summaryrefslogtreecommitdiffstats
path: root/flashrom.c
diff options
context:
space:
mode:
Diffstat (limited to 'flashrom.c')
-rw-r--r--flashrom.c148
1 files changed, 0 insertions, 148 deletions
diff --git a/flashrom.c b/flashrom.c
index 5b85c1433..cb1dca6d9 100644
--- a/flashrom.c
+++ b/flashrom.c
@@ -975,142 +975,6 @@ static unsigned int get_next_write(const uint8_t *have, const uint8_t *want, uns
return first_len;
}
-/* This function generates various test patterns useful for testing controller
- * and chip communication as well as chip behaviour.
- *
- * If a byte can be written multiple times, each time keeping 0-bits at 0
- * and changing 1-bits to 0 if the new value for that bit is 0, the effect
- * is essentially an AND operation. That's also the reason why this function
- * provides the result of AND between various patterns.
- *
- * Below is a list of patterns (and their block length).
- * Pattern 0 is 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5 (16 Bytes)
- * Pattern 1 is 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa (16 Bytes)
- * Pattern 2 is 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f (16 Bytes)
- * Pattern 3 is a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af (16 Bytes)
- * Pattern 4 is 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 (16 Bytes)
- * Pattern 5 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f (16 Bytes)
- * Pattern 6 is 00 (1 Byte)
- * Pattern 7 is ff (1 Byte)
- * Patterns 0-7 have a big-endian block number in the last 2 bytes of each 256
- * byte block.
- *
- * Pattern 8 is 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11... (256 B)
- * Pattern 9 is ff fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef ee... (256 B)
- * Pattern 10 is 00 00 00 01 00 02 00 03 00 04... (128 kB big-endian counter)
- * Pattern 11 is ff ff ff fe ff fd ff fc ff fb... (128 kB big-endian downwards)
- * Pattern 12 is 00 (1 Byte)
- * Pattern 13 is ff (1 Byte)
- * Patterns 8-13 have no block number.
- *
- * Patterns 0-3 are created to detect and efficiently diagnose communication
- * slips like missed bits or bytes and their repetitive nature gives good visual
- * cues to the person inspecting the results. In addition, the following holds:
- * AND Pattern 0/1 == Pattern 4
- * AND Pattern 2/3 == Pattern 5
- * AND Pattern 0/1/2/3 == AND Pattern 4/5 == Pattern 6
- * A weakness of pattern 0-5 is the inability to detect swaps/copies between
- * any two 16-byte blocks except for the last 16-byte block in a 256-byte bloc.
- * They work perfectly for detecting any swaps/aliasing of blocks >= 256 bytes.
- * 0x5 and 0xa were picked because they are 0101 and 1010 binary.
- * Patterns 8-9 are best for detecting swaps/aliasing of blocks < 256 bytes.
- * Besides that, they provide for bit testing of the last two bytes of every
- * 256 byte block which contains the block number for patterns 0-6.
- * Patterns 10-11 are special purpose for detecting subblock aliasing with
- * block sizes >256 bytes (some Dataflash chips etc.)
- * AND Pattern 8/9 == Pattern 12
- * AND Pattern 10/11 == Pattern 12
- * Pattern 13 is the completely erased state.
- * None of the patterns can detect aliasing at boundaries which are a multiple
- * of 16 MBytes (but such chips do not exist anyway for Parallel/LPC/FWH/SPI).
- */
-int generate_testpattern(uint8_t *buf, uint32_t size, int variant)
-{
- int i;
-
- if (!buf) {
- msg_gerr("Invalid buffer!\n");
- return 1;
- }
-
- switch (variant) {
- case 0:
- for (i = 0; i < size; i++)
- buf[i] = (i & 0xf) << 4 | 0x5;
- break;
- case 1:
- for (i = 0; i < size; i++)
- buf[i] = (i & 0xf) << 4 | 0xa;
- break;
- case 2:
- for (i = 0; i < size; i++)
- buf[i] = 0x50 | (i & 0xf);
- break;
- case 3:
- for (i = 0; i < size; i++)
- buf[i] = 0xa0 | (i & 0xf);
- break;
- case 4:
- for (i = 0; i < size; i++)
- buf[i] = (i & 0xf) << 4;
- break;
- case 5:
- for (i = 0; i < size; i++)
- buf[i] = i & 0xf;
- break;
- case 6:
- memset(buf, 0x00, size);
- break;
- case 7:
- memset(buf, 0xff, size);
- break;
- case 8:
- for (i = 0; i < size; i++)
- buf[i] = i & 0xff;
- break;
- case 9:
- for (i = 0; i < size; i++)
- buf[i] = ~(i & 0xff);
- break;
- case 10:
- for (i = 0; i < size % 2; i++) {
- buf[i * 2] = (i >> 8) & 0xff;
- buf[i * 2 + 1] = i & 0xff;
- }
- if (size & 0x1)
- buf[i * 2] = (i >> 8) & 0xff;
- break;
- case 11:
- for (i = 0; i < size % 2; i++) {
- buf[i * 2] = ~((i >> 8) & 0xff);
- buf[i * 2 + 1] = ~(i & 0xff);
- }
- if (size & 0x1)
- buf[i * 2] = ~((i >> 8) & 0xff);
- break;
- case 12:
- memset(buf, 0x00, size);
- break;
- case 13:
- memset(buf, 0xff, size);
- break;
- }
-
- if ((variant >= 0) && (variant <= 7)) {
- /* Write block number in the last two bytes of each 256-byte
- * block, big endian for easier reading of the hexdump.
- * Note that this wraps around for chips larger than 2^24 bytes
- * (16 MB).
- */
- for (i = 0; i < size / 256; i++) {
- buf[i * 256 + 254] = (i >> 8) & 0xff;
- buf[i * 256 + 255] = i & 0xff;
- }
- }
-
- return 0;
-}
-
/* Returns the number of busses commonly supported by the current programmer and flash chip where the latter
* can not be completely accessed due to size/address limits of the programmer. */
unsigned int count_max_decode_exceedings(const struct flashctx *flash)
@@ -2003,18 +1867,6 @@ static void emergency_help_message(void)
"mail flashrom@flashrom.org, thanks!\n");
}
-/* The way to go if you want a delimited list of programmers */
-void list_programmers(const char *delim)
-{
- enum programmer p;
- for (p = 0; p < PROGRAMMER_INVALID; p++) {
- msg_ginfo("%s", programmer_table[p].name);
- if (p < PROGRAMMER_INVALID - 1)
- msg_ginfo("%s", delim);
- }
- msg_ginfo("\n");
-}
-
void list_programmers_linebreak(int startcol, int cols, int paren)
{
const char *pname;