1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
/** @file
helper file for Unit tests of the CpuPageTableLib instance of the CpuPageTableLib class
Copyright (c) 2022 - 2023, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "CpuPageTableLibUnitTest.h"
#include "../CpuPageTable.h"
//
// Global Data to validate if the page table is legal
// mValidMaskNoLeaf[0] is not used
// mValidMaskNoLeaf[1] ... mValidMaskNoLeaf [5] represent PTE ... PML5E
// mValidMaskNoLeaf[Index] means if it is a valid no leaf entry, entry should equal to (entry & mValidMaskNoLeaf[Index])
// mValidMaskLeaf[Index] means if it is a valid leaf entry, entry should equal to (entry & mValidMaskLeaf[Index])
// mValidMaskLeafFlag[Index] means if it is a leaf entry, if and only if ((entry & mValidMaskLeafFlag[Index]) == mValidMaskLeafFlag[Index])
//
IA32_PAGING_ENTRY mValidMaskNoLeaf[6];
IA32_PAGING_ENTRY mValidMaskLeaf[6];
IA32_PAGING_ENTRY mValidMaskLeafFlag[6];
/**
Init global data.
@param[in] MemorySpace Memory space
**/
VOID
InitGlobalData (
UINTN MemorySpace
)
{
UINTN Index;
ASSERT (MemorySpace <= 52);
mValidMaskNoLeaf[0].Uint64 = 0;
mValidMaskLeaf[0].Uint64 = 0;
mValidMaskLeafFlag[0].Uint64 = 0;
//
// Set common part for all kinds of entrys.
//
for (Index = 1; Index < 6; Index++) {
mValidMaskNoLeaf[Index].Uint64 = MAX_UINT64;
mValidMaskLeaf[Index].Uint64 = MAX_UINT64;
//
// bit 51:M is reserved, and should be zero
//
if (MemorySpace - 1 < 51) {
mValidMaskNoLeaf[Index].Uint64 = BitFieldWrite64 (mValidMaskNoLeaf[Index].Uint64, MemorySpace - 1, 51, 0);
mValidMaskLeaf[Index].Uint64 = BitFieldWrite64 (mValidMaskLeaf[Index].Uint64, MemorySpace - 1, 51, 0);
}
}
//
// Handle mask for no leaf entry.
//
mValidMaskNoLeaf[1].Uint64 = 0; // PTE can't map to page structure.
mValidMaskNoLeaf[2].Pnle.Bits.MustBeZero = 0; // for PML4E, bit 7 must be zero.
mValidMaskNoLeaf[3].Pnle.Bits.MustBeZero = 0; // for PML5E, bit 7 must be zero.
mValidMaskNoLeaf[4].Pml4.Bits.MustBeZero = 0; // for PML4E, bit 7 must be zero.
mValidMaskNoLeaf[5].Pml4.Bits.MustBeZero = 0; // for PML5E, bit 7 must be zero.
//
// Handle mask for leaf entry.
// No need to modification for PTE, since it doesn't have extra reserved bit
//
mValidMaskLeaf[2].Uint64 = BitFieldWrite64 (mValidMaskLeaf[2].Uint64, 13, 20, 0); // bit 13-20 is reserved for PDE
mValidMaskLeaf[3].Uint64 = BitFieldWrite64 (mValidMaskLeaf[2].Uint64, 13, 29, 0); // bit 13-29 is reserved for PDPTE
mValidMaskLeaf[4].Uint64 = 0; // for PML4E, no possible to map to page.
mValidMaskLeaf[5].Uint64 = 0; // for PML5E, no possible to map to page.
//
// Handle Flags to indicate it is a leaf entry.
// for PML4E and PML5E, no possible to map to page, so the flag should be MAX_UINT64.
//
mValidMaskLeafFlag[1].Pce.Present = 1; // For PTE, as long as it is present, it maps to page
//
// For PDE and PDPTE, the bit 7 should be set to map to pages
//
mValidMaskLeafFlag[2].Pde2M.Bits.MustBeOne = 1;
mValidMaskLeafFlag[2].Pde2M.Bits.Present = 1;
mValidMaskLeafFlag[3].Pde2M.Bits.MustBeOne = 1;
mValidMaskLeafFlag[3].Pde2M.Bits.Present = 1;
mValidMaskLeafFlag[4].Uint64 = MAX_UINT64;
mValidMaskLeafFlag[5].Uint64 = MAX_UINT64;
}
/**
Check if the Page table entry is valid
@param[in] PagingEntry The entry in page table to verify
@param[in] Level the level of PagingEntry.
@param[in] MaxLeafLevel Max leaf entry level.
@param[in] LinearAddress The linear address verified.
@retval Leaf entry.
**/
UNIT_TEST_STATUS
IsPageTableEntryValid (
IN IA32_PAGING_ENTRY *PagingEntry,
IN UINTN Level,
IN UINTN MaxLeafLevel,
IN UINT64 Address
)
{
UINT64 Index;
IA32_PAGING_ENTRY *ChildPageEntry;
UNIT_TEST_STATUS Status;
if (PagingEntry->Pce.Present == 0) {
return UNIT_TEST_PASSED;
}
if ((PagingEntry->Uint64 & mValidMaskLeafFlag[Level].Uint64) == mValidMaskLeafFlag[Level].Uint64) {
//
// It is a Leaf
//
if (Level > MaxLeafLevel) {
DEBUG ((DEBUG_ERROR, "ERROR: Level %d entry 0x%lx is a leaf entry, but max leaf level is %d \n", Level, PagingEntry->Uint64, MaxLeafLevel));
UT_ASSERT_TRUE (Level <= MaxLeafLevel);
}
if ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64) != PagingEntry->Uint64) {
DEBUG ((DEBUG_ERROR, "ERROR: Level %d Leaf entry is 0x%lx, which reserved bit is set \n", Level, PagingEntry->Uint64));
UT_ASSERT_EQUAL ((PagingEntry->Uint64 & mValidMaskLeaf[Level].Uint64), PagingEntry->Uint64);
}
return UNIT_TEST_PASSED;
}
//
// Not a leaf
//
UT_ASSERT_NOT_EQUAL (Level, 1);
if ((PagingEntry->Uint64 & mValidMaskNoLeaf[Level].Uint64) != PagingEntry->Uint64) {
DEBUG ((DEBUG_ERROR, "ERROR: Level %d no Leaf entry is 0x%lx, which reserved bit is set \n", Level, PagingEntry->Uint64));
UT_ASSERT_EQUAL ((PagingEntry->Uint64 & mValidMaskNoLeaf[Level].Uint64), PagingEntry->Uint64);
}
ChildPageEntry = (IA32_PAGING_ENTRY *)(UINTN)(IA32_PNLE_PAGE_TABLE_BASE_ADDRESS (&PagingEntry->Pnle));
for (Index = 0; Index < 512; Index++) {
Status = IsPageTableEntryValid (&ChildPageEntry[Index], Level-1, MaxLeafLevel, Address + (Index<<(9*(Level-1) + 3)));
if (Status != UNIT_TEST_PASSED) {
return Status;
}
}
return UNIT_TEST_PASSED;
}
/**
Check if the Page table is valid
@param[in] PageTable The pointer to the page table.
@param[in] PagingMode The paging mode.
@retval UNIT_TEST_PASSED It is a valid Page Table
**/
UNIT_TEST_STATUS
IsPageTableValid (
IN UINTN PageTable,
IN PAGING_MODE PagingMode
)
{
UINTN MaxLevel;
UINTN MaxLeafLevel;
UINT64 Index;
UNIT_TEST_STATUS Status;
IA32_PAGING_ENTRY *PagingEntry;
if (PageTable == 0) {
return UNIT_TEST_PASSED;
}
if ((PagingMode == Paging32bit) || (PagingMode == PagingPae) || (PagingMode >= PagingModeMax)) {
//
// 32bit paging is never supported.
// PAE paging will be supported later.
//
return UNIT_TEST_ERROR_TEST_FAILED;
}
MaxLeafLevel = (UINT8)PagingMode;
MaxLevel = (UINT8)(PagingMode >> 8);
PagingEntry = (IA32_PAGING_ENTRY *)(UINTN)PageTable;
for (Index = 0; Index < 512; Index++) {
Status = IsPageTableEntryValid (&PagingEntry[Index], MaxLevel, MaxLeafLevel, Index << (9 * MaxLevel + 3));
if (Status != UNIT_TEST_PASSED) {
return Status;
}
}
return Status;
}
/**
Get the leaf entry for a given linear address from one entry in page table
@param[in] PagingEntry The entry in page table which covers the linear address
@param[in, out] Level On input, is the level of PagingEntry.
On outout, is the level of the leaf entry
@param[in] MaxLeafLevel Max leaf entry level.
@param[in] LinearAddress The linear address.
@retval Leaf entry.
**/
UINT64
GetEntryFromSubPageTable (
IN IA32_PAGING_ENTRY *PagingEntry,
IN OUT UINTN *Level,
IN UINTN MaxLeafLevel,
IN UINT64 Address
)
{
UINT64 Index;
IA32_PAGING_ENTRY *ChildPageEntry;
if (PagingEntry->Pce.Present == 0) {
return 0;
}
if ((PagingEntry->Uint64 & mValidMaskLeafFlag[*Level].Uint64) == mValidMaskLeafFlag[*Level].Uint64) {
//
// It is a Leaf
//
return PagingEntry->Uint64;
}
//
// Not a leaf
//
ChildPageEntry = (IA32_PAGING_ENTRY *)(UINTN)(IA32_PNLE_PAGE_TABLE_BASE_ADDRESS (&PagingEntry->Pnle));
*Level = *Level -1;
Index = Address >> (*Level * 9 + 3);
ASSERT (Index == (Index & ((1<< 9) - 1)));
return GetEntryFromSubPageTable (&ChildPageEntry[Index], Level, MaxLeafLevel, Address - (Index << (9 * *Level + 3)));
}
/**
Get the leaf entry for a given linear address from a page table
@param[in] PageTable The pointer to the page table.
@param[in] PagingMode The paging mode.
@param[in] LinearAddress The linear address.
@param[out] Level leaf entry's level.
@retval Leaf entry.
**/
UINT64
GetEntryFromPageTable (
IN UINTN PageTable,
IN PAGING_MODE PagingMode,
IN UINT64 Address,
OUT UINTN *Level
)
{
UINTN MaxLevel;
UINTN MaxLeafLevel;
UINT64 Index;
IA32_PAGING_ENTRY *PagingEntry;
if ((PagingMode == Paging32bit) || (PagingMode == PagingPae) || (PagingMode >= PagingModeMax)) {
//
// 32bit paging is never supported.
// PAE paging will be supported later.
//
return 0;
}
MaxLeafLevel = (UINT8)PagingMode;
MaxLevel = (UINT8)(PagingMode >> 8);
Index = Address >> (MaxLevel * 9 + 3);
ASSERT (Index == (Index & ((1<< 9) - 1)));
PagingEntry = (IA32_PAGING_ENTRY *)(UINTN)PageTable;
*Level = MaxLevel;
return GetEntryFromSubPageTable (&PagingEntry[Index], Level, MaxLeafLevel, Address - (Index << (9 * MaxLevel + 3)));
}
/**
Get max physical adrress supported by specific page mode
@param[in] Mode The paging mode.
@retval max address.
**/
UINT64
GetMaxAddress (
IN PAGING_MODE Mode
)
{
switch (Mode) {
case Paging32bit:
case PagingPae:
return SIZE_4GB;
case Paging4Level:
case Paging4Level1GB:
case Paging5Level:
case Paging5Level1GB:
return 1ull << MIN (12 + (Mode >> 8) * 9, 52);
default:
ASSERT (0);
return 0;
}
}
|