summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/CpuDxe/CpuMp.h
blob: d061bc4a61379c474ab1c36998bb6d225734989d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/** @file
  CPU DXE MP support

  Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#ifndef _CPU_MP_H_
#define _CPU_MP_H_

#include <Protocol/MpService.h>
#include <Library/SynchronizationLib.h>

/**
  Initialize Multi-processor support.

**/
VOID
InitializeMpSupport (
  VOID
  );

typedef
VOID
(EFIAPI *STACKLESS_AP_ENTRY_POINT)(
  VOID
  );

/**
  Starts the Application Processors and directs them to jump to the
  specified routine.

  The processor jumps to this code in flat mode, but the processor's
  stack is not initialized.

  @param ApEntryPoint    Pointer to the Entry Point routine

  @retval EFI_SUCCESS           The APs were started
  @retval EFI_OUT_OF_RESOURCES  Cannot allocate memory to start APs

**/
EFI_STATUS
StartApsStackless (
  IN STACKLESS_AP_ENTRY_POINT ApEntryPoint
  );

/**
  The AP entry point that the Startup-IPI target code will jump to.

  The processor jumps to this code in flat mode, but the processor's
  stack is not initialized.

**/
VOID
EFIAPI
AsmApEntryPoint (
  VOID
  );

/**
  Releases the lock preventing other APs from using the shared AP
  stack.

  Once the AP has transitioned to using a new stack, it can call this
  function to allow another AP to proceed with using the shared stack.

**/
VOID
EFIAPI
AsmApDoneWithCommonStack (
  VOID
  );

typedef enum {
  CpuStateIdle,
  CpuStateBlocked,
  CpuStateReady,
  CpuStateBuzy,
  CpuStateFinished
} CPU_STATE;

/**
  Define Individual Processor Data block.

**/
typedef struct {
  EFI_PROCESSOR_INFORMATION      Info;
  SPIN_LOCK                      CpuDataLock;
  volatile CPU_STATE             State;

  EFI_AP_PROCEDURE               Procedure;
  VOID                           *Parameter;
} CPU_DATA_BLOCK;

/**
  Define MP data block which consumes individual processor block.

**/
typedef struct {
  CPU_DATA_BLOCK              *CpuDatas;
  UINTN                       NumberOfProcessors;
  UINTN                       NumberOfEnabledProcessors;
} MP_SYSTEM_DATA;

/**
  This function is called by all processors (both BSP and AP) once and collects MP related data.

  @param Bsp             TRUE if the CPU is BSP
  @param ProcessorNumber The specific processor number

  @retval EFI_SUCCESS    Data for the processor collected and filled in

**/
EFI_STATUS
FillInProcessorInformation (
  IN     BOOLEAN              Bsp,
  IN     UINTN                ProcessorNumber
  );

/**
  This service retrieves the number of logical processor in the platform
  and the number of those logical processors that are enabled on this boot.
  This service may only be called from the BSP.

  This function is used to retrieve the following information:
    - The number of logical processors that are present in the system.
    - The number of enabled logical processors in the system at the instant
      this call is made.

  Because MP Service Protocol provides services to enable and disable processors
  dynamically, the number of enabled logical processors may vary during the
  course of a boot session.

  If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
  If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
  EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
  is returned in NumberOfProcessors, the number of currently enabled processor
  is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.

  @param[in]  This                        A pointer to the EFI_MP_SERVICES_PROTOCOL
                                          instance.
  @param[out] NumberOfProcessors          Pointer to the total number of logical
                                          processors in the system, including the BSP
                                          and disabled APs.
  @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
                                          processors that exist in system, including
                                          the BSP.

  @retval EFI_SUCCESS             The number of logical processors and enabled
                                  logical processors was retrieved.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL.
  @retval EFI_INVALID_PARAMETER   NumberOfEnabledProcessors is NULL.

**/
EFI_STATUS
EFIAPI
GetNumberOfProcessors (
  IN  EFI_MP_SERVICES_PROTOCOL  *This,
  OUT UINTN                     *NumberOfProcessors,
  OUT UINTN                     *NumberOfEnabledProcessors
  );

/**
  Gets detailed MP-related information on the requested processor at the
  instant this call is made. This service may only be called from the BSP.

  This service retrieves detailed MP-related information about any processor
  on the platform. Note the following:
    - The processor information may change during the course of a boot session.
    - The information presented here is entirely MP related.

  Information regarding the number of caches and their sizes, frequency of operation,
  slot numbers is all considered platform-related information and is not provided
  by this service.

  @param[in]  This                  A pointer to the EFI_MP_SERVICES_PROTOCOL
                                    instance.
  @param[in]  ProcessorNumber       The handle number of processor.
  @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
                                    the requested processor is deposited.

  @retval EFI_SUCCESS             Processor information was returned.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
  @retval EFI_NOT_FOUND           The processor with the handle specified by
                                  ProcessorNumber does not exist in the platform.

**/
EFI_STATUS
EFIAPI
GetProcessorInfo (
  IN  EFI_MP_SERVICES_PROTOCOL   *This,
  IN  UINTN                      ProcessorNumber,
  OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer
  );

/**
  This return the handle number for the calling processor.  This service may be
  called from the BSP and APs.

  This service returns the processor handle number for the calling processor.
  The returned value is in the range from 0 to the total number of logical
  processors minus 1. The total number of logical processors can be retrieved
  with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
  called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
  is returned. Otherwise, the current processors handle number is returned in
  ProcessorNumber, and EFI_SUCCESS is returned.

  @param[in]  This             A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
  @param[out] ProcessorNumber  The handle number of AP that is to become the new
                               BSP. The range is from 0 to the total number of
                               logical processors minus 1. The total number of
                               logical processors can be retrieved by
                               EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

  @retval EFI_SUCCESS             The current processor handle number was returned
                                  in ProcessorNumber.
  @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.

**/
EFI_STATUS
EFIAPI
WhoAmI (
  IN EFI_MP_SERVICES_PROTOCOL  *This,
  OUT UINTN                    *ProcessorNumber
  );

#endif // _CPU_MP_H_