summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/Library/MpInitLib/LoongArch64/MpLib.c
blob: c18671e95f9be711f0330f04047e83e5194cfca6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
/** @file
  LoongArch64 CPU MP Initialize Library common functions.

  Copyright (c) 2024, Loongson Technology Corporation Limited. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "MpLib.h"

#include <Library/BaseLib.h>
#include <Register/LoongArch64/Csr.h>

#define INVALID_APIC_ID  0xFFFFFFFF

EFI_GUID  mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;

/**
  Get the Application Processors state.

  @param[in]  CpuData    The pointer to CPU_AP_DATA of specified AP

  @return  The AP status
**/
CPU_STATE
GetApState (
  IN  CPU_AP_DATA  *CpuData
  )
{
  return CpuData->State;
}

/**
  Set the Application Processors state.

  @param[in]   CpuData    The pointer to CPU_AP_DATA of specified AP
  @param[in]   State      The AP status
**/
VOID
SetApState (
  IN  CPU_AP_DATA  *CpuData,
  IN  CPU_STATE    State
  )
{
  AcquireSpinLock (&CpuData->ApLock);
  CpuData->State = State;
  ReleaseSpinLock (&CpuData->ApLock);
}

/**
  Get APIC ID of the executing processor.

  @return  32-bit APIC ID of the executing processor.
**/
UINT32
GetApicId (
  VOID
  )
{
  UINTN  CpuNum;

  CpuNum = CsrRead (LOONGARCH_CSR_CPUNUM);

  return CpuNum & 0x3ff;
}

/**
  Find the current Processor number by APIC ID.

  @param[in]  CpuMpData         Pointer to PEI CPU MP Data
  @param[out] ProcessorNumber   Return the pocessor number found

  @retval EFI_SUCCESS          ProcessorNumber is found and returned.
  @retval EFI_NOT_FOUND        ProcessorNumber is not found.
**/
EFI_STATUS
GetProcessorNumber (
  IN CPU_MP_DATA  *CpuMpData,
  OUT UINTN       *ProcessorNumber
  )
{
  UINTN            TotalProcessorNumber;
  UINTN            Index;
  CPU_INFO_IN_HOB  *CpuInfoInHob;

  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

  TotalProcessorNumber = CpuMpData->CpuCount;
  for (Index = 0; Index < TotalProcessorNumber; Index++) {
    if (CpuInfoInHob[Index].ApicId == GetApicId ()) {
      *ProcessorNumber = Index;
      return EFI_SUCCESS;
    }
  }

  return EFI_NOT_FOUND;
}

/**
  Sort the APIC ID of all processors.

  This function sorts the APIC ID of all processors so that processor number is
  assigned in the ascending order of APIC ID which eases MP debugging.

  @param[in] CpuMpData        Pointer to PEI CPU MP Data
**/
VOID
SortApicId (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  UINTN            Index1;
  UINTN            Index2;
  UINTN            Index3;
  UINT32           ApicId;
  CPU_INFO_IN_HOB  CpuInfo;
  UINT32           ApCount;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  volatile UINT32  *StartupApSignal;

  ApCount      = CpuMpData->CpuCount - 1;
  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
  if (ApCount != 0) {
    Index2 = 0;
    for (Index1 = (PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1); Index1 > 0; Index1--) {
      if (CpuInfoInHob[Index1].ApicId != INVALID_APIC_ID) {
        if (Index1 == ApCount) {
          break;
        } else {
          for ( ; Index2 <= ApCount; Index2++) {
            if (CpuInfoInHob[Index2].ApicId == INVALID_APIC_ID) {
              CopyMem (&CpuInfoInHob[Index2], &CpuInfoInHob[Index1], sizeof (CPU_INFO_IN_HOB));
              CpuMpData->CpuData[Index2]  = CpuMpData->CpuData[Index1];
              CpuInfoInHob[Index1].ApicId = INVALID_APIC_ID;
              break;
            }
          }
        }
      } else {
        continue;
      }
    }

    for (Index1 = 0; Index1 < ApCount; Index1++) {
      Index3 = Index1;
      //
      // Sort key is the hardware default APIC ID
      //
      ApicId = CpuInfoInHob[Index1].ApicId;
      for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
        if (ApicId > CpuInfoInHob[Index2].ApicId) {
          Index3 = Index2;
          ApicId = CpuInfoInHob[Index2].ApicId;
        }
      }

      if (Index3 != Index1) {
        CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
        CopyMem (
          &CpuInfoInHob[Index3],
          &CpuInfoInHob[Index1],
          sizeof (CPU_INFO_IN_HOB)
          );
        CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));

        //
        // Also exchange the StartupApSignal.
        //
        StartupApSignal                            = CpuMpData->CpuData[Index3].StartupApSignal;
        CpuMpData->CpuData[Index3].StartupApSignal =
          CpuMpData->CpuData[Index1].StartupApSignal;
        CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
      }
    }

    //
    // Get the processor number for the BSP
    //
    ApicId = GetApicId ();
    for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
      if (CpuInfoInHob[Index1].ApicId == ApicId) {
        CpuMpData->BspNumber = (UINT32)Index1;
        break;
      }
    }
  }
}

/**
  Get pointer to Processor Resource Data structure from GUIDd HOB.

  @return  The pointer to Processor Resource Data structure.
**/
PROCESSOR_RESOURCE_DATA *
GetProcessorResourceDataFromGuidedHob (
  VOID
  )
{
  EFI_HOB_GUID_TYPE        *GuidHob;
  VOID                     *DataInHob;
  PROCESSOR_RESOURCE_DATA  *ResourceData;

  ResourceData = NULL;
  GuidHob      = GetFirstGuidHob (&gProcessorResourceHobGuid);
  if (GuidHob != NULL) {
    DataInHob    = GET_GUID_HOB_DATA (GuidHob);
    ResourceData = (PROCESSOR_RESOURCE_DATA *)(*(UINTN *)DataInHob);
  }

  return ResourceData;
}

/**
  This function will get CPU count in the system.

  @param[in] CpuMpData        Pointer to PEI CPU MP Data

  @return  CPU count detected
**/
UINTN
CollectProcessorCount (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  PROCESSOR_RESOURCE_DATA  *ProcessorResourceData;
  CPU_INFO_IN_HOB          *CpuInfoInHob;
  UINTN                    Index;

  ProcessorResourceData = NULL;

  //
  // Set the default loop mode for APs.
  //
  CpuMpData->ApLoopMode = ApInRunLoop;

  //
  // Beacuse LoongArch does not have SIPI now, the APIC ID must be obtained before
  // calling IPI to wake up the APs. If NULL is obtained, NODE0 Core0 Mailbox0 is used
  // as the first broadcast method to wake up all APs, and all of APs will read NODE0
  // Core0 Mailbox0 in an infinit loop.
  //
  ProcessorResourceData = GetProcessorResourceDataFromGuidedHob ();

  if (ProcessorResourceData != NULL) {
    CpuMpData->ApLoopMode = ApInHltLoop;
    CpuMpData->CpuCount   = ProcessorResourceData->NumberOfProcessor;
    CpuInfoInHob          = (CPU_INFO_IN_HOB *)(UINTN)(CpuMpData->CpuInfoInHob);

    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      CpuInfoInHob[Index].ApicId = ProcessorResourceData->ApicId[Index];
    }
  }

  //
  // Send 1st broadcast IPI to APs to wakeup APs
  //
  CpuMpData->InitFlag = ApInitConfig;
  WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, FALSE);
  CpuMpData->InitFlag = ApInitDone;

  //
  // When InitFlag == ApInitConfig, WakeUpAP () guarantees all APs are checked in.
  // FinishedCount is the number of check-in APs.
  //
  CpuMpData->CpuCount = CpuMpData->FinishedCount + 1;
  ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

  //
  // Wait for all APs finished the initialization
  //
  while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
    CpuPause ();
  }

  //
  // Sort BSP/Aps by CPU APIC ID in ascending order
  //
  SortApicId (CpuMpData);

  DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));

  return CpuMpData->CpuCount;
}

/**
  Initialize CPU AP Data when AP is wakeup at the first time.

  @param[in, out] CpuMpData        Pointer to PEI CPU MP Data
  @param[in]      ProcessorNumber  The handle number of processor
  @param[in]      BistData         Processor BIST data

**/
VOID
InitializeApData (
  IN OUT CPU_MP_DATA  *CpuMpData,
  IN     UINTN        ProcessorNumber,
  IN     UINT32       BistData
  )
{
  CPU_INFO_IN_HOB  *CpuInfoInHob;

  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)(CpuMpData->CpuInfoInHob);

  CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
  CpuInfoInHob[ProcessorNumber].Health = BistData;

  CpuMpData->CpuData[ProcessorNumber].Waiting    = FALSE;
  CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;

  InitializeSpinLock (&CpuMpData->CpuData[ProcessorNumber].ApLock);
  SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
}

/**
  Ap wake up function.

  Ap will wait for scheduling here, and if the IPI or wake-up signal is enabled,
  Ap will preform the corresponding functions.

  @param[in] ApIndex          Number of current executing AP
  @param[in] ExchangeInfo     Pointer to the MP exchange info buffer
**/
VOID
EFIAPI
ApWakeupFunction (
  IN UINTN                 ApIndex,
  IN MP_CPU_EXCHANGE_INFO  *ExchangeInfo
  )
{
  CPU_MP_DATA       *CpuMpData;
  UINTN             ProcessorNumber;
  volatile UINT32   *ApStartupSignalBuffer;
  EFI_AP_PROCEDURE  Procedure;
  VOID              *Parameter;

  CpuMpData = ExchangeInfo->CpuMpData;

  while (TRUE) {
    if (CpuMpData->InitFlag == ApInitConfig) {
      ProcessorNumber = ApIndex;
      //
      // If the AP can running to here, then the BIST must be zero.
      //
      InitializeApData (CpuMpData, ProcessorNumber, 0);
      ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
    } else {
      //
      // Execute AP function if AP is ready
      //
      GetProcessorNumber (CpuMpData, &ProcessorNumber);

      //
      // Clear AP start-up signal when AP waken up
      //
      ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
      InterlockedCompareExchange32 (
        (UINT32 *)ApStartupSignalBuffer,
        WAKEUP_AP_SIGNAL,
        0
        );

      //
      // Invoke AP function here
      //
      if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
        Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
        Parameter = (VOID *)CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
        if (Procedure != NULL) {
          SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
          Procedure (Parameter);
        }

        SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
      }
    }

    //
    // Updates the finished count
    //
    InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);

    while (TRUE) {
      //
      // Clean per-core mail box registers.
      //
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF0, 0x0);
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF1, 0x0);
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF2, 0x0);
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF3, 0x0);

      //
      // Enable IPI interrupt and global interrupt
      //
      EnableLocalInterrupts (BIT12);
      IoCsrWrite32 (LOONGARCH_IOCSR_IPI_EN, 0xFFFFFFFFU);
      EnableInterrupts ();

      //
      // Ap entry HLT mode
      //
      CpuSleep ();

      //
      // Disable global interrupts when wake up
      //
      DisableInterrupts ();

      //
      // Update CpuMpData
      //
      if (CpuMpData != ExchangeInfo->CpuMpData) {
        CpuMpData = ExchangeInfo->CpuMpData;
        GetProcessorNumber (CpuMpData, &ProcessorNumber);
        ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
      }

      //
      // Break out of the loop if wake up signal is not NULL.
      //
      if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
        break;
      }
    }
  }
}

/**
  Calculate timeout value and return the current performance counter value.

  Calculate the number of performance counter ticks required for a timeout.
  If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
  as infinity.

  @param[in]  TimeoutInMicroseconds   Timeout value in microseconds.
  @param[out] CurrentTime             Returns the current value of the performance counter.

  @return Expected time stamp counter for timeout.
          If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
          as infinity.

**/
UINT64
CalculateTimeout (
  IN  UINTN   TimeoutInMicroseconds,
  OUT UINT64  *CurrentTime
  )
{
  UINT64  TimeoutInSeconds;
  UINT64  TimestampCounterFreq;

  //
  // Read the current value of the performance counter
  //
  *CurrentTime = GetPerformanceCounter ();

  //
  // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
  // as infinity.
  //
  if (TimeoutInMicroseconds == 0) {
    return 0;
  }

  //
  // GetPerformanceCounterProperties () returns the timestamp counter's frequency
  // in Hz.
  //
  TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);

  //
  // Check the potential overflow before calculate the number of ticks for the timeout value.
  //
  if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
    //
    // Convert microseconds into seconds if direct multiplication overflows
    //
    TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
    //
    // Assertion if the final tick count exceeds MAX_UINT64
    //
    ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
    return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
  } else {
    //
    // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
    // it by 1,000,000, to get the number of ticks for the timeout value.
    //
    return DivU64x32 (
             MultU64x64 (
               TimestampCounterFreq,
               TimeoutInMicroseconds
               ),
             1000000
             );
  }
}

/**
  Checks whether timeout expires.

  Check whether the number of elapsed performance counter ticks required for
  a timeout condition has been reached.
  If Timeout is zero, which means infinity, return value is always FALSE.

  @param[in, out]  PreviousTime   On input,  the value of the performance counter
                                  when it was last read.
                                  On output, the current value of the performance
                                  counter
  @param[in]       TotalTime      The total amount of elapsed time in performance
                                  counter ticks.
  @param[in]       Timeout        The number of performance counter ticks required
                                  to reach a timeout condition.

  @retval TRUE                    A timeout condition has been reached.
  @retval FALSE                   A timeout condition has not been reached.

**/
BOOLEAN
CheckTimeout (
  IN OUT UINT64  *PreviousTime,
  IN     UINT64  *TotalTime,
  IN     UINT64  Timeout
  )
{
  UINT64  Start;
  UINT64  End;
  UINT64  CurrentTime;
  INT64   Delta;
  INT64   Cycle;

  if (Timeout == 0) {
    return FALSE;
  }

  GetPerformanceCounterProperties (&Start, &End);
  Cycle = End - Start;
  if (Cycle < 0) {
    Cycle = -Cycle;
  }

  Cycle++;
  CurrentTime = GetPerformanceCounter ();
  Delta       = (INT64)(CurrentTime - *PreviousTime);
  if (Start > End) {
    Delta = -Delta;
  }

  if (Delta < 0) {
    Delta += Cycle;
  }

  *TotalTime   += Delta;
  *PreviousTime = CurrentTime;
  if (*TotalTime > Timeout) {
    return TRUE;
  }

  return FALSE;
}

/**
  Helper function that waits until the finished AP count reaches the specified
  limit, or the specified timeout elapses (whichever comes first).

  @param[in] CpuMpData        Pointer to CPU MP Data.
  @param[in] FinishedApLimit  The number of finished APs to wait for.
  @param[in] TimeLimit        The number of microseconds to wait for.
**/
VOID
TimedWaitForApFinish (
  IN CPU_MP_DATA  *CpuMpData,
  IN UINT32       FinishedApLimit,
  IN UINT32       TimeLimit
  )
{
  //
  // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
  // "infinity", so check for (TimeLimit == 0) explicitly.
  //
  if (TimeLimit == 0) {
    return;
  }

  CpuMpData->TotalTime    = 0;
  CpuMpData->ExpectedTime = CalculateTimeout (
                              TimeLimit,
                              &CpuMpData->CurrentTime
                              );
  while (CpuMpData->FinishedCount < FinishedApLimit &&
         !CheckTimeout (
            &CpuMpData->CurrentTime,
            &CpuMpData->TotalTime,
            CpuMpData->ExpectedTime
            ))
  {
    CpuPause ();
  }

  if (CpuMpData->FinishedCount >= FinishedApLimit) {
    DEBUG ((
      DEBUG_VERBOSE,
      "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
      __func__,
      FinishedApLimit,
      DivU64x64Remainder (
        MultU64x32 (CpuMpData->TotalTime, 1000000),
        GetPerformanceCounterProperties (NULL, NULL),
        NULL
        )
      ));
  }
}

/**
  Wait for AP wakeup and write AP start-up signal till AP is waken up.

  @param[in] ApStartupSignalBuffer  Pointer to AP wakeup signal
**/
VOID
WaitApWakeup (
  IN volatile UINT32  *ApStartupSignalBuffer
  )
{
  //
  // If AP is waken up, StartupApSignal should be cleared.
  // Otherwise, write StartupApSignal again till AP waken up.
  //
  while (InterlockedCompareExchange32 (
           (UINT32 *)ApStartupSignalBuffer,
           WAKEUP_AP_SIGNAL,
           WAKEUP_AP_SIGNAL
           ) != 0)
  {
    CpuPause ();
  }
}

/**
  This function will fill the exchange info structure.

  @param[in] CpuMpData          Pointer to CPU MP Data

**/
VOID
FillExchangeInfoData (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  volatile MP_CPU_EXCHANGE_INFO  *ExchangeInfo;

  if (!CpuMpData->MpCpuExchangeInfo) {
    CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *)AllocatePool (sizeof (MP_CPU_EXCHANGE_INFO));
  }

  ExchangeInfo            = CpuMpData->MpCpuExchangeInfo;
  ExchangeInfo->CpuMpData = CpuMpData;
}

/**
  This function will be called by BSP to wakeup AP.

  @param[in] CpuMpData          Pointer to CPU MP Data
  @param[in] Broadcast          TRUE:  Send broadcast IPI to all APs
                                FALSE: Send IPI to AP by ApicId
  @param[in] ProcessorNumber    The handle number of specified processor
  @param[in] Procedure          The function to be invoked by AP
  @param[in] ProcedureArgument  The argument to be passed into AP function
  @param[in] WakeUpDisabledAps  Whether need to wake up disabled APs in broadcast mode. Currently not used on LoongArch.
**/
VOID
WakeUpAP (
  IN CPU_MP_DATA       *CpuMpData,
  IN BOOLEAN           Broadcast,
  IN UINTN             ProcessorNumber,
  IN EFI_AP_PROCEDURE  Procedure               OPTIONAL,
  IN VOID              *ProcedureArgument      OPTIONAL,
  IN BOOLEAN           WakeUpDisabledAps
  )
{
  volatile MP_CPU_EXCHANGE_INFO  *ExchangeInfo;
  UINTN                          Index;
  CPU_AP_DATA                    *CpuData;
  CPU_INFO_IN_HOB                *CpuInfoInHob;

  CpuMpData->FinishedCount = 0;

  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

  if (CpuMpData->InitFlag != ApInitDone) {
    FillExchangeInfoData (CpuMpData);
  }

  ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
  //
  // If InitFlag is ApInitConfig, broadcasts all APs to initize themselves.
  //
  if (CpuMpData->InitFlag == ApInitConfig) {
    DEBUG ((DEBUG_INFO, "%a: func 0x%llx, ExchangeInfo 0x%llx\n", __func__, ApWakeupFunction, (UINTN)ExchangeInfo));
    if (CpuMpData->ApLoopMode == ApInHltLoop) {
      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
        if (Index != CpuMpData->BspNumber) {
          IoCsrWrite64 (
            LOONGARCH_IOCSR_MBUF_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (IOCSR_MBUF_SEND_BOX_HI (0x3) << IOCSR_MBUF_SEND_BOX_SHIFT) |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             ((UINTN)(ExchangeInfo) & IOCSR_MBUF_SEND_H32_MASK))
            );
          IoCsrWrite64 (
            LOONGARCH_IOCSR_MBUF_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (IOCSR_MBUF_SEND_BOX_LO (0x3) << IOCSR_MBUF_SEND_BOX_SHIFT) |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             ((UINTN)ExchangeInfo) << IOCSR_MBUF_SEND_BUF_SHIFT)
            );

          IoCsrWrite64 (
            LOONGARCH_IOCSR_MBUF_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (IOCSR_MBUF_SEND_BOX_HI (0x0) << IOCSR_MBUF_SEND_BOX_SHIFT) |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             ((UINTN)(ApWakeupFunction) & IOCSR_MBUF_SEND_H32_MASK))
            );
          IoCsrWrite64 (
            LOONGARCH_IOCSR_MBUF_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (IOCSR_MBUF_SEND_BOX_LO (0x0) << IOCSR_MBUF_SEND_BOX_SHIFT) |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             ((UINTN)ApWakeupFunction) << IOCSR_MBUF_SEND_BUF_SHIFT)
            );

          //
          // Send IPI 4 interrupt to wake up APs.
          //
          IoCsrWrite64 (
            LOONGARCH_IOCSR_IPI_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             0x2 // Bit 2
            )
            );
        }
      }
    } else {
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF3, (UINTN)ExchangeInfo);
      IoCsrWrite64 (LOONGARCH_IOCSR_MBUF0, (UINTN)ApWakeupFunction);
    }

    TimedWaitForApFinish (
      CpuMpData,
      PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
      PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
      );
  } else {
    if (Broadcast) {
      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
        if (Index != CpuMpData->BspNumber) {
          CpuData = &CpuMpData->CpuData[Index];
          if ((GetApState (CpuData) == CpuStateDisabled) && !WakeUpDisabledAps) {
            continue;
          }

          CpuData->ApFunction         = (UINTN)Procedure;
          CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
          SetApState (CpuData, CpuStateReady);
          *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;

          //
          // Send IPI 4 interrupt to wake up APs.
          //
          IoCsrWrite64 (
            LOONGARCH_IOCSR_IPI_SEND,
            (IOCSR_MBUF_SEND_BLOCKING |
             (CpuInfoInHob[Index].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
             0x2 // Bit 2
            )
            );
        }
      }

      //
      // Wait all APs waken up.
      //
      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
        CpuData = &CpuMpData->CpuData[Index];
        if (Index != CpuMpData->BspNumber) {
          WaitApWakeup (CpuData->StartupApSignal);
        }
      }
    } else {
      CpuData                     = &CpuMpData->CpuData[ProcessorNumber];
      CpuData->ApFunction         = (UINTN)Procedure;
      CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
      SetApState (CpuData, CpuStateReady);
      //
      // Wakeup specified AP
      //
      *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;

      //
      // Send IPI 4 interrupt to wake up APs.
      //
      IoCsrWrite64 (
        LOONGARCH_IOCSR_IPI_SEND,
        (IOCSR_MBUF_SEND_BLOCKING |
         (CpuInfoInHob[ProcessorNumber].ApicId << IOCSR_MBUF_SEND_CPU_SHIFT) |
         0x2 // Bit 2
        )
        );

      //
      // Wait specified AP waken up
      //
      WaitApWakeup (CpuData->StartupApSignal);
    }
  }
}

/**
  Searches for the next waiting AP.

  Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().

  @param[out]  NextProcessorNumber  Pointer to the processor number of the next waiting AP.

  @retval EFI_SUCCESS          The next waiting AP has been found.
  @retval EFI_NOT_FOUND        No waiting AP exists.

**/
EFI_STATUS
GetNextWaitingProcessorNumber (
  OUT UINTN  *NextProcessorNumber
  )
{
  UINTN        ProcessorNumber;
  CPU_MP_DATA  *CpuMpData;

  CpuMpData = GetCpuMpData ();

  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
    if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
      *NextProcessorNumber = ProcessorNumber;
      return EFI_SUCCESS;
    }
  }

  return EFI_NOT_FOUND;
}

/** Checks status of specified AP.

  This function checks whether the specified AP has finished the task assigned
  by StartupThisAP(), and whether timeout expires.

  @param[in]  ProcessorNumber       The handle number of processor.

  @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.
**/
EFI_STATUS
CheckThisAP (
  IN UINTN  ProcessorNumber
  )
{
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;

  CpuMpData = GetCpuMpData ();
  CpuData   = &CpuMpData->CpuData[ProcessorNumber];

  //
  // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
  //
  if (GetApState (CpuData) == CpuStateFinished) {
    if (CpuData->Finished != NULL) {
      *(CpuData->Finished) = TRUE;
    }

    SetApState (CpuData, CpuStateIdle);
    return EFI_SUCCESS;
  } else {
    //
    // If timeout expires for StartupThisAP(), report timeout.
    //
    if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
      if (CpuData->Finished != NULL) {
        *(CpuData->Finished) = FALSE;
      }

      return EFI_TIMEOUT;
    }
  }

  return EFI_NOT_READY;
}

/**
  Checks status of all APs.

  This function checks whether all APs have finished task assigned by StartupAllAPs(),
  and whether timeout expires.

  @retval EFI_SUCCESS           All APs have finished task assigned by StartupAllAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         APs have not finished task and timeout has not expired.
**/
EFI_STATUS
CheckAllAPs (
  VOID
  )
{
  UINTN        ProcessorNumber;
  UINTN        NextProcessorNumber;
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;

  CpuMpData = GetCpuMpData ();

  NextProcessorNumber = 0;

  //
  // Go through all APs that are responsible for the StartupAllAPs().
  //
  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
    if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
      continue;
    }

    CpuData = &CpuMpData->CpuData[ProcessorNumber];
    //
    // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
    // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
    // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
    //
    if (GetApState (CpuData) == CpuStateFinished) {
      CpuMpData->RunningCount--;
      CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
      SetApState (CpuData, CpuStateIdle);

      //
      // If in Single Thread mode, then search for the next waiting AP for execution.
      //
      if (CpuMpData->SingleThread) {
        Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);

        if (!EFI_ERROR (Status)) {
          WakeUpAP (
            CpuMpData,
            FALSE,
            (UINT32)NextProcessorNumber,
            CpuMpData->Procedure,
            CpuMpData->ProcArguments,
            TRUE
            );
        }
      }
    }
  }

  //
  // If all APs finish, return EFI_SUCCESS.
  //
  if (CpuMpData->RunningCount == 0) {
    return EFI_SUCCESS;
  }

  //
  // If timeout expires, report timeout.
  //
  if (CheckTimeout (
        &CpuMpData->CurrentTime,
        &CpuMpData->TotalTime,
        CpuMpData->ExpectedTime
        )
      )
  {
    return EFI_TIMEOUT;
  }

  return EFI_NOT_READY;
}

/**
  Worker function to execute a caller provided function on all enabled APs.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  SingleThread            If TRUE, then all the enabled APs execute
                                      the function specified by Procedure one by
                                      one, in ascending order of processor handle
                                      number.  If FALSE, then all the enabled APs
                                      execute the function specified by Procedure
                                      simultaneously.
  @param[in]  ExcludeBsp              Whether let BSP also trig this task.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] FailedCpuList           If all APs finish successfully, then its
                                      content is set to NULL. If not all APs
                                      finish before timeout expires, then its
                                      content is set to address of the buffer
                                      holding handle numbers of the failed APs.

  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled APs.
  @retval others                  Failed to Startup all APs.

**/
EFI_STATUS
StartupAllCPUsWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  BOOLEAN           SingleThread,
  IN  BOOLEAN           ExcludeBsp,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT UINTN             **FailedCpuList         OPTIONAL
  )
{
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  UINTN        ProcessorCount;
  UINTN        ProcessorNumber;
  UINTN        CallerNumber;
  CPU_AP_DATA  *CpuData;
  BOOLEAN      HasEnabledAp;
  CPU_STATE    ApState;

  CpuMpData = GetCpuMpData ();

  if (FailedCpuList != NULL) {
    *FailedCpuList = NULL;
  }

  if ((CpuMpData->CpuCount == 1) && ExcludeBsp) {
    return EFI_NOT_STARTED;
  }

  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  //
  // Update AP state
  //
  CheckAndUpdateApsStatus ();

  ProcessorCount = CpuMpData->CpuCount;
  HasEnabledAp   = FALSE;
  //
  // Check whether all enabled APs are idle.
  // If any enabled AP is not idle, return EFI_NOT_READY.
  //
  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
    CpuData = &CpuMpData->CpuData[ProcessorNumber];
    if (ProcessorNumber != CpuMpData->BspNumber) {
      ApState = GetApState (CpuData);
      if (ApState != CpuStateDisabled) {
        HasEnabledAp = TRUE;
        if (ApState != CpuStateIdle) {
          //
          // If any enabled APs are busy, return EFI_NOT_READY.
          //
          return EFI_NOT_READY;
        }
      }
    }
  }

  if (!HasEnabledAp && ExcludeBsp) {
    //
    // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
    //
    return EFI_NOT_STARTED;
  }

  CpuMpData->RunningCount = 0;
  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
    CpuData          = &CpuMpData->CpuData[ProcessorNumber];
    CpuData->Waiting = FALSE;
    if (ProcessorNumber != CpuMpData->BspNumber) {
      if (CpuData->State == CpuStateIdle) {
        //
        // Mark this processor as responsible for current calling.
        //
        CpuData->Waiting = TRUE;
        CpuMpData->RunningCount++;
      }
    }
  }

  CpuMpData->Procedure     = Procedure;
  CpuMpData->ProcArguments = ProcedureArgument;
  CpuMpData->SingleThread  = SingleThread;
  CpuMpData->FinishedCount = 0;
  CpuMpData->ExpectedTime  = CalculateTimeout (
                               TimeoutInMicroseconds,
                               &CpuMpData->CurrentTime
                               );
  CpuMpData->TotalTime = 0;
  CpuMpData->WaitEvent = WaitEvent;

  if (!SingleThread) {
    WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
  } else {
    for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
      if (ProcessorNumber == CallerNumber) {
        continue;
      }

      if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
        WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
        break;
      }
    }
  }

  if (!ExcludeBsp) {
    //
    // Start BSP.
    //
    Procedure (ProcedureArgument);
  }

  Status = EFI_SUCCESS;
  if (WaitEvent == NULL) {
    do {
      Status = CheckAllAPs ();
    } while (Status == EFI_NOT_READY);
  }

  return Status;
}

/**
  Worker function to let the caller get one enabled AP to execute a caller-provided
  function.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  ProcessorNumber         The handle number of the AP.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] Finished                If AP returns from Procedure before the
                                      timeout expires, its content is set to TRUE.
                                      Otherwise, the value is set to FALSE.

  @retval EFI_SUCCESS             In blocking mode, specified AP finished before
                                  the timeout expires.
  @retval others                  Failed to Startup AP.

**/
EFI_STATUS
StartupThisAPWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  UINTN             ProcessorNumber,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT BOOLEAN           *Finished               OPTIONAL
  )
{
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;
  UINTN        CallerNumber;

  CpuMpData = GetCpuMpData ();

  if (Finished != NULL) {
    *Finished = FALSE;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  //
  // Check whether processor with the handle specified by ProcessorNumber exists
  //
  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  //
  // Check whether specified processor is BSP
  //
  if (ProcessorNumber == CpuMpData->BspNumber) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check parameter Procedure
  //
  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Update AP state
  //
  CheckAndUpdateApsStatus ();

  //
  // Check whether specified AP is disabled
  //
  if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
    return EFI_INVALID_PARAMETER;
  }

  CpuData               = &CpuMpData->CpuData[ProcessorNumber];
  CpuData->WaitEvent    = WaitEvent;
  CpuData->Finished     = Finished;
  CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
  CpuData->TotalTime    = 0;

  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, FALSE);

  //
  // If WaitEvent is NULL, execute in blocking mode.
  // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
  //
  Status = EFI_SUCCESS;
  if (WaitEvent == NULL) {
    do {
      Status = CheckThisAP (ProcessorNumber);
    } while (Status == EFI_NOT_READY);
  }

  return Status;
}

/**
  This service executes a caller provided function on all enabled CPUs.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system. See type
                                      EFI_AP_PROCEDURE.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode. Zero means
                                      infinity. TimeoutInMicroseconds is ignored
                                      for BSP.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.

  @retval EFI_SUCCESS             In blocking mode, all CPUs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled CPUs.
  @retval EFI_DEVICE_ERROR        Caller processor is AP.
  @retval EFI_NOT_READY           Any enabled APs are busy.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.
  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
                                  all enabled APs have finished.
  @retval EFI_INVALID_PARAMETER   Procedure is NULL.

**/
EFI_STATUS
EFIAPI
MpInitLibStartupAllCPUs (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL
  )
{
  return StartupAllCPUsWorker (
           Procedure,
           TRUE,
           FALSE,
           NULL,
           TimeoutInMicroseconds,
           ProcedureArgument,
           NULL
           );
}

/**
  MP Initialize Library initialization.

  This service will allocate AP reset vector and wakeup all APs to do APs
  initialization.

  This service must be invoked before all other MP Initialize Library
  service are invoked.

  @retval  EFI_SUCCESS           MP initialization succeeds.
  @retval  Others                MP initialization fails.

**/
EFI_STATUS
EFIAPI
MpInitLibInitialize (
  VOID
  )
{
  CPU_MP_DATA      *OldCpuMpData;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  UINT32           MaxLogicalProcessorNumber;
  UINTN            BufferSize;
  UINTN            MonitorBufferSize;
  VOID             *MpBuffer;
  CPU_MP_DATA      *CpuMpData;
  UINTN            Index;

  OldCpuMpData = GetCpuMpDataFromGuidedHob ();
  if (OldCpuMpData == NULL) {
    MaxLogicalProcessorNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
  } else {
    MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
  }

  ASSERT (MaxLogicalProcessorNumber != 0);

  MonitorBufferSize = sizeof (WAKEUP_AP_SIGNAL) * MaxLogicalProcessorNumber;

  BufferSize  = 0;
  BufferSize += MonitorBufferSize;
  BufferSize += sizeof (CPU_MP_DATA);
  BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
  MpBuffer    = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
  ASSERT (MpBuffer != NULL);
  ZeroMem (MpBuffer, BufferSize);

  CpuMpData = (CPU_MP_DATA *)MpBuffer;

  CpuMpData->CpuCount     = 1;
  CpuMpData->BspNumber    = 0;
  CpuMpData->CpuData      = (CPU_AP_DATA *)(CpuMpData + 1);
  CpuMpData->CpuInfoInHob = (UINT64)(UINTN)(CpuMpData->CpuData + MaxLogicalProcessorNumber);

  InitializeSpinLock (&CpuMpData->MpLock);

  //
  // Set BSP basic information
  //
  InitializeApData (CpuMpData, 0, 0);

  //
  // Set up APs wakeup signal buffer and initialization APs ApicId status.
  //
  for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
    CpuMpData->CpuData[Index].StartupApSignal =
      (UINT32 *)((MpBuffer + BufferSize - MonitorBufferSize) + (sizeof (WAKEUP_AP_SIGNAL) * Index));
    if ((OldCpuMpData == NULL) && (Index != CpuMpData->BspNumber)) {
      ((CPU_INFO_IN_HOB  *)CpuMpData->CpuInfoInHob)[Index].ApicId = INVALID_APIC_ID;
    }
  }

  if (OldCpuMpData == NULL) {
    if (MaxLogicalProcessorNumber > 1) {
      //
      // Wakeup all APs and calculate the processor count in system
      //
      CollectProcessorCount (CpuMpData);
    }
  } else {
    //
    // APs have been wakeup before, just get the CPU Information
    // from HOB
    //
    CpuMpData->CpuCount          = OldCpuMpData->CpuCount;
    CpuMpData->BspNumber         = OldCpuMpData->BspNumber;
    CpuMpData->CpuInfoInHob      = OldCpuMpData->CpuInfoInHob;
    CpuMpData->MpCpuExchangeInfo = OldCpuMpData->MpCpuExchangeInfo;

    CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      InitializeSpinLock (&CpuMpData->CpuData[Index].ApLock);
      CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0) ? TRUE : FALSE;
    }

    if (CpuMpData->CpuCount > 1) {
      //
      // Only needs to use this flag for DXE phase to update the wake up
      // buffer. Wakeup buffer allocated in PEI phase is no longer valid
      // in DXE.
      //
      CpuMpData->InitFlag = ApInitReconfig;
      WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);

      //
      // Wait for all APs finished initialization
      //
      while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
        CpuPause ();
      }

      CpuMpData->InitFlag = ApInitDone;
    }

    if (MaxLogicalProcessorNumber > 1) {
      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
        SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
      }
    }
  }

  //
  // Initialize global data for MP support
  //
  InitMpGlobalData (CpuMpData);

  return EFI_SUCCESS;
}

/**
  Gets detailed MP-related information on the requested processor at the
  instant this call is made. This service may only be called from the BSP.

  @param[in]  ProcessorNumber       The handle number of processor.
  @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
                                    the requested processor is deposited.
  @param[out]  HealthData            Return processor health data.

  @retval EFI_SUCCESS             Processor information was returned.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
  @retval EFI_NOT_FOUND           The processor with the handle specified by
                                  ProcessorNumber does not exist in the platform.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibGetProcessorInfo (
  IN  UINTN                      ProcessorNumber,
  OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer,
  OUT EFI_HEALTH_FLAGS           *HealthData  OPTIONAL
  )
{
  CPU_MP_DATA      *CpuMpData;
  UINTN            CallerNumber;
  CPU_INFO_IN_HOB  *CpuInfoInHob;

  CpuMpData    = GetCpuMpData ();
  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  if (ProcessorInfoBuffer == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  ProcessorInfoBuffer->ProcessorId = (UINT64)CpuInfoInHob[ProcessorNumber].ApicId;
  ProcessorInfoBuffer->StatusFlag  = 0;
  if (ProcessorNumber == CpuMpData->BspNumber) {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
  }

  if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
  }

  if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
    ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
  } else {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
  }

  if (HealthData != NULL) {
    HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
  }

  return EFI_SUCCESS;
}

/**
  This return the handle number for the calling processor.  This service may be
  called from the BSP and APs.

  @param[out] ProcessorNumber  Pointer to the handle number of AP.
                               The range is from 0 to the total number of
                               logical processors minus 1. The total number of
                               logical processors can be retrieved by
                               MpInitLibGetNumberOfProcessors().

  @retval EFI_SUCCESS             The current processor handle number was returned
                                  in ProcessorNumber.
  @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibWhoAmI (
  OUT UINTN  *ProcessorNumber
  )
{
  CPU_MP_DATA  *CpuMpData;

  if (ProcessorNumber == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CpuMpData = GetCpuMpData ();

  return GetProcessorNumber (CpuMpData, ProcessorNumber);
}

/**
  Retrieves the number of logical processor in the platform and the number of
  those logical processors that are enabled on this boot. This service may only
  be called from the BSP.

  @param[out] NumberOfProcessors          Pointer to the total number of logical
                                          processors in the system, including the BSP
                                          and disabled APs.
  @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
                                          processors that exist in system, including
                                          the BSP.

  @retval EFI_SUCCESS             The number of logical processors and enabled
                                  logical processors was retrieved.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL and NumberOfEnabledProcessors
                                  is NULL.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibGetNumberOfProcessors (
  OUT UINTN  *NumberOfProcessors        OPTIONAL,
  OUT UINTN  *NumberOfEnabledProcessors OPTIONAL
  )
{
  CPU_MP_DATA  *CpuMpData;
  UINTN        CallerNumber;
  UINTN        ProcessorNumber;
  UINTN        EnabledProcessorNumber;
  UINTN        Index;

  CpuMpData = GetCpuMpData ();

  if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  ProcessorNumber        = CpuMpData->CpuCount;
  EnabledProcessorNumber = 0;
  for (Index = 0; Index < ProcessorNumber; Index++) {
    if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
      EnabledProcessorNumber++;
    }
  }

  if (NumberOfProcessors != NULL) {
    *NumberOfProcessors = ProcessorNumber;
  }

  if (NumberOfEnabledProcessors != NULL) {
    *NumberOfEnabledProcessors = EnabledProcessorNumber;
  }

  return EFI_SUCCESS;
}

/**
  Get pointer to CPU MP Data structure from GUIDed HOB.

  @return  The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpDataFromGuidedHob (
  VOID
  )
{
  EFI_HOB_GUID_TYPE  *GuidHob;
  VOID               *DataInHob;
  CPU_MP_DATA        *CpuMpData;

  CpuMpData = NULL;
  GuidHob   = GetFirstGuidHob (&mCpuInitMpLibHobGuid);

  if (GuidHob != NULL) {
    DataInHob = GET_GUID_HOB_DATA (GuidHob);
    CpuMpData = (CPU_MP_DATA *)(*(UINTN *)DataInHob);
  }

  return CpuMpData;
}