRCParams_t *mrc_params)
{
RegDCO Dco;
ENTERFN();
Dco.raw = isbR32m(MCU, DCO);
Dco.field.PMIDIS = 0; //0 - PRI enabled
Dco.field.PMICTL = 0; //0 - PRI owned by MEMORY_MANAGER
Dco.field.DRPLOCK = 1;
Dco.field.REUTLOCK = 1;
isbW32m(MCU, DCO, Dco.raw);
LEAVEFN();
}
#ifdef MRC_SV
// cache write back invalidate
static void asm_wbinvd(void)
{
#if defined (SIM) || defined (GCC)
asm(
"wbinvd;"
);
#else
__asm wbinvd;
#endif
}
// cache invalidate
static void asm_invd(void)
{
#if defined (SIM) || defined (GCC)
asm(
"invd;"
);
#else
__asm invd;
#endif
}
static void cpu_read(void)
{
uint32_t adr, dat, limit;
asm_invd();
limit = 8 * 1024;
for (adr = 0; adr < limit; adr += 4)
{
dat = *(uint32_t*) adr;
if ((adr & 0x0F) == 0)
{
DPF(D_INFO, "\n%x : ", adr);
}
DPF(D_INFO, "%x ", dat);
}
DPF(D_INFO, "\n");
DPF(D_INFO, "CPU read done\n");
}
static void cpu_write(void)
{
uint32_t adr, limit;
limit = 8 * 1024;
for (adr = 0; adr < limit; adr += 4)
{
*(uint32_t*) adr = 0xDEAD0000 + adr;
}
asm_wbinvd();
DPF(D_INFO, "CPU write done\n");
}
static void cpu_memory_test(
MRCParams_t *mrc_params)
{
uint32_t result = 0;
uint32_t val, dat, adr, adr0, step, limit;
uint64_t my_tsc;
ENTERFN();
asm_invd();
adr0 = 1 * 1024 * 1024;
limit = 256 * 1024 * 1024;
for (step = 0; step <= 4; step++)
{
DPF(D_INFO, "Mem test step %d starting from %xh\n", step, adr0);
my_tsc = read_tsc();
for (adr = adr0; adr < limit; adr += sizeof(uint32_t))
{
if (step == 0) dat = adr;
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f));
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f));
else if (step == 3) dat = 0x5555AAAA;
else if (step == 4) dat = 0xAAAA5555;
*(uint32_t*) adr = dat;
}
DPF(D_INFO, "Write time %llXh\n", read_tsc() - my_tsc);
my_tsc = read_tsc();
for (adr = adr0; adr < limit; adr += sizeof(uint32_t))
{
if (step == 0) dat = adr;
else if (step == 1) dat = (1 << ((adr >> 2) & 0x1f));
else if (step == 2) dat = ~(1 << ((adr >> 2) & 0x1f));
else if (step == 3) dat = 0x5555AAAA;
else if (step == 4) dat = 0xAAAA5555;
val = *(uint32_t*) adr;
if (val != dat)
{
DPF(D_INFO, "%x vs. %x@%x\n", dat, val, adr);
result = adr|BIT31;
}
}
DPF(D_INFO, "Read time %llXh\n", read_tsc() - my_tsc);
}
DPF( D_INFO, "Memory test result %x\n", result);
LEAVEFN();
}
#endif // MRC_SV
// Execute memory test, if error dtected it is
// indicated in mrc_params->status.
static void memory_test(
MRCParams_t *mrc_params)
{
uint32_t result = 0;
ENTERFN();
select_hte(mrc_params);
result = HteMemInit(mrc_params, MrcMemTest, MrcHaltHteEngineOnError);
select_memory_manager(mrc_params);
DPF(D_INFO, "Memory test result %x\n", result);
mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST);
LEAVEFN();
}
// Force same timings as with backup settings
static void static_timings(
MRCParams_t *mrc_params)
{
uint8_t ch, rk, bl;
for (ch = 0; ch < NUM_CHANNELS; ch++)
{
for (rk = 0; rk < NUM_RANKS; rk++)
{
for (bl = 0; bl < NUM_BYTE_LANES; bl++)
{
set_rcvn(ch, rk, bl, 498); // RCVN
set_rdqs(ch, rk, bl, 24); // RDQS
set_wdqs(ch, rk, bl, 292); // WDQS
set_wdq( ch, rk, bl, 260); // WDQ
if (rk == 0)
{
set_vref(ch, bl, 32); // VREF (RANK0 only)
}
}
set_wctl(ch, rk, 217); // WCTL
}
set_wcmd(ch, 220); // WCMD
}
return;
}
//
// Initialise system memory.
//
void MemInit(
MRCParams_t *mrc_params)
{
static const MemInit_t init[] =
{
{ 0x0101, bmCold|bmFast|bmWarm|bmS3, clear_self_refresh }, //0
{ 0x0200, bmCold|bmFast|bmWarm|bmS3, prog_ddr_timing_control }, //1 initialise the MCU
{ 0x0103, bmCold|bmFast , prog_decode_before_jedec }, //2
{ 0x0104, bmCold|bmFast , perform_ddr_reset }, //3
{ 0x0300, bmCold|bmFast |bmS3, ddrphy_init }, //4 initialise the DDRPHY
{ 0x0400, bmCold|bmFast , perform_jedec_init }, //5 perform JEDEC initialisation of DRAMs
{ 0x0105, bmCold|bmFast , set_ddr_init_complete }, //6
{ 0x0106, bmFast|bmWarm|bmS3, restore_timings }, //7
{ 0x0106, bmCold , default_timings }, //8
{ 0x0500, bmCold , rcvn_cal }, //9 perform RCVN_CAL algorithm
{ 0x0600, bmCold , wr_level }, //10 perform WR_LEVEL algorithm
{ 0x0120, bmCold , prog_page_ctrl }, //11
{ 0x0700, bmCold , rd_train }, //12 perform RD_TRAIN algorithm
{ 0x0800, bmCold , wr_train }, //13 perform WR_TRAIN algorithm
{ 0x010B, bmCold , store_timings }, //14
{ 0x010C, bmCold|bmFast|bmWarm|bmS3, enable_scrambling }, //15
{ 0x010D, bmCold|bmFast|bmWarm|bmS3, prog_ddr_control }, //16
{ 0x010E, bmCold|bmFast|bmWarm|bmS3, prog_dra_drb }, //17
{ 0x010F, bmWarm|bmS3, perform_wake }, //18
{ 0x0110, bmCold|bmFast|bmWarm|bmS3, change_refresh_period }, //19
{ 0x0111, bmCold|bmFast|bmWarm|bmS3, set_auto_refresh }, //20
{ 0x0112, bmCold|bmFast|bmWarm|bmS3, ecc_enable }, //21
{ 0x0113, bmCold|bmFast , memory_test }, //22
{ 0x0114, bmCold|bmFast|bmWarm|bmS3, lock_registers } //23 set init done
};
uint32_t i;
ENTERFN();
DPF(D_INFO, "Meminit build %s %s\n", __DATE__, __TIME__);
// MRC started
post_code(0x01, 0x00);
if (mrc_params->boot_mode != bmCold)
{
if (mrc_params->ddr_speed != mrc_params->timings.ddr_speed)
{
// full training required as frequency changed
mrc_params->boot_mode = bmCold;
}
}
for (i = 0; i < MCOUNT(init); i++)
{
uint64_t my_tsc;
#ifdef MRC_SV
if (mrc_params->menu_after_mrc && i > 14)
{
uint8_t ch;
mylop:
DPF(D_INFO, "-- c - continue --\n");
DPF(D_INFO, "-- j - move to jedec init --\n");
DPF(D_INFO, "-- m - memory test --\n");
DPF(D_INFO, "-- r - cpu read --\n");
DPF(D_INFO, "-- w - cpu write --\n");
DPF(D_INFO, "-- b - hte base test --\n");
DPF(D_INFO, "-- g - hte extended test --\n");
ch = mgetc();
switch (ch)
{
case 'c':
break;
case 'j': //move to jedec init
i = 5;
break;
case 'M':
case 'N':
{
uint32_t n, res, cnt=0;
for(n=0; mgetch()==0; n++)
{
if( ch == 'M' || n % 256 == 0)
{
DPF(D_INFO, "n=%d e=%d\n", n, cnt);
}
res = 0;
if( ch == 'M')
{
memory_test(mrc_params);
res |= mrc_params->status;
}
mrc_params->hte_setup = 1;
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
res |= check_bls_ex(mrc_params, 0x00000000);
if( mrc_params->rank_enables & 2)
{
mrc_params->hte_setup = 1;
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
res |= check_bls_ex(mrc_params, 0x40000000);
}
if( res != 0)
{
DPF(D_INFO, "###########\n");
DPF(D_INFO, "#\n");
DPF(D_INFO, "# Error count %d\n", ++cnt);
DPF(D_INFO, "#\n");
DPF(D_INFO, "###########\n");
}
} // for
select_memory_manager(mrc_params);
}
goto mylop;
case 'm':
memory_test(mrc_params);
goto mylop;
case 'n':
cpu_memory_test(mrc_params);
goto mylop;
case 'l':
ch = mgetc();
if (ch <= '9') DpfPrintMask ^= (ch - '0') << 3;
DPF(D_INFO, "Log mask %x\n", DpfPrintMask);
goto mylop;
case 'p':
print_timings(mrc_params);
goto mylop;
case 'R':
rd_train(mrc_params);
goto mylop;
case 'W':
wr_train(mrc_params);
goto mylop;
case 'r':
cpu_read();
goto mylop;
case 'w':
cpu_write();
goto mylop;
case 'g':
{
uint32_t result;
select_hte(mrc_params);
mrc_params->hte_setup = 1;
result = check_bls_ex(mrc_params, 0);
DPF(D_INFO, "Extended test result %x\n", result);
select_memory_manager(mrc_params);
}
goto mylop;
case 'b':
{
uint32_t result;
select_hte(mrc_params);
mrc_params->hte_setup = 1;
result = check_rw_coarse(mrc_params, 0);
DPF(D_INFO, "Base test result %x\n", result);
select_memory_manager(mrc_params);
}
goto mylop;
case 'B':
select_hte(mrc_params);
HteMemOp(0x2340, 1, 1);
select_memory_manager(mrc_params);
goto mylop;
case '3':
{
RegDPMC0 DPMC0reg;
DPF( D_INFO, "===>> Start suspend\n");
isbR32m(MCU, DSTAT);
DPMC0reg.raw = isbR32m(MCU, DPMC0);
DPMC0reg.field.DYNSREN = 0;
DPMC0reg.field.powerModeOpCode = 0x05; // Disable Master DLL
isbW32m(MCU, DPMC0, DPMC0reg.raw);
// Should be off for negative test case verification
#if 1
Wr32(MMIO, PCIADDR(0,0,0,SB_PACKET_REG),
(uint32_t)SB_COMMAND(SB_SUSPEND_CMND_OPCODE, MCU, 0));
#endif
DPF( D_INFO, "press key\n");
mgetc();
DPF( D_INFO, "===>> Start resume\n");
isbR32m(MCU, DSTAT);
mrc_params->boot_mode = bmS3;
i = 0;
}
} // switch
} // if( menu
#endif //MRC_SV
if (mrc_params->boot_mode & init[i].boot_path)
{
uint8_t major = init[i].post_code >> 8 & 0xFF;
uint8_t minor = init[i].post_code >> 0 & 0xFF;
post_code(major, minor);
my_tsc = read_tsc();
init[i].init_fn(mrc_params);
DPF(D_TIME, "Execution time %llX", read_tsc() - my_tsc);
}
}
// display the timings
print_timings(mrc_params);
// MRC is complete.
post_code(0x01, 0xFF);
LEAVEFN();
return;
}
|