summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/Library/CpuPageTableLib/UnitTest/RandomTest.c
blob: 97a388ca1c65373a8c4c192f27b13f8c77681095 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/** @file
  Random test case for Unit tests of the CpuPageTableLib instance of the CpuPageTableLib class

  Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "CpuPageTableLibUnitTest.h"
#include "RandomTest.h"

UINTN                     RandomNumber = 0;
extern IA32_PAGING_ENTRY  mValidMaskNoLeaf[6];
extern IA32_PAGING_ENTRY  mValidMaskLeaf[6];
extern IA32_PAGING_ENTRY  mValidMaskLeafFlag[6];
UINTN                     mRandomOption;
IA32_MAP_ATTRIBUTE        mSupportedBit;
extern UINTN              mNumberCount;
extern UINT8              mNumbers[];
UINTN                     mNumberIndex;
UINT64                    AlignedTable[] = {
  ~((UINT64)SIZE_4KB - 1),
  ~((UINT64)SIZE_2MB - 1),
  ~((UINT64)SIZE_1GB - 1)
};

/**
  Generates a pseudorandom byte stream of the specified size.

  Return FALSE to indicate this interface is not supported.

  @param[out]  Output  Pointer to buffer to receive random value.
  @param[in]   Size    Size of random bytes to generate.

  @retval TRUE   Always return TRUE

**/
BOOLEAN
EFIAPI
RandomBytesUsingArray (
  OUT  UINT8  *Output,
  IN   UINTN  Size
  )
{
  UINTN  Index;

  for (Index = 0; Index < Size; Index++) {
    if (mNumberIndex >= mNumberCount) {
      mNumberIndex = 0;
    }

    Output[Index] = mNumbers[mNumberIndex];
    mNumberIndex++;
  }

  return TRUE;
}

/**
  Generates a pseudorandom byte stream of the specified size.

  Return FALSE to indicate this interface is not supported.

  @param[out]  Output  Pointer to buffer to receive random value.
  @param[in]   Size    Size of random bytes to generate.

  @retval TRUE   Pseudorandom byte stream generated successfully.
  @retval FALSE  Pseudorandom number generator fails
**/
BOOLEAN
EFIAPI
LocalRandomBytes (
  OUT  UINT8  *Output,
  IN   UINTN  Size
  )
{
  if (mRandomOption & USE_RANDOM_ARRAY) {
    return RandomBytesUsingArray (Output, Size);
  } else {
    return RandomBytes (Output, Size);
  }
}

/**
  Return a random boolean.

  @return boolean
**/
BOOLEAN
RandomBoolean (
  VOID
  )
{
  BOOLEAN  Value;

  LocalRandomBytes ((UINT8 *)&Value, sizeof (BOOLEAN));
  return Value%2;
}

/**
  Return a 32bit random number.

  @param Start  Start of the random number range.
  @param Limit  Limit of the random number range, and return value can be Limit.
  @return 32bit random number
**/
UINT32
Random32 (
  UINT32  Start,
  UINT32  Limit
  )
{
  UINT64  Value;

  LocalRandomBytes ((UINT8 *)&Value, sizeof (UINT64));
  return (UINT32)(Value % (Limit - Start + 1)) + Start;
}

/**
  Return a 64bit random number.

  @param Start  Start of the random number range.
  @param Limit  Limit of the random number range, and return value can be Limit.
  @return 64bit random number
**/
UINT64
Random64 (
  UINT64  Start,
  UINT64  Limit
  )
{
  UINT64  Value;

  LocalRandomBytes ((UINT8 *)&Value, sizeof (UINT64));
  if (Limit - Start  == MAX_UINT64) {
    return (UINT64)(Value);
  }

  return (UINT64)(Value % (Limit - Start  + 1)) + Start;
}

/**
  Check if the Page table entry is valid

  @param[in]   PagingEntry    The entry in page table to verify
  @param[in]   Level          the level of PagingEntry.
  @param[in]   MaxLeafLevel   Max leaf entry level.
  @param[in]   LinearAddress  The linear address verified.

  @retval  Leaf entry.
**/
UNIT_TEST_STATUS
ValidateAndRandomeModifyPageTablePageTableEntry (
  IN IA32_PAGING_ENTRY  *PagingEntry,
  IN UINTN              Level,
  IN UINTN              MaxLeafLevel,
  IN UINT64             Address
  )
{
  UINT64             Index;
  UINT64             TempPhysicalBase;
  IA32_PAGING_ENTRY  *ChildPageEntry;
  UNIT_TEST_STATUS   Status;

  if (PagingEntry->Pce.Present == 0) {
    return UNIT_TEST_PASSED;
  }

  if ((PagingEntry->Uint64 & mValidMaskLeafFlag[Level].Uint64) == mValidMaskLeafFlag[Level].Uint64) {
    //
    // It is a Leaf
    //
    if (Level > MaxLeafLevel) {
      UT_ASSERT_TRUE (Level <= MaxLeafLevel);
    }

    if ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64) != PagingEntry->Uint64) {
      UT_ASSERT_EQUAL ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64), PagingEntry->Uint64);
    }

    if ((RandomNumber < 100) && RandomBoolean ()) {
      RandomNumber++;
      if (Level == 1) {
        TempPhysicalBase = PagingEntry->Pte4K.Bits.PageTableBaseAddress;
      } else {
        TempPhysicalBase = PagingEntry->PleB.Bits.PageTableBaseAddress;
      }

      PagingEntry->Uint64             = (Random64 (0, MAX_UINT64) & mValidMaskLeaf[Level].Uint64) | mValidMaskLeafFlag[Level].Uint64;
      PagingEntry->Pte4K.Bits.Present = 1;
      if (Level == 1) {
        PagingEntry->Pte4K.Bits.PageTableBaseAddress = TempPhysicalBase;
      } else {
        PagingEntry->PleB.Bits.PageTableBaseAddress = TempPhysicalBase;
      }

      if ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64) != PagingEntry->Uint64) {
        UT_ASSERT_EQUAL ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64), PagingEntry->Uint64);
      }
    }

    return UNIT_TEST_PASSED;
  }

  //
  // Not a leaf
  //
  UT_ASSERT_NOT_EQUAL (Level, 1);
  if ((PagingEntry->Uint64 & mValidMaskNoLeaf[Level].Uint64) != PagingEntry->Uint64) {
    DEBUG ((DEBUG_ERROR, "ERROR: Level %d no Leaf entry is 0x%lx, which reserved bit is set \n", Level, PagingEntry->Uint64));
    UT_ASSERT_EQUAL ((PagingEntry->Uint64 & mValidMaskNoLeaf[Level].Uint64), PagingEntry->Uint64);
  }

  if ((RandomNumber < 100) && RandomBoolean ()) {
    RandomNumber++;
    TempPhysicalBase = PagingEntry->Pnle.Bits.PageTableBaseAddress;

    PagingEntry->Uint64                         = Random64 (0, MAX_UINT64) & mValidMaskNoLeaf[Level].Uint64;
    PagingEntry->Pnle.Bits.Present              = 1;
    PagingEntry->Pnle.Bits.PageTableBaseAddress = TempPhysicalBase;
    ASSERT ((PagingEntry->Uint64 & mValidMaskLeafFlag[Level].Uint64) != mValidMaskLeafFlag[Level].Uint64);
  }

  ChildPageEntry = (IA32_PAGING_ENTRY  *)(UINTN)((PagingEntry->Pnle.Bits.PageTableBaseAddress) << 12);
  for (Index = 0; Index < 512; Index++) {
    Status = ValidateAndRandomeModifyPageTablePageTableEntry (&ChildPageEntry[Index], Level-1, MaxLeafLevel, Address + (Index<<(9*(Level-1) + 3)));
    if (Status != UNIT_TEST_PASSED) {
      return Status;
    }
  }

  return UNIT_TEST_PASSED;
}

/**
  Check if the Page table is valid

  @param[in]   PageTable      The pointer to the page table.
  @param[in]   PagingMode     The paging mode.

  @retval  UNIT_TEST_PASSED   It is a valid Page Table
**/
UNIT_TEST_STATUS
ValidateAndRandomeModifyPageTable (
  IN     UINTN        PageTable,
  IN     PAGING_MODE  PagingMode
  )
{
  UINTN              MaxLevel;
  UINTN              MaxLeafLevel;
  UINT64             Index;
  UNIT_TEST_STATUS   Status;
  IA32_PAGING_ENTRY  *PagingEntry;

  if ((PagingMode == Paging32bit) || (PagingMode == PagingPae) || (PagingMode >= PagingModeMax)) {
    //
    // 32bit paging is never supported.
    // PAE paging will be supported later.
    //
    return UNIT_TEST_ERROR_TEST_FAILED;
  }

  MaxLeafLevel = (UINT8)PagingMode;
  MaxLevel     = (UINT8)(PagingMode >> 8);

  PagingEntry = (IA32_PAGING_ENTRY *)(UINTN)PageTable;
  for (Index = 0; Index < 512; Index++) {
    Status = ValidateAndRandomeModifyPageTablePageTableEntry (&PagingEntry[Index], MaxLevel, MaxLeafLevel, Index << (9 * MaxLevel + 3));
    if (Status != UNIT_TEST_PASSED) {
      return Status;
    }
  }

  return Status;
}

/**
  Generate single random map entry.
  The map entry can be the input of function PageTableMap
  the LinearAddress and length is aligned to aligned table.

  @param MaxAddress  Max Address.
  @param MapEntrys   Output MapEntrys contains all parameter as input of function PageTableMap
**/
VOID
GenerateSingleRandomMapEntry (
  IN     UINT64      MaxAddress,
  IN OUT MAP_ENTRYS  *MapEntrys
  )
{
  UINTN   MapsIndex;
  UINT64  FormerLinearAddress;
  UINT64  FormerLinearAddressBottom;
  UINT64  FormerLinearAddressTop;

  MapsIndex = MapEntrys->Count;

  ASSERT (MapsIndex < MapEntrys->MaxCount);
  //
  // use AlignedTable to avoid that a random number can be very hard to be 1G or 2M aligned
  //
  if ((MapsIndex != 0) &&  (RandomBoolean ())) {
    FormerLinearAddress = MapEntrys->Maps[Random32 (0, (UINT32)MapsIndex-1)].LinearAddress;
    if (FormerLinearAddress < 2 * (UINT64)SIZE_1GB) {
      FormerLinearAddressBottom = 0;
    } else {
      FormerLinearAddressBottom = FormerLinearAddress - 2 * (UINT64)SIZE_1GB;
    }

    if (FormerLinearAddress + 2 * (UINT64)SIZE_1GB > MaxAddress) {
      FormerLinearAddressTop = MaxAddress;
    } else {
      FormerLinearAddressTop = FormerLinearAddress + 2 * (UINT64)SIZE_1GB;
    }

    MapEntrys->Maps[MapsIndex].LinearAddress = Random64 (FormerLinearAddressBottom, FormerLinearAddressTop) & AlignedTable[Random32 (0, ARRAY_SIZE (AlignedTable) -1)];
  } else {
    MapEntrys->Maps[MapsIndex].LinearAddress = Random64 (0, MaxAddress) & AlignedTable[Random32 (0, ARRAY_SIZE (AlignedTable) -1)];
  }

  //
  // To have better performance, limit the size less than 10G
  //
  MapEntrys->Maps[MapsIndex].Length = Random64 (0, MIN (MaxAddress - MapEntrys->Maps[MapsIndex].LinearAddress, 10 * (UINT64)SIZE_1GB)) & AlignedTable[Random32 (0, ARRAY_SIZE (AlignedTable) -1)];

  if ((MapsIndex != 0)  && (RandomBoolean ())) {
    MapEntrys->Maps[MapsIndex].Attribute.Uint64 = MapEntrys->Maps[Random32 (0, (UINT32)MapsIndex-1)].Attribute.Uint64;
    MapEntrys->Maps[MapsIndex].Mask.Uint64      = MapEntrys->Maps[Random32 (0, (UINT32)MapsIndex-1)].Mask.Uint64;
  } else {
    MapEntrys->Maps[MapsIndex].Attribute.Uint64 = Random64 (0, MAX_UINT64) & mSupportedBit.Uint64;
    MapEntrys->Maps[MapsIndex].Mask.Uint64      = Random64 (0, MAX_UINT64) & mSupportedBit.Uint64;
    if (MapEntrys->Maps[MapsIndex].Mask.Bits.ProtectionKey != 0) {
      MapEntrys->Maps[MapsIndex].Mask.Bits.ProtectionKey = 0xF;
    }
  }

  if (mRandomOption & ONLY_ONE_ONE_MAPPING) {
    MapEntrys->Maps[MapsIndex].Attribute.Bits.PageTableBaseAddress = MapEntrys->Maps[MapsIndex].LinearAddress >> 12;
    MapEntrys->Maps[MapsIndex].Mask.Bits.PageTableBaseAddress      = 0xFFFFFFFFFF;
  } else {
    //
    // Todo: If the mask bit for base address is zero, when dump the pagetable, every entry mapping to physical address zeor.
    //       This means the map count will be a large number, and impossible to finish in proper time.
    //       Need to avoid such case when remove the Random option ONLY_ONE_ONE_MAPPING
    //
    MapEntrys->Maps[MapsIndex].Attribute.Bits.PageTableBaseAddress = (Random64 (0, (((UINT64)1)<<52) - 1) & AlignedTable[Random32 (0, ARRAY_SIZE (AlignedTable) -1)])>> 12;
    if (RandomBoolean ()) {
      MapEntrys->Maps[MapsIndex].Mask.Bits.PageTableBaseAddress = 0;
    }
  }

  MapEntrys->Count += 1;
}

/**
  Compare the attribute for one point.
  MapEntrys records every memory ranges that is used as input
  Map and MapCount are gotten from Page table
  Compare if this point have same attribute.

  @param[in] Address      Address of one Point.
  @param[in] MapEntrys    Record every memory ranges that is used as input
  @param[in] Map          Pointer to an array that describes multiple linear address ranges.
  @param[in] MapCount     Pointer to a UINTN that hold the number of entries in the Map.
  @param[in] InitMap      Pointer to an array that describes init map entries.
  @param[in] InitMapCount Pointer to a UINTN that hold the number of init map entries.

  @retval TRUE          At least one byte of data is available to be read
  @retval FALSE         No data is available to be read
**/
BOOLEAN
CompareEntrysforOnePoint (
  IN  UINT64          Address,
  IN  MAP_ENTRYS      *MapEntrys,
  IN  IA32_MAP_ENTRY  *Map,
  IN  UINTN           MapCount,
  IN  IA32_MAP_ENTRY  *InitMap,
  IN  UINTN           InitMapCount
  )
{
  UINTN               Index;
  IA32_MAP_ATTRIBUTE  AttributeInInitMap;
  IA32_MAP_ATTRIBUTE  AttributeInMap;
  IA32_MAP_ATTRIBUTE  AttributeInMapEntrys;
  IA32_MAP_ATTRIBUTE  MaskInMapEntrys;

  AttributeInMap.Uint64       = 0;
  AttributeInMapEntrys.Uint64 = 0;
  AttributeInInitMap.Uint64   = 0;
  MaskInMapEntrys.Uint64      = 0;
  //
  // Assume every entry in maps does not overlap with each other
  //
  for (Index = 0; Index < MapCount; Index++) {
    if ((Address >= Map[Index].LinearAddress) && (Address < (Map[Index].LinearAddress + Map[Index].Length))) {
      AttributeInMap.Uint64                    = (Map[Index].Attribute.Uint64 & mSupportedBit.Uint64);
      AttributeInMap.Bits.PageTableBaseAddress = ((Address - Map[Index].LinearAddress) >> 12) + Map[Index].Attribute.Bits.PageTableBaseAddress;
      break;
    }
  }

  //
  // Assume every entry in maps does not overlap with each other
  //
  for (Index = 0; Index < InitMapCount; Index++) {
    if ((Address >= InitMap[Index].LinearAddress) && (Address < (InitMap[Index].LinearAddress + InitMap[Index].Length))) {
      AttributeInInitMap.Uint64                    = (InitMap[Index].Attribute.Uint64 & mSupportedBit.Uint64);
      AttributeInInitMap.Bits.PageTableBaseAddress = ((Address - InitMap[Index].LinearAddress) >> 12) + InitMap[Index].Attribute.Bits.PageTableBaseAddress;
      break;
    }
  }

  AttributeInMapEntrys.Uint64 = AttributeInInitMap.Uint64;

  for (Index = MapEntrys->InitCount; Index < MapEntrys->Count; Index++) {
    if ((Address >= MapEntrys->Maps[Index].LinearAddress) && (Address < (MapEntrys->Maps[Index].LinearAddress + MapEntrys->Maps[Index].Length))) {
      if (AttributeInMapEntrys.Bits.Present == 0) {
        AttributeInMapEntrys.Uint64 = 0;
        MaskInMapEntrys.Uint64      = 0;
      }

      MaskInMapEntrys.Uint64      |= MapEntrys->Maps[Index].Mask.Uint64;
      AttributeInMapEntrys.Uint64 &= (~MapEntrys->Maps[Index].Mask.Uint64);
      AttributeInMapEntrys.Uint64 |=  (MapEntrys->Maps[Index].Attribute.Uint64 & MapEntrys->Maps[Index].Mask.Uint64);
      if (MapEntrys->Maps[Index].Mask.Bits.PageTableBaseAddress != 0) {
        AttributeInMapEntrys.Bits.PageTableBaseAddress = ((Address - MapEntrys->Maps[Index].LinearAddress) >> 12) + MapEntrys->Maps[Index].Attribute.Bits.PageTableBaseAddress;
      }
    }
  }

  if (AttributeInMap.Bits.Present == 0) {
    if (AttributeInMapEntrys.Bits.Present == 0) {
      return TRUE;
    }
  }

  if ((AttributeInMap.Uint64 & MaskInMapEntrys.Uint64) != (AttributeInMapEntrys.Uint64 & MaskInMapEntrys.Uint64)) {
    DEBUG ((DEBUG_INFO, "======detailed information begin=====\n"));
    DEBUG ((DEBUG_INFO, "\nError: Detect different attribute on a point with linear address: 0x%lx\n", Address));
    DEBUG ((DEBUG_INFO, "By parsing page table, the point has Attribute 0x%lx, and map to physical address 0x%lx\n", IA32_MAP_ATTRIBUTE_ATTRIBUTES (&AttributeInMap) & MaskInMapEntrys.Uint64, AttributeInMap.Bits.PageTableBaseAddress));
    DEBUG ((DEBUG_INFO, "While according to inputs, the point should Attribute 0x%lx, and should map to physical address 0x%lx\n", IA32_MAP_ATTRIBUTE_ATTRIBUTES (&AttributeInMapEntrys) & MaskInMapEntrys.Uint64, AttributeInMapEntrys.Bits.PageTableBaseAddress));
    DEBUG ((DEBUG_INFO, "The total Mask is 0x%lx\n", MaskInMapEntrys.Uint64));

    if (MapEntrys->InitCount != 0) {
      DEBUG ((DEBUG_INFO, "Below is the initialization status:\n"));
      for (Index = 0; Index < InitMapCount; Index++) {
        if ((Address >= InitMap[Index].LinearAddress) && (Address < (InitMap[Index].LinearAddress + InitMap[Index].Length))) {
          DEBUG ((DEBUG_INFO, " *"));
        } else {
          DEBUG ((DEBUG_INFO, "  "));
        }

        DEBUG ((DEBUG_INFO, "  %02d: {0x%lx, 0x%lx, 0x%lx}\n", Index, InitMap[Index].LinearAddress, InitMap[Index].LinearAddress + InitMap[Index].Length, InitMap[Index].Attribute.Uint64));
      }
    }

    DEBUG ((DEBUG_INFO, "Below is the inputs:\n"));
    DEBUG ((DEBUG_INFO, "  Index: {LinearAddress, LinearLimit, Mask, Attribute}\n"));
    for (Index = MapEntrys->InitCount; Index < MapEntrys->Count; Index++) {
      if ((Address >= MapEntrys->Maps[Index].LinearAddress) && (Address < (MapEntrys->Maps[Index].LinearAddress + MapEntrys->Maps[Index].Length))) {
        DEBUG ((DEBUG_INFO, " *"));
      } else {
        DEBUG ((DEBUG_INFO, "  "));
      }

      DEBUG ((
        DEBUG_INFO,
        "  %02d: {0x%lx, 0x%lx, 0x%lx,0x%lx}\n",
        Index,
        MapEntrys->Maps[Index].LinearAddress,
        MapEntrys->Maps[Index].LinearAddress + MapEntrys->Maps[Index].Length,
        MapEntrys->Maps[Index].Mask.Uint64,
        MapEntrys->Maps[Index].Attribute.Uint64
        ));
    }

    DEBUG ((DEBUG_INFO, "Below is the dumped from pagetable:\n"));
    for (Index = 0; Index < MapCount; Index++) {
      if ((Address >= Map[Index].LinearAddress) && (Address < (Map[Index].LinearAddress + Map[Index].Length))) {
        DEBUG ((DEBUG_INFO, " *"));
      } else {
        DEBUG ((DEBUG_INFO, "  "));
      }

      DEBUG ((DEBUG_INFO, "%02d: {0x%lx, 0x%lx, 0x%lx}\n", Index, Map[Index].LinearAddress, Map[Index].LinearAddress + Map[Index].Length, Map[Index].Attribute.Uint64));
    }

    DEBUG ((DEBUG_INFO, "======detailed information done=====\n"));
    return FALSE;
  }

  return TRUE;
}

/**
  Append key point of a given address to Buffer
  if buffer is NULL, only count needed count

  @param[in, out] Buffer  Buffer to contains all key point.
  @param[in, out] Count   Count of the key point.
  @param[in]      Address given address
**/
VOID
AppendKeyPointToBuffer (
  IN OUT UINT64  *Buffer,
  IN OUT UINTN   *Count,
  IN     UINT64  Address
  )
{
  if ( Buffer != NULL) {
    Buffer[*Count] = Address;
    (*Count)++;
    Buffer[*Count] = Address+1;
    (*Count)++;
    Buffer[*Count] = Address-1;
    (*Count)++;
  } else {
    (*Count) = (*Count) +3;
  }
}

/**
  Get all key points from a buffer
  if buffer is NULL, only count needed count

  @param[in] MapEntrys    Record every memory ranges that is used as input
  @param[in] Map          Pointer to an array that describes multiple linear address ranges.
  @param[in] MapCount     Pointer to a UINTN that hold the actual number of entries in the Map.
  @param[in, out] Buffer  Buffer to contains all key point.
  @param[in, out] Count   Count of the key point.
**/
VOID
GetKeyPointList (
  IN     MAP_ENTRYS      *MapEntrys,
  IN     IA32_MAP_ENTRY  *Map,
  IN     UINTN           MapCount,
  IN OUT UINT64          *Buffer,
  IN OUT UINTN           *Count
  )
{
  UINTN  TemCount;
  UINTN  Index1;
  UINTN  Index2;

  TemCount = 0;

  for (Index1 = 0; Index1 < MapEntrys->Count; Index1++) {
    AppendKeyPointToBuffer (Buffer, &TemCount, MapEntrys->Maps[Index1].LinearAddress);
    AppendKeyPointToBuffer (Buffer, &TemCount, MapEntrys->Maps[Index1].LinearAddress + MapEntrys->Maps[Index1].Length);
  }

  for (Index2 = 0; Index2 < MapCount; Index2++) {
    if (Buffer != NULL) {
      for (Index1 = 0; Index1 < TemCount; Index1++) {
        if (Buffer[Index1] == Map[Index2].LinearAddress) {
          break;
        }
      }

      if (Index1 < TemCount) {
        continue;
      }
    }

    AppendKeyPointToBuffer (Buffer, &TemCount, Map[Index2].LinearAddress);
  }

  for (Index2 = 0; Index2 < MapCount; Index2++) {
    if (Buffer != NULL) {
      for (Index1 = 0; Index1 < TemCount; Index1++) {
        if (Buffer[Index1] == (Map[Index2].LinearAddress + Map[Index2].Length)) {
          break;
        }
      }

      if (Index1 < TemCount) {
        continue;
      }
    }

    AppendKeyPointToBuffer (Buffer, &TemCount, Map[Index2].LinearAddress + Map[Index2].Length);
  }

  *Count = TemCount;
}

/**
  Generate random one range with randome attribute, and add it into pagetable
  Compare the key point has same attribute

  @param[in, out] PageTable     The pointer to the page table to update, or pointer to NULL if a new page table is to be created.
  @param[in]      PagingMode    The paging mode.
  @param[in]      MaxAddress    Max Address.
  @param[in]      MapEntrys     Record every memory ranges that is used as input
  @param[in]      PagesRecord   Used to record memory usage for page table.
  @param[in]      InitMap      Pointer to an array that describes init map entries.
  @param[in]      InitMapCount Pointer to a UINTN that hold the number of init map entries.

  @retval  UNIT_TEST_PASSED        The test is successful.
**/
UNIT_TEST_STATUS
SingleMapEntryTest (
  IN OUT UINTN                  *PageTable,
  IN     PAGING_MODE            PagingMode,
  IN     UINT64                 MaxAddress,
  IN     MAP_ENTRYS             *MapEntrys,
  IN     ALLOCATE_PAGE_RECORDS  *PagesRecord,
  IN     IA32_MAP_ENTRY         *InitMap,
  IN     UINTN                  InitMapCount
  )
{
  UINTN             MapsIndex;
  RETURN_STATUS     Status;
  UINTN             PageTableBufferSize;
  VOID              *Buffer;
  IA32_MAP_ENTRY    *Map;
  UINTN             MapCount;
  UINTN             Index;
  UINTN             KeyPointCount;
  UINTN             NewKeyPointCount;
  UINT64            *KeyPointBuffer;
  UINTN             Level;
  UINT64            Value;
  UNIT_TEST_STATUS  TestStatus;

  MapsIndex = MapEntrys->Count;

  GenerateSingleRandomMapEntry (MaxAddress, MapEntrys);

  PageTableBufferSize = 0;
  Status              = PageTableMap (
                          PageTable,
                          PagingMode,
                          NULL,
                          &PageTableBufferSize,
                          MapEntrys->Maps[MapsIndex].LinearAddress,
                          MapEntrys->Maps[MapsIndex].Length,
                          &MapEntrys->Maps[MapsIndex].Attribute,
                          &MapEntrys->Maps[MapsIndex].Mask
                          );
  if (PageTableBufferSize != 0) {
    UT_ASSERT_EQUAL (Status, RETURN_BUFFER_TOO_SMALL);

    //
    // Allocate memory for Page table
    // Note the memory is used in one complete Random test.
    //
    Buffer = PagesRecord->AllocatePagesForPageTable (PagesRecord, EFI_SIZE_TO_PAGES (PageTableBufferSize));
    UT_ASSERT_NOT_EQUAL (Buffer, NULL);
    Status = PageTableMap (
               PageTable,
               PagingMode,
               Buffer,
               &PageTableBufferSize,
               MapEntrys->Maps[MapsIndex].LinearAddress,
               MapEntrys->Maps[MapsIndex].Length,
               &MapEntrys->Maps[MapsIndex].Attribute,
               &MapEntrys->Maps[MapsIndex].Mask
               );
  }

  if (Status != RETURN_SUCCESS ) {
    UT_ASSERT_EQUAL (Status, RETURN_SUCCESS);
  }

  UT_ASSERT_EQUAL (Status, RETURN_SUCCESS);
  TestStatus = IsPageTableValid (*PageTable, PagingMode);
  if (TestStatus != UNIT_TEST_PASSED) {
    return TestStatus;
  }

  MapCount = 0;
  Status   = PageTableParse (*PageTable, PagingMode, NULL, &MapCount);
  if (MapCount != 0) {
    UT_ASSERT_EQUAL (Status, RETURN_BUFFER_TOO_SMALL);

    //
    // Allocate memory for Maps
    // Note the memory is only used in this one Single MapEntry Test
    //
    Map = AllocatePages (EFI_SIZE_TO_PAGES (MapCount * sizeof (IA32_MAP_ENTRY)));
    ASSERT (Map != NULL);
    Status = PageTableParse (*PageTable, PagingMode, Map, &MapCount);
  }

  UT_ASSERT_EQUAL (Status, RETURN_SUCCESS);

  //
  // Allocate memory to record all key point
  // Note the memory is only used in this one Single MapEntry Test
  //
  KeyPointCount = 0;
  GetKeyPointList (MapEntrys, Map, MapCount, NULL, &KeyPointCount);
  KeyPointBuffer = AllocatePages (EFI_SIZE_TO_PAGES (KeyPointCount * sizeof (UINT64)));
  ASSERT (KeyPointBuffer != NULL);
  NewKeyPointCount = 0;
  GetKeyPointList (MapEntrys, Map, MapCount, KeyPointBuffer, &NewKeyPointCount);

  //
  // Compare all key point's attribute
  //
  for (Index = 0; Index < NewKeyPointCount; Index++) {
    if (!CompareEntrysforOnePoint (KeyPointBuffer[Index], MapEntrys, Map, MapCount, InitMap, InitMapCount)) {
      DEBUG ((DEBUG_INFO, "Error happens at below key point\n"));
      DEBUG ((DEBUG_INFO, "Index = %d KeyPointBuffer[Index] = 0x%lx\n", Index, KeyPointBuffer[Index]));
      Value = GetEntryFromPageTable (*PageTable, PagingMode, KeyPointBuffer[Index], &Level);
      DEBUG ((DEBUG_INFO, "From Page table, this key point is in level %d entry, with entry value is 0x%lx\n", Level, Value));
      UT_ASSERT_TRUE (FALSE);
    }
  }

  FreePages (KeyPointBuffer, EFI_SIZE_TO_PAGES (KeyPointCount * sizeof (UINT64)));
  if (MapCount != 0) {
    FreePages (Map, EFI_SIZE_TO_PAGES (MapCount * sizeof (IA32_MAP_ENTRY)));
  }

  return UNIT_TEST_PASSED;
}

/**
  Allocate page and record the information in PagesRecord

  @param[in]  PagesRecord   Point to a struct to record memory usage
  @param[in]  Pages         Page count needed to allocate

  @return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
RecordAllocatePages (
  IN ALLOCATE_PAGE_RECORDS  *PagesRecord,
  IN UINTN                  Pages
  )
{
  VOID  *Buffer;

  Buffer = NULL;
  if (PagesRecord->Count < PagesRecord->MaxCount) {
    Buffer                                          = AllocatePages (Pages);
    PagesRecord->Records[PagesRecord->Count].Buffer = Buffer;
    PagesRecord->Records[PagesRecord->Count].Pages  = Pages;
    PagesRecord->Count++;
  }

  ASSERT (Buffer != NULL);

  return Buffer;
}

/**
  The function is a whole Random test, it will call SingleMapEntryTest for ExpctedEntryNumber times

  @param[in]  ExpctedEntryNumber   The count of random entry
  @param[in]  PagingMode           The paging mode.

  @retval  UNIT_TEST_PASSED        The test is successful.
**/
UNIT_TEST_STATUS
MultipleMapEntryTest (
  IN UINTN        ExpctedEntryNumber,
  IN PAGING_MODE  PagingMode
  )
{
  UINTN                  PageTable;
  UINT64                 MaxAddress;
  MAP_ENTRYS             *MapEntrys;
  ALLOCATE_PAGE_RECORDS  *PagesRecord;
  UINTN                  Index;
  UNIT_TEST_STATUS       TestStatus;
  RETURN_STATUS          Status;
  IA32_MAP_ENTRY         *InitMap;
  UINTN                  InitMapCount;

  MaxAddress = GetMaxAddress (PagingMode);
  PageTable  = 0;
  MapEntrys  = AllocatePages (EFI_SIZE_TO_PAGES (1000*sizeof (MAP_ENTRY) + sizeof (MAP_ENTRYS)));
  ASSERT (MapEntrys != NULL);
  MapEntrys->Count     = 0;
  MapEntrys->InitCount = 0;
  MapEntrys->MaxCount  = 1000;
  PagesRecord          = AllocatePages (EFI_SIZE_TO_PAGES (1000*sizeof (ALLOCATE_PAGE_RECORD) + sizeof (ALLOCATE_PAGE_RECORDS)));
  ASSERT (PagesRecord != NULL);
  PagesRecord->Count                     = 0;
  PagesRecord->MaxCount                  = 1000;
  PagesRecord->AllocatePagesForPageTable = RecordAllocatePages;

  if (mRandomOption & MANUAL_CHANGE_PAGE_TABLE) {
    ExpctedEntryNumber = ExpctedEntryNumber/2;
  }

  for (Index = 0; Index < ExpctedEntryNumber; Index++) {
    TestStatus = SingleMapEntryTest (
                   &PageTable,
                   PagingMode,
                   MaxAddress,
                   MapEntrys,
                   PagesRecord,
                   NULL,
                   0
                   );
    if (TestStatus != UNIT_TEST_PASSED) {
      return TestStatus;
    }
  }

  if ((mRandomOption & MANUAL_CHANGE_PAGE_TABLE) != 0) {
    MapEntrys->InitCount = ExpctedEntryNumber;
    TestStatus           = ValidateAndRandomeModifyPageTable (PageTable, PagingMode);
    RandomNumber         = 0;
    if (TestStatus != UNIT_TEST_PASSED) {
      return TestStatus;
    }

    InitMapCount = 0;
    Status       = PageTableParse (PageTable, PagingMode, NULL, &InitMapCount);
    if (InitMapCount != 0) {
      UT_ASSERT_EQUAL (Status, RETURN_BUFFER_TOO_SMALL);

      //
      // Allocate memory for Maps
      // Note the memory is only used in this one Single MapEntry Test
      //
      InitMap = AllocatePages (EFI_SIZE_TO_PAGES (InitMapCount * sizeof (IA32_MAP_ENTRY)));
      ASSERT (InitMap != NULL);
      Status = PageTableParse (PageTable, PagingMode, InitMap, &InitMapCount);
    }

    UT_ASSERT_EQUAL (Status, RETURN_SUCCESS);
    for (Index = 0; Index < ExpctedEntryNumber; Index++) {
      TestStatus = SingleMapEntryTest (
                     &PageTable,
                     PagingMode,
                     MaxAddress,
                     MapEntrys,
                     PagesRecord,
                     InitMap,
                     InitMapCount
                     );
      if (TestStatus != UNIT_TEST_PASSED) {
        return TestStatus;
      }
    }

    if (InitMapCount != 0) {
      FreePages (InitMap, EFI_SIZE_TO_PAGES (InitMapCount*sizeof (IA32_MAP_ENTRY)));
    }
  }

  FreePages (
    MapEntrys,
    EFI_SIZE_TO_PAGES (1000*sizeof (MAP_ENTRY) + sizeof (MAP_ENTRYS))
    );

  for (Index = 0; Index < PagesRecord->Count; Index++) {
    FreePages (PagesRecord->Records[Index].Buffer, PagesRecord->Records[Index].Pages);
  }

  FreePages (PagesRecord, EFI_SIZE_TO_PAGES (1000*sizeof (ALLOCATE_PAGE_RECORD) + sizeof (ALLOCATE_PAGE_RECORDS)));

  return UNIT_TEST_PASSED;
}

/**
  Random Test

  @param[in]  Context    [Optional] An optional parameter that enables:
                         1) test-case reuse with varied parameters and
                         2) test-case re-entry for Target tests that need a
                         reboot.  This parameter is a VOID* and it is the
                         responsibility of the test author to ensure that the
                         contents are well understood by all test cases that may
                         consume it.

  @retval  UNIT_TEST_PASSED             The Unit test has completed and the test
                                        case was successful.
  @retval  UNIT_TEST_ERROR_TEST_FAILED  A test case assertion has failed.
**/
UNIT_TEST_STATUS
EFIAPI
TestCaseforRandomTest (
  IN UNIT_TEST_CONTEXT  Context
  )
{
  UNIT_TEST_STATUS  Status;
  UINTN             Index;

  UT_ASSERT_EQUAL (RandomSeed (NULL, 0), TRUE);
  UT_ASSERT_EQUAL (Random32 (100, 100), 100);
  UT_ASSERT_EQUAL (Random64 (100, 100), 100);
  UT_ASSERT_TRUE ((Random32 (9, 10) >= 9) & (Random32 (9, 10) <= 10));
  UT_ASSERT_TRUE ((Random64 (9, 10) >= 9) & (Random64 (9, 10) <= 10));

  mSupportedBit.Bits.Present              = 1;
  mSupportedBit.Bits.ReadWrite            = 1;
  mSupportedBit.Bits.UserSupervisor       = 1;
  mSupportedBit.Bits.WriteThrough         = 1;
  mSupportedBit.Bits.CacheDisabled        = 1;
  mSupportedBit.Bits.Accessed             = 1;
  mSupportedBit.Bits.Dirty                = 1;
  mSupportedBit.Bits.Pat                  = 1;
  mSupportedBit.Bits.Global               = 1;
  mSupportedBit.Bits.Reserved1            = 0;
  mSupportedBit.Bits.PageTableBaseAddress = 0;
  mSupportedBit.Bits.Reserved2            = 0;
  mSupportedBit.Bits.ProtectionKey        = 0xF;
  mSupportedBit.Bits.Nx                   = 1;

  mRandomOption = ((CPU_PAGE_TABLE_LIB_RANDOM_TEST_CONTEXT *)Context)->RandomOption;
  mNumberIndex  = 0;

  for (Index = 0; Index < ((CPU_PAGE_TABLE_LIB_RANDOM_TEST_CONTEXT *)Context)->TestCount; Index++) {
    Status = MultipleMapEntryTest (
               ((CPU_PAGE_TABLE_LIB_RANDOM_TEST_CONTEXT *)Context)->TestRangeCount,
               ((CPU_PAGE_TABLE_LIB_RANDOM_TEST_CONTEXT *)Context)->PagingMode
               );
    if (Status != UNIT_TEST_PASSED) {
      return Status;
    }

    DEBUG ((DEBUG_INFO, "."));
  }

  DEBUG ((DEBUG_INFO, "\n"));

  return UNIT_TEST_PASSED;
}