summaryrefslogtreecommitdiffstats
path: root/Documentation/blockdev
diff options
context:
space:
mode:
authorRandy Dunlap <randy.dunlap@oracle.com>2008-11-13 21:33:24 +0000
committerRandy Dunlap <randy.dunlap@oracle.com>2008-11-14 17:28:53 +0000
commit31c00fc15ebd35c1647775dbfc167a15d46657fd (patch)
tree6d8ff2a6607c94a791ccc56fd8eb625e4fdcc01a /Documentation/blockdev
parent3edac25f2e8ac8c2a84904c140e1aeb434e73e75 (diff)
downloadlinux-stable-31c00fc15ebd35c1647775dbfc167a15d46657fd.tar.gz
linux-stable-31c00fc15ebd35c1647775dbfc167a15d46657fd.tar.bz2
linux-stable-31c00fc15ebd35c1647775dbfc167a15d46657fd.zip
Create/use more directory structure in the Documentation/ tree.
Create Documentation/blockdev/ sub-directory and populate it. Populate the Documentation/serial/ sub-directory. Move MSI-HOWTO.txt to Documentation/PCI/. Move ioctl-number.txt to Documentation/ioctl/. Update all relevant 00-INDEX files. Update all relevant Kconfig files and source files. Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Diffstat (limited to 'Documentation/blockdev')
-rw-r--r--Documentation/blockdev/00-INDEX16
-rw-r--r--Documentation/blockdev/README.DAC960756
-rw-r--r--Documentation/blockdev/cciss.txt171
-rw-r--r--Documentation/blockdev/cpqarray.txt93
-rw-r--r--Documentation/blockdev/floppy.txt245
-rw-r--r--Documentation/blockdev/nbd.txt47
-rw-r--r--Documentation/blockdev/paride.txt417
-rw-r--r--Documentation/blockdev/ramdisk.txt165
8 files changed, 1910 insertions, 0 deletions
diff --git a/Documentation/blockdev/00-INDEX b/Documentation/blockdev/00-INDEX
new file mode 100644
index 000000000000..86f054c47013
--- /dev/null
+++ b/Documentation/blockdev/00-INDEX
@@ -0,0 +1,16 @@
+00-INDEX
+ - this file
+README.DAC960
+ - info on Mylex DAC960/DAC1100 PCI RAID Controller Driver for Linux.
+cciss.txt
+ - info, major/minor #'s for Compaq's SMART Array Controllers.
+cpqarray.txt
+ - info on using Compaq's SMART2 Intelligent Disk Array Controllers.
+floppy.txt
+ - notes and driver options for the floppy disk driver.
+nbd.txt
+ - info on a TCP implementation of a network block device.
+paride.txt
+ - information about the parallel port IDE subsystem.
+ramdisk.txt
+ - short guide on how to set up and use the RAM disk.
diff --git a/Documentation/blockdev/README.DAC960 b/Documentation/blockdev/README.DAC960
new file mode 100644
index 000000000000..0e8f618ab534
--- /dev/null
+++ b/Documentation/blockdev/README.DAC960
@@ -0,0 +1,756 @@
+ Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
+
+ Version 2.2.11 for Linux 2.2.19
+ Version 2.4.11 for Linux 2.4.12
+
+ PRODUCTION RELEASE
+
+ 11 October 2001
+
+ Leonard N. Zubkoff
+ Dandelion Digital
+ lnz@dandelion.com
+
+ Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
+
+
+ INTRODUCTION
+
+Mylex, Inc. designs and manufactures a variety of high performance PCI RAID
+controllers. Mylex Corporation is located at 34551 Ardenwood Blvd., Fremont,
+California 94555, USA and can be reached at 510.796.6100 or on the World Wide
+Web at http://www.mylex.com. Mylex Technical Support can be reached by
+electronic mail at mylexsup@us.ibm.com, by voice at 510.608.2400, or by FAX at
+510.745.7715. Contact information for offices in Europe and Japan is available
+on their Web site.
+
+The latest information on Linux support for DAC960 PCI RAID Controllers, as
+well as the most recent release of this driver, will always be available from
+my Linux Home Page at URL "http://www.dandelion.com/Linux/". The Linux DAC960
+driver supports all current Mylex PCI RAID controllers including the new
+eXtremeRAID 2000/3000 and AcceleRAID 352/170/160 models which have an entirely
+new firmware interface from the older eXtremeRAID 1100, AcceleRAID 150/200/250,
+and DAC960PJ/PG/PU/PD/PL. See below for a complete controller list as well as
+minimum firmware version requirements. For simplicity, in most places this
+documentation refers to DAC960 generically rather than explicitly listing all
+the supported models.
+
+Driver bug reports should be sent via electronic mail to "lnz@dandelion.com".
+Please include with the bug report the complete configuration messages reported
+by the driver at startup, along with any subsequent system messages relevant to
+the controller's operation, and a detailed description of your system's
+hardware configuration. Driver bugs are actually quite rare; if you encounter
+problems with disks being marked offline, for example, please contact Mylex
+Technical Support as the problem is related to the hardware configuration
+rather than the Linux driver.
+
+Please consult the RAID controller documentation for detailed information
+regarding installation and configuration of the controllers. This document
+primarily provides information specific to the Linux support.
+
+
+ DRIVER FEATURES
+
+The DAC960 RAID controllers are supported solely as high performance RAID
+controllers, not as interfaces to arbitrary SCSI devices. The Linux DAC960
+driver operates at the block device level, the same level as the SCSI and IDE
+drivers. Unlike other RAID controllers currently supported on Linux, the
+DAC960 driver is not dependent on the SCSI subsystem, and hence avoids all the
+complexity and unnecessary code that would be associated with an implementation
+as a SCSI driver. The DAC960 driver is designed for as high a performance as
+possible with no compromises or extra code for compatibility with lower
+performance devices. The DAC960 driver includes extensive error logging and
+online configuration management capabilities. Except for initial configuration
+of the controller and adding new disk drives, most everything can be handled
+from Linux while the system is operational.
+
+The DAC960 driver is architected to support up to 8 controllers per system.
+Each DAC960 parallel SCSI controller can support up to 15 disk drives per
+channel, for a maximum of 60 drives on a four channel controller; the fibre
+channel eXtremeRAID 3000 controller supports up to 125 disk drives per loop for
+a total of 250 drives. The drives installed on a controller are divided into
+one or more "Drive Groups", and then each Drive Group is subdivided further
+into 1 to 32 "Logical Drives". Each Logical Drive has a specific RAID Level
+and caching policy associated with it, and it appears to Linux as a single
+block device. Logical Drives are further subdivided into up to 7 partitions
+through the normal Linux and PC disk partitioning schemes. Logical Drives are
+also known as "System Drives", and Drive Groups are also called "Packs". Both
+terms are in use in the Mylex documentation; I have chosen to standardize on
+the more generic "Logical Drive" and "Drive Group".
+
+DAC960 RAID disk devices are named in the style of the obsolete Device File
+System (DEVFS). The device corresponding to Logical Drive D on Controller C
+is referred to as /dev/rd/cCdD, and the partitions are called /dev/rd/cCdDp1
+through /dev/rd/cCdDp7. For example, partition 3 of Logical Drive 5 on
+Controller 2 is referred to as /dev/rd/c2d5p3. Note that unlike with SCSI
+disks the device names will not change in the event of a disk drive failure.
+The DAC960 driver is assigned major numbers 48 - 55 with one major number per
+controller. The 8 bits of minor number are divided into 5 bits for the Logical
+Drive and 3 bits for the partition.
+
+
+ SUPPORTED DAC960/AcceleRAID/eXtremeRAID PCI RAID CONTROLLERS
+
+The following list comprises the supported DAC960, AcceleRAID, and eXtremeRAID
+PCI RAID Controllers as of the date of this document. It is recommended that
+anyone purchasing a Mylex PCI RAID Controller not in the following table
+contact the author beforehand to verify that it is or will be supported.
+
+eXtremeRAID 3000
+ 1 Wide Ultra-2/LVD SCSI channel
+ 2 External Fibre FC-AL channels
+ 233MHz StrongARM SA 110 Processor
+ 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
+ 32MB/64MB ECC SDRAM Memory
+
+eXtremeRAID 2000
+ 4 Wide Ultra-160 LVD SCSI channels
+ 233MHz StrongARM SA 110 Processor
+ 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
+ 32MB/64MB ECC SDRAM Memory
+
+AcceleRAID 352
+ 2 Wide Ultra-160 LVD SCSI channels
+ 100MHz Intel i960RN RISC Processor
+ 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
+ 32MB/64MB ECC SDRAM Memory
+
+AcceleRAID 170
+ 1 Wide Ultra-160 LVD SCSI channel
+ 100MHz Intel i960RM RISC Processor
+ 16MB/32MB/64MB ECC SDRAM Memory
+
+AcceleRAID 160 (AcceleRAID 170LP)
+ 1 Wide Ultra-160 LVD SCSI channel
+ 100MHz Intel i960RS RISC Processor
+ Built in 16M ECC SDRAM Memory
+ PCI Low Profile Form Factor - fit for 2U height
+
+eXtremeRAID 1100 (DAC1164P)
+ 3 Wide Ultra-2/LVD SCSI channels
+ 233MHz StrongARM SA 110 Processor
+ 64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
+ 16MB/32MB/64MB Parity SDRAM Memory with Battery Backup
+
+AcceleRAID 250 (DAC960PTL1)
+ Uses onboard Symbios SCSI chips on certain motherboards
+ Also includes one onboard Wide Ultra-2/LVD SCSI Channel
+ 66MHz Intel i960RD RISC Processor
+ 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
+
+AcceleRAID 200 (DAC960PTL0)
+ Uses onboard Symbios SCSI chips on certain motherboards
+ Includes no onboard SCSI Channels
+ 66MHz Intel i960RD RISC Processor
+ 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
+
+AcceleRAID 150 (DAC960PRL)
+ Uses onboard Symbios SCSI chips on certain motherboards
+ Also includes one onboard Wide Ultra-2/LVD SCSI Channel
+ 33MHz Intel i960RP RISC Processor
+ 4MB Parity EDO Memory
+
+DAC960PJ 1/2/3 Wide Ultra SCSI-3 Channels
+ 66MHz Intel i960RD RISC Processor
+ 4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
+
+DAC960PG 1/2/3 Wide Ultra SCSI-3 Channels
+ 33MHz Intel i960RP RISC Processor
+ 4MB/8MB ECC EDO Memory
+
+DAC960PU 1/2/3 Wide Ultra SCSI-3 Channels
+ Intel i960CF RISC Processor
+ 4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
+
+DAC960PD 1/2/3 Wide Fast SCSI-2 Channels
+ Intel i960CF RISC Processor
+ 4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
+
+DAC960PL 1/2/3 Wide Fast SCSI-2 Channels
+ Intel i960 RISC Processor
+ 2MB/4MB/8MB/16MB/32MB DRAM Memory
+
+DAC960P 1/2/3 Wide Fast SCSI-2 Channels
+ Intel i960 RISC Processor
+ 2MB/4MB/8MB/16MB/32MB DRAM Memory
+
+For the eXtremeRAID 2000/3000 and AcceleRAID 352/170/160, firmware version
+6.00-01 or above is required.
+
+For the eXtremeRAID 1100, firmware version 5.06-0-52 or above is required.
+
+For the AcceleRAID 250, 200, and 150, firmware version 4.06-0-57 or above is
+required.
+
+For the DAC960PJ and DAC960PG, firmware version 4.06-0-00 or above is required.
+
+For the DAC960PU, DAC960PD, DAC960PL, and DAC960P, either firmware version
+3.51-0-04 or above is required (for dual Flash ROM controllers), or firmware
+version 2.73-0-00 or above is required (for single Flash ROM controllers)
+
+Please note that not all SCSI disk drives are suitable for use with DAC960
+controllers, and only particular firmware versions of any given model may
+actually function correctly. Similarly, not all motherboards have a BIOS that
+properly initializes the AcceleRAID 250, AcceleRAID 200, AcceleRAID 150,
+DAC960PJ, and DAC960PG because the Intel i960RD/RP is a multi-function device.
+If in doubt, contact Mylex RAID Technical Support (mylexsup@us.ibm.com) to
+verify compatibility. Mylex makes available a hard disk compatibility list at
+http://www.mylex.com/support/hdcomp/hd-lists.html.
+
+
+ DRIVER INSTALLATION
+
+This distribution was prepared for Linux kernel version 2.2.19 or 2.4.12.
+
+To install the DAC960 RAID driver, you may use the following commands,
+replacing "/usr/src" with wherever you keep your Linux kernel source tree:
+
+ cd /usr/src
+ tar -xvzf DAC960-2.2.11.tar.gz (or DAC960-2.4.11.tar.gz)
+ mv README.DAC960 linux/Documentation
+ mv DAC960.[ch] linux/drivers/block
+ patch -p0 < DAC960.patch (if DAC960.patch is included)
+ cd linux
+ make config
+ make bzImage (or zImage)
+
+Then install "arch/i386/boot/bzImage" or "arch/i386/boot/zImage" as your
+standard kernel, run lilo if appropriate, and reboot.
+
+To create the necessary devices in /dev, the "make_rd" script included in
+"DAC960-Utilities.tar.gz" from http://www.dandelion.com/Linux/ may be used.
+LILO 21 and FDISK v2.9 include DAC960 support; also included in this archive
+are patches to LILO 20 and FDISK v2.8 that add DAC960 support, along with
+statically linked executables of LILO and FDISK. This modified version of LILO
+will allow booting from a DAC960 controller and/or mounting the root file
+system from a DAC960.
+
+Red Hat Linux 6.0 and SuSE Linux 6.1 include support for Mylex PCI RAID
+controllers. Installing directly onto a DAC960 may be problematic from other
+Linux distributions until their installation utilities are updated.
+
+
+ INSTALLATION NOTES
+
+Before installing Linux or adding DAC960 logical drives to an existing Linux
+system, the controller must first be configured to provide one or more logical
+drives using the BIOS Configuration Utility or DACCF. Please note that since
+there are only at most 6 usable partitions on each logical drive, systems
+requiring more partitions should subdivide a drive group into multiple logical
+drives, each of which can have up to 6 usable partitions. Also, note that with
+large disk arrays it is advisable to enable the 8GB BIOS Geometry (255/63)
+rather than accepting the default 2GB BIOS Geometry (128/32); failing to so do
+will cause the logical drive geometry to have more than 65535 cylinders which
+will make it impossible for FDISK to be used properly. The 8GB BIOS Geometry
+can be enabled by configuring the DAC960 BIOS, which is accessible via Alt-M
+during the BIOS initialization sequence.
+
+For maximum performance and the most efficient E2FSCK performance, it is
+recommended that EXT2 file systems be built with a 4KB block size and 16 block
+stride to match the DAC960 controller's 64KB default stripe size. The command
+"mke2fs -b 4096 -R stride=16 <device>" is appropriate. Unless there will be a
+large number of small files on the file systems, it is also beneficial to add
+the "-i 16384" option to increase the bytes per inode parameter thereby
+reducing the file system metadata. Finally, on systems that will only be run
+with Linux 2.2 or later kernels it is beneficial to enable sparse superblocks
+with the "-s 1" option.
+
+
+ DAC960 ANNOUNCEMENTS MAILING LIST
+
+The DAC960 Announcements Mailing List provides a forum for informing Linux
+users of new driver releases and other announcements regarding Linux support
+for DAC960 PCI RAID Controllers. To join the mailing list, send a message to
+"dac960-announce-request@dandelion.com" with the line "subscribe" in the
+message body.
+
+
+ CONTROLLER CONFIGURATION AND STATUS MONITORING
+
+The DAC960 RAID controllers running firmware 4.06 or above include a Background
+Initialization facility so that system downtime is minimized both for initial
+installation and subsequent configuration of additional storage. The BIOS
+Configuration Utility (accessible via Alt-R during the BIOS initialization
+sequence) is used to quickly configure the controller, and then the logical
+drives that have been created are available for immediate use even while they
+are still being initialized by the controller. The primary need for online
+configuration and status monitoring is then to avoid system downtime when disk
+drives fail and must be replaced. Mylex's online monitoring and configuration
+utilities are being ported to Linux and will become available at some point in
+the future. Note that with a SAF-TE (SCSI Accessed Fault-Tolerant Enclosure)
+enclosure, the controller is able to rebuild failed drives automatically as
+soon as a drive replacement is made available.
+
+The primary interfaces for controller configuration and status monitoring are
+special files created in the /proc/rd/... hierarchy along with the normal
+system console logging mechanism. Whenever the system is operating, the DAC960
+driver queries each controller for status information every 10 seconds, and
+checks for additional conditions every 60 seconds. The initial status of each
+controller is always available for controller N in /proc/rd/cN/initial_status,
+and the current status as of the last status monitoring query is available in
+/proc/rd/cN/current_status. In addition, status changes are also logged by the
+driver to the system console and will appear in the log files maintained by
+syslog. The progress of asynchronous rebuild or consistency check operations
+is also available in /proc/rd/cN/current_status, and progress messages are
+logged to the system console at most every 60 seconds.
+
+Starting with the 2.2.3/2.0.3 versions of the driver, the status information
+available in /proc/rd/cN/initial_status and /proc/rd/cN/current_status has been
+augmented to include the vendor, model, revision, and serial number (if
+available) for each physical device found connected to the controller:
+
+***** DAC960 RAID Driver Version 2.2.3 of 19 August 1999 *****
+Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
+Configuring Mylex DAC960PRL PCI RAID Controller
+ Firmware Version: 4.07-0-07, Channels: 1, Memory Size: 16MB
+ PCI Bus: 1, Device: 4, Function: 1, I/O Address: Unassigned
+ PCI Address: 0xFE300000 mapped at 0xA0800000, IRQ Channel: 21
+ Controller Queue Depth: 128, Maximum Blocks per Command: 128
+ Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
+ Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
+ SAF-TE Enclosure Management Enabled
+ Physical Devices:
+ 0:0 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 68016775HA
+ Disk Status: Online, 17928192 blocks
+ 0:1 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 68004E53HA
+ Disk Status: Online, 17928192 blocks
+ 0:2 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 13013935HA
+ Disk Status: Online, 17928192 blocks
+ 0:3 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 13016897HA
+ Disk Status: Online, 17928192 blocks
+ 0:4 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 68019905HA
+ Disk Status: Online, 17928192 blocks
+ 0:5 Vendor: IBM Model: DRVS09D Revision: 0270
+ Serial Number: 68012753HA
+ Disk Status: Online, 17928192 blocks
+ 0:6 Vendor: ESG-SHV Model: SCA HSBP M6 Revision: 0.61
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 89640960 blocks, Write Thru
+ No Rebuild or Consistency Check in Progress
+
+To simplify the monitoring process for custom software, the special file
+/proc/rd/status returns "OK" when all DAC960 controllers in the system are
+operating normally and no failures have occurred, or "ALERT" if any logical
+drives are offline or critical or any non-standby physical drives are dead.
+
+Configuration commands for controller N are available via the special file
+/proc/rd/cN/user_command. A human readable command can be written to this
+special file to initiate a configuration operation, and the results of the
+operation can then be read back from the special file in addition to being
+logged to the system console. The shell command sequence
+
+ echo "<configuration-command>" > /proc/rd/c0/user_command
+ cat /proc/rd/c0/user_command
+
+is typically used to execute configuration commands. The configuration
+commands are:
+
+ flush-cache
+
+ The "flush-cache" command flushes the controller's cache. The system
+ automatically flushes the cache at shutdown or if the driver module is
+ unloaded, so this command is only needed to be certain a write back cache
+ is flushed to disk before the system is powered off by a command to a UPS.
+ Note that the flush-cache command also stops an asynchronous rebuild or
+ consistency check, so it should not be used except when the system is being
+ halted.
+
+ kill <channel>:<target-id>
+
+ The "kill" command marks the physical drive <channel>:<target-id> as DEAD.
+ This command is provided primarily for testing, and should not be used
+ during normal system operation.
+
+ make-online <channel>:<target-id>
+
+ The "make-online" command changes the physical drive <channel>:<target-id>
+ from status DEAD to status ONLINE. In cases where multiple physical drives
+ have been killed simultaneously, this command may be used to bring all but
+ one of them back online, after which a rebuild to the final drive is
+ necessary.
+
+ Warning: make-online should only be used on a dead physical drive that is
+ an active part of a drive group, never on a standby drive. The command
+ should never be used on a dead drive that is part of a critical logical
+ drive; rebuild should be used if only a single drive is dead.
+
+ make-standby <channel>:<target-id>
+
+ The "make-standby" command changes physical drive <channel>:<target-id>
+ from status DEAD to status STANDBY. It should only be used in cases where
+ a dead drive was replaced after an automatic rebuild was performed onto a
+ standby drive. It cannot be used to add a standby drive to the controller
+ configuration if one was not created initially; the BIOS Configuration
+ Utility must be used for that currently.
+
+ rebuild <channel>:<target-id>
+
+ The "rebuild" command initiates an asynchronous rebuild onto physical drive
+ <channel>:<target-id>. It should only be used when a dead drive has been
+ replaced.
+
+ check-consistency <logical-drive-number>
+
+ The "check-consistency" command initiates an asynchronous consistency check
+ of <logical-drive-number> with automatic restoration. It can be used
+ whenever it is desired to verify the consistency of the redundancy
+ information.
+
+ cancel-rebuild
+ cancel-consistency-check
+
+ The "cancel-rebuild" and "cancel-consistency-check" commands cancel any
+ rebuild or consistency check operations previously initiated.
+
+
+ EXAMPLE I - DRIVE FAILURE WITHOUT A STANDBY DRIVE
+
+The following annotated logs demonstrate the controller configuration and and
+online status monitoring capabilities of the Linux DAC960 Driver. The test
+configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
+DAC960PJ controller. The physical drives are configured into a single drive
+group without a standby drive, and the drive group has been configured into two
+logical drives, one RAID-5 and one RAID-6. Note that these logs are from an
+earlier version of the driver and the messages have changed somewhat with newer
+releases, but the functionality remains similar. First, here is the current
+status of the RAID configuration:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
+Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
+Configuring Mylex DAC960PJ PCI RAID Controller
+ Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
+ PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
+ PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
+ Controller Queue Depth: 128, Maximum Blocks per Command: 128
+ Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
+ Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
+ No Rebuild or Consistency Check in Progress
+
+gwynedd:/u/lnz# cat /proc/rd/status
+OK
+
+The above messages indicate that everything is healthy, and /proc/rd/status
+returns "OK" indicating that there are no problems with any DAC960 controller
+in the system. For demonstration purposes, while I/O is active Physical Drive
+1:1 is now disconnected, simulating a drive failure. The failure is noted by
+the driver within 10 seconds of the controller's having detected it, and the
+driver logs the following console status messages indicating that Logical
+Drives 0 and 1 are now CRITICAL as a result of Physical Drive 1:1 being DEAD:
+
+DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
+DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
+DAC960#0: Physical Drive 1:1 killed because of timeout on SCSI command
+DAC960#0: Physical Drive 1:1 is now DEAD
+DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
+DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
+
+The Sense Keys logged here are just Check Condition / Unit Attention conditions
+arising from a SCSI bus reset that is forced by the controller during its error
+recovery procedures. Concurrently with the above, the driver status available
+from /proc/rd also reflects the drive failure. The status message in
+/proc/rd/status has changed from "OK" to "ALERT":
+
+gwynedd:/u/lnz# cat /proc/rd/status
+ALERT
+
+and /proc/rd/c0/current_status has been updated:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Dead, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
+ No Rebuild or Consistency Check in Progress
+
+Since there are no standby drives configured, the system can continue to access
+the logical drives in a performance degraded mode until the failed drive is
+replaced and a rebuild operation completed to restore the redundancy of the
+logical drives. Once Physical Drive 1:1 is replaced with a properly
+functioning drive, or if the physical drive was killed without having failed
+(e.g., due to electrical problems on the SCSI bus), the user can instruct the
+controller to initiate a rebuild operation onto the newly replaced drive:
+
+gwynedd:/u/lnz# echo "rebuild 1:1" > /proc/rd/c0/user_command
+gwynedd:/u/lnz# cat /proc/rd/c0/user_command
+Rebuild of Physical Drive 1:1 Initiated
+
+The echo command instructs the controller to initiate an asynchronous rebuild
+operation onto Physical Drive 1:1, and the status message that results from the
+operation is then available for reading from /proc/rd/c0/user_command, as well
+as being logged to the console by the driver.
+
+Within 10 seconds of this command the driver logs the initiation of the
+asynchronous rebuild operation:
+
+DAC960#0: Rebuild of Physical Drive 1:1 Initiated
+DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
+DAC960#0: Physical Drive 1:1 is now WRITE-ONLY
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 1% completed
+
+and /proc/rd/c0/current_status is updated:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Write-Only, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
+ Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 6% completed
+
+As the rebuild progresses, the current status in /proc/rd/c0/current_status is
+updated every 10 seconds:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Write-Only, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
+ Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 15% completed
+
+and every minute a progress message is logged to the console by the driver:
+
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 32% completed
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 63% completed
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 94% completed
+DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 94% completed
+
+Finally, the rebuild completes successfully. The driver logs the status of the
+logical and physical drives and the rebuild completion:
+
+DAC960#0: Rebuild Completed Successfully
+DAC960#0: Physical Drive 1:1 is now ONLINE
+DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
+DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
+
+/proc/rd/c0/current_status is updated:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
+ Rebuild Completed Successfully
+
+and /proc/rd/status indicates that everything is healthy once again:
+
+gwynedd:/u/lnz# cat /proc/rd/status
+OK
+
+
+ EXAMPLE II - DRIVE FAILURE WITH A STANDBY DRIVE
+
+The following annotated logs demonstrate the controller configuration and and
+online status monitoring capabilities of the Linux DAC960 Driver. The test
+configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
+DAC960PJ controller. The physical drives are configured into a single drive
+group with a standby drive, and the drive group has been configured into two
+logical drives, one RAID-5 and one RAID-6. Note that these logs are from an
+earlier version of the driver and the messages have changed somewhat with newer
+releases, but the functionality remains similar. First, here is the current
+status of the RAID configuration:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
+Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
+Configuring Mylex DAC960PJ PCI RAID Controller
+ Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
+ PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
+ PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
+ Controller Queue Depth: 128, Maximum Blocks per Command: 128
+ Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
+ Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Online, 2201600 blocks
+ 1:3 - Disk: Standby, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
+ No Rebuild or Consistency Check in Progress
+
+gwynedd:/u/lnz# cat /proc/rd/status
+OK
+
+The above messages indicate that everything is healthy, and /proc/rd/status
+returns "OK" indicating that there are no problems with any DAC960 controller
+in the system. For demonstration purposes, while I/O is active Physical Drive
+1:2 is now disconnected, simulating a drive failure. The failure is noted by
+the driver within 10 seconds of the controller's having detected it, and the
+driver logs the following console status messages:
+
+DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
+DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
+DAC960#0: Physical Drive 1:2 killed because of timeout on SCSI command
+DAC960#0: Physical Drive 1:2 is now DEAD
+DAC960#0: Physical Drive 1:2 killed because it was removed
+DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
+DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
+
+Since a standby drive is configured, the controller automatically begins
+rebuilding onto the standby drive:
+
+DAC960#0: Physical Drive 1:3 is now WRITE-ONLY
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
+
+Concurrently with the above, the driver status available from /proc/rd also
+reflects the drive failure and automatic rebuild. The status message in
+/proc/rd/status has changed from "OK" to "ALERT":
+
+gwynedd:/u/lnz# cat /proc/rd/status
+ALERT
+
+and /proc/rd/c0/current_status has been updated:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Dead, 2201600 blocks
+ 1:3 - Disk: Write-Only, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
+ Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
+
+As the rebuild progresses, the current status in /proc/rd/c0/current_status is
+updated every 10 seconds:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Dead, 2201600 blocks
+ 1:3 - Disk: Write-Only, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
+ Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
+
+and every minute a progress message is logged on the console by the driver:
+
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
+DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 76% completed
+DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 66% completed
+DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 84% completed
+
+Finally, the rebuild completes successfully. The driver logs the status of the
+logical and physical drives and the rebuild completion:
+
+DAC960#0: Rebuild Completed Successfully
+DAC960#0: Physical Drive 1:3 is now ONLINE
+DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
+DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
+
+/proc/rd/c0/current_status is updated:
+
+***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
+Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
+Configuring Mylex DAC960PJ PCI RAID Controller
+ Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
+ PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
+ PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
+ Controller Queue Depth: 128, Maximum Blocks per Command: 128
+ Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
+ Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Dead, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
+ Rebuild Completed Successfully
+
+and /proc/rd/status indicates that everything is healthy once again:
+
+gwynedd:/u/lnz# cat /proc/rd/status
+OK
+
+Note that the absence of a viable standby drive does not create an "ALERT"
+status. Once dead Physical Drive 1:2 has been replaced, the controller must be
+told that this has occurred and that the newly replaced drive should become the
+new standby drive:
+
+gwynedd:/u/lnz# echo "make-standby 1:2" > /proc/rd/c0/user_command
+gwynedd:/u/lnz# cat /proc/rd/c0/user_command
+Make Standby of Physical Drive 1:2 Succeeded
+
+The echo command instructs the controller to make Physical Drive 1:2 into a
+standby drive, and the status message that results from the operation is then
+available for reading from /proc/rd/c0/user_command, as well as being logged to
+the console by the driver. Within 60 seconds of this command the driver logs:
+
+DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
+DAC960#0: Physical Drive 1:2 is now STANDBY
+DAC960#0: Make Standby of Physical Drive 1:2 Succeeded
+
+and /proc/rd/c0/current_status is updated:
+
+gwynedd:/u/lnz# cat /proc/rd/c0/current_status
+ ...
+ Physical Devices:
+ 0:1 - Disk: Online, 2201600 blocks
+ 0:2 - Disk: Online, 2201600 blocks
+ 0:3 - Disk: Online, 2201600 blocks
+ 1:1 - Disk: Online, 2201600 blocks
+ 1:2 - Disk: Standby, 2201600 blocks
+ 1:3 - Disk: Online, 2201600 blocks
+ Logical Drives:
+ /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
+ /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
+ Rebuild Completed Successfully
diff --git a/Documentation/blockdev/cciss.txt b/Documentation/blockdev/cciss.txt
new file mode 100644
index 000000000000..89698e8df7d4
--- /dev/null
+++ b/Documentation/blockdev/cciss.txt
@@ -0,0 +1,171 @@
+This driver is for Compaq's SMART Array Controllers.
+
+Supported Cards:
+----------------
+
+This driver is known to work with the following cards:
+
+ * SA 5300
+ * SA 5i
+ * SA 532
+ * SA 5312
+ * SA 641
+ * SA 642
+ * SA 6400
+ * SA 6400 U320 Expansion Module
+ * SA 6i
+ * SA P600
+ * SA P800
+ * SA E400
+ * SA P400i
+ * SA E200
+ * SA E200i
+ * SA E500
+ * SA P700m
+ * SA P212
+ * SA P410
+ * SA P410i
+ * SA P411
+ * SA P812
+ * SA P712m
+ * SA P711m
+
+Detecting drive failures:
+-------------------------
+
+To get the status of logical volumes and to detect physical drive
+failures, you can use the cciss_vol_status program found here:
+http://cciss.sourceforge.net/#cciss_utils
+
+Device Naming:
+--------------
+
+If nodes are not already created in the /dev/cciss directory, run as root:
+
+# cd /dev
+# ./MAKEDEV cciss
+
+You need some entries in /dev for the cciss device. The MAKEDEV script
+can make device nodes for you automatically. Currently the device setup
+is as follows:
+
+Major numbers:
+ 104 cciss0
+ 105 cciss1
+ 106 cciss2
+ 105 cciss3
+ 108 cciss4
+ 109 cciss5
+ 110 cciss6
+ 111 cciss7
+
+Minor numbers:
+ b7 b6 b5 b4 b3 b2 b1 b0
+ |----+----| |----+----|
+ | |
+ | +-------- Partition ID (0=wholedev, 1-15 partition)
+ |
+ +-------------------- Logical Volume number
+
+The device naming scheme is:
+/dev/cciss/c0d0 Controller 0, disk 0, whole device
+/dev/cciss/c0d0p1 Controller 0, disk 0, partition 1
+/dev/cciss/c0d0p2 Controller 0, disk 0, partition 2
+/dev/cciss/c0d0p3 Controller 0, disk 0, partition 3
+
+/dev/cciss/c1d1 Controller 1, disk 1, whole device
+/dev/cciss/c1d1p1 Controller 1, disk 1, partition 1
+/dev/cciss/c1d1p2 Controller 1, disk 1, partition 2
+/dev/cciss/c1d1p3 Controller 1, disk 1, partition 3
+
+SCSI tape drive and medium changer support
+------------------------------------------
+
+SCSI sequential access devices and medium changer devices are supported and
+appropriate device nodes are automatically created. (e.g.
+/dev/st0, /dev/st1, etc. See the "st" man page for more details.)
+You must enable "SCSI tape drive support for Smart Array 5xxx" and
+"SCSI support" in your kernel configuration to be able to use SCSI
+tape drives with your Smart Array 5xxx controller.
+
+Additionally, note that the driver will not engage the SCSI core at init
+time. The driver must be directed to dynamically engage the SCSI core via
+the /proc filesystem entry which the "block" side of the driver creates as
+/proc/driver/cciss/cciss* at runtime. This is because at driver init time,
+the SCSI core may not yet be initialized (because the driver is a block
+driver) and attempting to register it with the SCSI core in such a case
+would cause a hang. This is best done via an initialization script
+(typically in /etc/init.d, but could vary depending on distribution).
+For example:
+
+ for x in /proc/driver/cciss/cciss[0-9]*
+ do
+ echo "engage scsi" > $x
+ done
+
+Once the SCSI core is engaged by the driver, it cannot be disengaged
+(except by unloading the driver, if it happens to be linked as a module.)
+
+Note also that if no sequential access devices or medium changers are
+detected, the SCSI core will not be engaged by the action of the above
+script.
+
+Hot plug support for SCSI tape drives
+-------------------------------------
+
+Hot plugging of SCSI tape drives is supported, with some caveats.
+The cciss driver must be informed that changes to the SCSI bus
+have been made. This may be done via the /proc filesystem.
+For example:
+
+ echo "rescan" > /proc/scsi/cciss0/1
+
+This causes the driver to query the adapter about changes to the
+physical SCSI buses and/or fibre channel arbitrated loop and the
+driver to make note of any new or removed sequential access devices
+or medium changers. The driver will output messages indicating what
+devices have been added or removed and the controller, bus, target and
+lun used to address the device. It then notifies the SCSI mid layer
+of these changes.
+
+Note that the naming convention of the /proc filesystem entries
+contains a number in addition to the driver name. (E.g. "cciss0"
+instead of just "cciss" which you might expect.)
+
+Note: ONLY sequential access devices and medium changers are presented
+as SCSI devices to the SCSI mid layer by the cciss driver. Specifically,
+physical SCSI disk drives are NOT presented to the SCSI mid layer. The
+physical SCSI disk drives are controlled directly by the array controller
+hardware and it is important to prevent the kernel from attempting to directly
+access these devices too, as if the array controller were merely a SCSI
+controller in the same way that we are allowing it to access SCSI tape drives.
+
+SCSI error handling for tape drives and medium changers
+-------------------------------------------------------
+
+The linux SCSI mid layer provides an error handling protocol which
+kicks into gear whenever a SCSI command fails to complete within a
+certain amount of time (which can vary depending on the command).
+The cciss driver participates in this protocol to some extent. The
+normal protocol is a four step process. First the device is told
+to abort the command. If that doesn't work, the device is reset.
+If that doesn't work, the SCSI bus is reset. If that doesn't work
+the host bus adapter is reset. Because the cciss driver is a block
+driver as well as a SCSI driver and only the tape drives and medium
+changers are presented to the SCSI mid layer, and unlike more
+straightforward SCSI drivers, disk i/o continues through the block
+side during the SCSI error recovery process, the cciss driver only
+implements the first two of these actions, aborting the command, and
+resetting the device. Additionally, most tape drives will not oblige
+in aborting commands, and sometimes it appears they will not even
+obey a reset command, though in most circumstances they will. In
+the case that the command cannot be aborted and the device cannot be
+reset, the device will be set offline.
+
+In the event the error handling code is triggered and a tape drive is
+successfully reset or the tardy command is successfully aborted, the
+tape drive may still not allow i/o to continue until some command
+is issued which positions the tape to a known position. Typically you
+must rewind the tape (by issuing "mt -f /dev/st0 rewind" for example)
+before i/o can proceed again to a tape drive which was reset.
+
diff --git a/Documentation/blockdev/cpqarray.txt b/Documentation/blockdev/cpqarray.txt
new file mode 100644
index 000000000000..c7154e20ef5e
--- /dev/null
+++ b/Documentation/blockdev/cpqarray.txt
@@ -0,0 +1,93 @@
+This driver is for Compaq's SMART2 Intelligent Disk Array Controllers.
+
+Supported Cards:
+----------------
+
+This driver is known to work with the following cards:
+
+ * SMART (EISA)
+ * SMART-2/E (EISA)
+ * SMART-2/P
+ * SMART-2DH
+ * SMART-2SL
+ * SMART-221
+ * SMART-3100ES
+ * SMART-3200
+ * Integrated Smart Array Controller
+ * SA 4200
+ * SA 4250ES
+ * SA 431
+ * RAID LC2 Controller
+
+It should also work with some really old Disk array adapters, but I am
+unable to test against these cards:
+
+ * IDA
+ * IDA-2
+ * IAES
+
+
+EISA Controllers:
+-----------------
+
+If you want to use an EISA controller you'll have to supply some
+modprobe/lilo parameters. If the driver is compiled into the kernel, must
+give it the controller's IO port address at boot time (it is not
+necessary to specify the IRQ). For example, if you had two SMART-2/E
+controllers, in EISA slots 1 and 2 you'd give it a boot argument like
+this:
+
+ smart2=0x1000,0x2000
+
+If you were loading the driver as a module, you'd give load it like this:
+
+ modprobe cpqarray eisa=0x1000,0x2000
+
+You can use EISA and PCI adapters at the same time.
+
+
+Device Naming:
+--------------
+
+You need some entries in /dev for the ida device. MAKEDEV in the /dev
+directory can make device nodes for you automatically. The device setup is
+as follows:
+
+Major numbers:
+ 72 ida0
+ 73 ida1
+ 74 ida2
+ 75 ida3
+ 76 ida4
+ 77 ida5
+ 78 ida6
+ 79 ida7
+
+Minor numbers:
+ b7 b6 b5 b4 b3 b2 b1 b0
+ |----+----| |----+----|
+ | |
+ | +-------- Partition ID (0=wholedev, 1-15 partition)
+ |
+ +-------------------- Logical Volume number
+
+The device naming scheme is:
+/dev/ida/c0d0 Controller 0, disk 0, whole device
+/dev/ida/c0d0p1 Controller 0, disk 0, partition 1
+/dev/ida/c0d0p2 Controller 0, disk 0, partition 2
+/dev/ida/c0d0p3 Controller 0, disk 0, partition 3
+
+/dev/ida/c1d1 Controller 1, disk 1, whole device
+/dev/ida/c1d1p1 Controller 1, disk 1, partition 1
+/dev/ida/c1d1p2 Controller 1, disk 1, partition 2
+/dev/ida/c1d1p3 Controller 1, disk 1, partition 3
+
+
+Changelog:
+==========
+
+10-28-2004 : General cleanup, syntax fixes for in-kernel driver version.
+ James Nelson <james4765@gmail.com>
+
+
+1999 : Original Document
diff --git a/Documentation/blockdev/floppy.txt b/Documentation/blockdev/floppy.txt
new file mode 100644
index 000000000000..6ccab88705cb
--- /dev/null
+++ b/Documentation/blockdev/floppy.txt
@@ -0,0 +1,245 @@
+This file describes the floppy driver.
+
+FAQ list:
+=========
+
+ A FAQ list may be found in the fdutils package (see below), and also
+at <http://fdutils.linux.lu/faq.html>.
+
+
+LILO configuration options (Thinkpad users, read this)
+======================================================
+
+ The floppy driver is configured using the 'floppy=' option in
+lilo. This option can be typed at the boot prompt, or entered in the
+lilo configuration file.
+
+ Example: If your kernel is called linux-2.6.9, type the following line
+at the lilo boot prompt (if you have a thinkpad):
+
+ linux-2.6.9 floppy=thinkpad
+
+You may also enter the following line in /etc/lilo.conf, in the description
+of linux-2.6.9:
+
+ append = "floppy=thinkpad"
+
+ Several floppy related options may be given, example:
+
+ linux-2.6.9 floppy=daring floppy=two_fdc
+ append = "floppy=daring floppy=two_fdc"
+
+ If you give options both in the lilo config file and on the boot
+prompt, the option strings of both places are concatenated, the boot
+prompt options coming last. That's why there are also options to
+restore the default behavior.
+
+
+Module configuration options
+============================
+
+ If you use the floppy driver as a module, use the following syntax:
+modprobe floppy <options>
+
+Example:
+ modprobe floppy omnibook messages
+
+ If you need certain options enabled every time you load the floppy driver,
+you can put:
+
+ options floppy omnibook messages
+
+in /etc/modprobe.conf.
+
+
+ The floppy driver related options are:
+
+ floppy=asus_pci
+ Sets the bit mask to allow only units 0 and 1. (default)
+
+ floppy=daring
+ Tells the floppy driver that you have a well behaved floppy controller.
+ This allows more efficient and smoother operation, but may fail on
+ certain controllers. This may speed up certain operations.
+
+ floppy=0,daring
+ Tells the floppy driver that your floppy controller should be used
+ with caution.
+
+ floppy=one_fdc
+ Tells the floppy driver that you have only one floppy controller.
+ (default)
+
+ floppy=two_fdc
+ floppy=<address>,two_fdc
+ Tells the floppy driver that you have two floppy controllers.
+ The second floppy controller is assumed to be at <address>.
+ This option is not needed if the second controller is at address
+ 0x370, and if you use the 'cmos' option.
+
+ floppy=thinkpad
+ Tells the floppy driver that you have a Thinkpad. Thinkpads use an
+ inverted convention for the disk change line.
+
+ floppy=0,thinkpad
+ Tells the floppy driver that you don't have a Thinkpad.
+
+ floppy=omnibook
+ floppy=nodma
+ Tells the floppy driver not to use Dma for data transfers.
+ This is needed on HP Omnibooks, which don't have a workable
+ DMA channel for the floppy driver. This option is also useful
+ if you frequently get "Unable to allocate DMA memory" messages.
+ Indeed, dma memory needs to be continuous in physical memory,
+ and is thus harder to find, whereas non-dma buffers may be
+ allocated in virtual memory. However, I advise against this if
+ you have an FDC without a FIFO (8272A or 82072). 82072A and
+ later are OK. You also need at least a 486 to use nodma.
+ If you use nodma mode, I suggest you also set the FIFO
+ threshold to 10 or lower, in order to limit the number of data
+ transfer interrupts.
+
+ If you have a FIFO-able FDC, the floppy driver automatically
+ falls back on non DMA mode if no DMA-able memory can be found.
+ If you want to avoid this, explicitly ask for 'yesdma'.
+
+ floppy=yesdma
+ Tells the floppy driver that a workable DMA channel is available.
+ (default)
+
+ floppy=nofifo
+ Disables the FIFO entirely. This is needed if you get "Bus
+ master arbitration error" messages from your Ethernet card (or
+ from other devices) while accessing the floppy.
+
+ floppy=usefifo
+ Enables the FIFO. (default)
+
+ floppy=<threshold>,fifo_depth
+ Sets the FIFO threshold. This is mostly relevant in DMA
+ mode. If this is higher, the floppy driver tolerates more
+ interrupt latency, but it triggers more interrupts (i.e. it
+ imposes more load on the rest of the system). If this is
+ lower, the interrupt latency should be lower too (faster
+ processor). The benefit of a lower threshold is less
+ interrupts.
+
+ To tune the fifo threshold, switch on over/underrun messages
+ using 'floppycontrol --messages'. Then access a floppy
+ disk. If you get a huge amount of "Over/Underrun - retrying"
+ messages, then the fifo threshold is too low. Try with a
+ higher value, until you only get an occasional Over/Underrun.
+ It is a good idea to compile the floppy driver as a module
+ when doing this tuning. Indeed, it allows to try different
+ fifo values without rebooting the machine for each test. Note
+ that you need to do 'floppycontrol --messages' every time you
+ re-insert the module.
+
+ Usually, tuning the fifo threshold should not be needed, as
+ the default (0xa) is reasonable.
+
+ floppy=<drive>,<type>,cmos
+ Sets the CMOS type of <drive> to <type>. This is mandatory if
+ you have more than two floppy drives (only two can be
+ described in the physical CMOS), or if your BIOS uses
+ non-standard CMOS types. The CMOS types are:
+
+ 0 - Use the value of the physical CMOS
+ 1 - 5 1/4 DD
+ 2 - 5 1/4 HD
+ 3 - 3 1/2 DD
+ 4 - 3 1/2 HD
+ 5 - 3 1/2 ED
+ 6 - 3 1/2 ED
+ 16 - unknown or not installed
+
+ (Note: there are two valid types for ED drives. This is because 5 was
+ initially chosen to represent floppy *tapes*, and 6 for ED drives.
+ AMI ignored this, and used 5 for ED drives. That's why the floppy
+ driver handles both.)
+
+ floppy=unexpected_interrupts
+ Print a warning message when an unexpected interrupt is received.
+ (default)
+
+ floppy=no_unexpected_interrupts
+ floppy=L40SX
+ Don't print a message when an unexpected interrupt is received. This
+ is needed on IBM L40SX laptops in certain video modes. (There seems
+ to be an interaction between video and floppy. The unexpected
+ interrupts affect only performance, and can be safely ignored.)
+
+ floppy=broken_dcl
+ Don't use the disk change line, but assume that the disk was
+ changed whenever the device node is reopened. Needed on some
+ boxes where the disk change line is broken or unsupported.
+ This should be regarded as a stopgap measure, indeed it makes
+ floppy operation less efficient due to unneeded cache
+ flushings, and slightly more unreliable. Please verify your
+ cable, connection and jumper settings if you have any DCL
+ problems. However, some older drives, and also some laptops
+ are known not to have a DCL.
+
+ floppy=debug
+ Print debugging messages.
+
+ floppy=messages
+ Print informational messages for some operations (disk change
+ notifications, warnings about over and underruns, and about
+ autodetection).
+
+ floppy=silent_dcl_clear
+ Uses a less noisy way to clear the disk change line (which
+ doesn't involve seeks). Implied by 'daring' option.
+
+ floppy=<nr>,irq
+ Sets the floppy IRQ to <nr> instead of 6.
+
+ floppy=<nr>,dma
+ Sets the floppy DMA channel to <nr> instead of 2.
+
+ floppy=slow
+ Use PS/2 stepping rate:
+ " PS/2 floppies have much slower step rates than regular floppies.
+ It's been recommended that take about 1/4 of the default speed
+ in some more extreme cases."
+
+
+Supporting utilities and additional documentation:
+==================================================
+
+ Additional parameters of the floppy driver can be configured at
+runtime. Utilities which do this can be found in the fdutils package.
+This package also contains a new version of mtools which allows to
+access high capacity disks (up to 1992K on a high density 3 1/2 disk!).
+It also contains additional documentation about the floppy driver.
+
+The latest version can be found at fdutils homepage:
+ http://fdutils.linux.lu
+
+The fdutils releases can be found at:
+ http://fdutils.linux.lu/download.html
+ http://www.tux.org/pub/knaff/fdutils/
+ ftp://metalab.unc.edu/pub/Linux/utils/disk-management/
+
+Reporting problems about the floppy driver
+==========================================
+
+ If you have a question or a bug report about the floppy driver, mail
+me at Alain.Knaff@poboxes.com . If you post to Usenet, preferably use
+comp.os.linux.hardware. As the volume in these groups is rather high,
+be sure to include the word "floppy" (or "FLOPPY") in the subject
+line. If the reported problem happens when mounting floppy disks, be
+sure to mention also the type of the filesystem in the subject line.
+
+ Be sure to read the FAQ before mailing/posting any bug reports!
+
+ Alain
+
+Changelog
+=========
+
+10-30-2004 : Cleanup, updating, add reference to module configuration.
+ James Nelson <james4765@gmail.com>
+
+6-3-2000 : Original Document
diff --git a/Documentation/blockdev/nbd.txt b/Documentation/blockdev/nbd.txt
new file mode 100644
index 000000000000..aeb93ffe6416
--- /dev/null
+++ b/Documentation/blockdev/nbd.txt
@@ -0,0 +1,47 @@
+ Network Block Device (TCP version)
+
+ What is it: With this compiled in the kernel (or as a module), Linux
+ can use a remote server as one of its block devices. So every time
+ the client computer wants to read, e.g., /dev/nb0, it sends a
+ request over TCP to the server, which will reply with the data read.
+ This can be used for stations with low disk space (or even diskless -
+ if you boot from floppy) to borrow disk space from another computer.
+ Unlike NFS, it is possible to put any filesystem on it, etc. It should
+ even be possible to use NBD as a root filesystem (I've never tried),
+ but it requires a user-level program to be in the initrd to start.
+ It also allows you to run block-device in user land (making server
+ and client physically the same computer, communicating using loopback).
+
+ Current state: It currently works. Network block device is stable.
+ I originally thought that it was impossible to swap over TCP. It
+ turned out not to be true - swapping over TCP now works and seems
+ to be deadlock-free, but it requires heavy patches into Linux's
+ network layer.
+
+ For more information, or to download the nbd-client and nbd-server
+ tools, go to http://nbd.sf.net/.
+
+ Howto: To setup nbd, you can simply do the following:
+
+ First, serve a device or file from a remote server:
+
+ nbd-server <port-number> <device-or-file-to-serve-to-client>
+
+ e.g.,
+ root@server1 # nbd-server 1234 /dev/sdb1
+
+ (serves sdb1 partition on TCP port 1234)
+
+ Then, on the local (client) system:
+
+ nbd-client <server-name-or-IP> <server-port-number> /dev/nb[0-n]
+
+ e.g.,
+ root@client1 # nbd-client server1 1234 /dev/nb0
+
+ (creates the nb0 device on client1)
+
+ The nbd kernel module need only be installed on the client
+ system, as the nbd-server is completely in userspace. In fact,
+ the nbd-server has been successfully ported to other operating
+ systems, including Windows.
diff --git a/Documentation/blockdev/paride.txt b/Documentation/blockdev/paride.txt
new file mode 100644
index 000000000000..e4312676bdda
--- /dev/null
+++ b/Documentation/blockdev/paride.txt
@@ -0,0 +1,417 @@
+
+ Linux and parallel port IDE devices
+
+PARIDE v1.03 (c) 1997-8 Grant Guenther <grant@torque.net>
+
+1. Introduction
+
+Owing to the simplicity and near universality of the parallel port interface
+to personal computers, many external devices such as portable hard-disk,
+CD-ROM, LS-120 and tape drives use the parallel port to connect to their
+host computer. While some devices (notably scanners) use ad-hoc methods
+to pass commands and data through the parallel port interface, most
+external devices are actually identical to an internal model, but with
+a parallel-port adapter chip added in. Some of the original parallel port
+adapters were little more than mechanisms for multiplexing a SCSI bus.
+(The Iomega PPA-3 adapter used in the ZIP drives is an example of this
+approach). Most current designs, however, take a different approach.
+The adapter chip reproduces a small ISA or IDE bus in the external device
+and the communication protocol provides operations for reading and writing
+device registers, as well as data block transfer functions. Sometimes,
+the device being addressed via the parallel cable is a standard SCSI
+controller like an NCR 5380. The "ditto" family of external tape
+drives use the ISA replicator to interface a floppy disk controller,
+which is then connected to a floppy-tape mechanism. The vast majority
+of external parallel port devices, however, are now based on standard
+IDE type devices, which require no intermediate controller. If one
+were to open up a parallel port CD-ROM drive, for instance, one would
+find a standard ATAPI CD-ROM drive, a power supply, and a single adapter
+that interconnected a standard PC parallel port cable and a standard
+IDE cable. It is usually possible to exchange the CD-ROM device with
+any other device using the IDE interface.
+
+The document describes the support in Linux for parallel port IDE
+devices. It does not cover parallel port SCSI devices, "ditto" tape
+drives or scanners. Many different devices are supported by the
+parallel port IDE subsystem, including:
+
+ MicroSolutions backpack CD-ROM
+ MicroSolutions backpack PD/CD
+ MicroSolutions backpack hard-drives
+ MicroSolutions backpack 8000t tape drive
+ SyQuest EZ-135, EZ-230 & SparQ drives
+ Avatar Shark
+ Imation Superdisk LS-120
+ Maxell Superdisk LS-120
+ FreeCom Power CD
+ Hewlett-Packard 5GB and 8GB tape drives
+ Hewlett-Packard 7100 and 7200 CD-RW drives
+
+as well as most of the clone and no-name products on the market.
+
+To support such a wide range of devices, PARIDE, the parallel port IDE
+subsystem, is actually structured in three parts. There is a base
+paride module which provides a registry and some common methods for
+accessing the parallel ports. The second component is a set of
+high-level drivers for each of the different types of supported devices:
+
+ pd IDE disk
+ pcd ATAPI CD-ROM
+ pf ATAPI disk
+ pt ATAPI tape
+ pg ATAPI generic
+
+(Currently, the pg driver is only used with CD-R drives).
+
+The high-level drivers function according to the relevant standards.
+The third component of PARIDE is a set of low-level protocol drivers
+for each of the parallel port IDE adapter chips. Thanks to the interest
+and encouragement of Linux users from many parts of the world,
+support is available for almost all known adapter protocols:
+
+ aten ATEN EH-100 (HK)
+ bpck Microsolutions backpack (US)
+ comm DataStor (old-type) "commuter" adapter (TW)
+ dstr DataStor EP-2000 (TW)
+ epat Shuttle EPAT (UK)
+ epia Shuttle EPIA (UK)
+ fit2 FIT TD-2000 (US)
+ fit3 FIT TD-3000 (US)
+ friq Freecom IQ cable (DE)
+ frpw Freecom Power (DE)
+ kbic KingByte KBIC-951A and KBIC-971A (TW)
+ ktti KT Technology PHd adapter (SG)
+ on20 OnSpec 90c20 (US)
+ on26 OnSpec 90c26 (US)
+
+
+2. Using the PARIDE subsystem
+
+While configuring the Linux kernel, you may choose either to build
+the PARIDE drivers into your kernel, or to build them as modules.
+
+In either case, you will need to select "Parallel port IDE device support"
+as well as at least one of the high-level drivers and at least one
+of the parallel port communication protocols. If you do not know
+what kind of parallel port adapter is used in your drive, you could
+begin by checking the file names and any text files on your DOS
+installation floppy. Alternatively, you can look at the markings on
+the adapter chip itself. That's usually sufficient to identify the
+correct device.
+
+You can actually select all the protocol modules, and allow the PARIDE
+subsystem to try them all for you.
+
+For the "brand-name" products listed above, here are the protocol
+and high-level drivers that you would use:
+
+ Manufacturer Model Driver Protocol
+
+ MicroSolutions CD-ROM pcd bpck
+ MicroSolutions PD drive pf bpck
+ MicroSolutions hard-drive pd bpck
+ MicroSolutions 8000t tape pt bpck
+ SyQuest EZ, SparQ pd epat
+ Imation Superdisk pf epat
+ Maxell Superdisk pf friq
+ Avatar Shark pd epat
+ FreeCom CD-ROM pcd frpw
+ Hewlett-Packard 5GB Tape pt epat
+ Hewlett-Packard 7200e (CD) pcd epat
+ Hewlett-Packard 7200e (CD-R) pg epat
+
+2.1 Configuring built-in drivers
+
+We recommend that you get to know how the drivers work and how to
+configure them as loadable modules, before attempting to compile a
+kernel with the drivers built-in.
+
+If you built all of your PARIDE support directly into your kernel,
+and you have just a single parallel port IDE device, your kernel should
+locate it automatically for you. If you have more than one device,
+you may need to give some command line options to your bootloader
+(eg: LILO), how to do that is beyond the scope of this document.
+
+The high-level drivers accept a number of command line parameters, all
+of which are documented in the source files in linux/drivers/block/paride.
+By default, each driver will automatically try all parallel ports it
+can find, and all protocol types that have been installed, until it finds
+a parallel port IDE adapter. Once it finds one, the probe stops. So,
+if you have more than one device, you will need to tell the drivers
+how to identify them. This requires specifying the port address, the
+protocol identification number and, for some devices, the drive's
+chain ID. While your system is booting, a number of messages are
+displayed on the console. Like all such messages, they can be
+reviewed with the 'dmesg' command. Among those messages will be
+some lines like:
+
+ paride: bpck registered as protocol 0
+ paride: epat registered as protocol 1
+
+The numbers will always be the same until you build a new kernel with
+different protocol selections. You should note these numbers as you
+will need them to identify the devices.
+
+If you happen to be using a MicroSolutions backpack device, you will
+also need to know the unit ID number for each drive. This is usually
+the last two digits of the drive's serial number (but read MicroSolutions'
+documentation about this).
+
+As an example, let's assume that you have a MicroSolutions PD/CD drive
+with unit ID number 36 connected to the parallel port at 0x378, a SyQuest
+EZ-135 connected to the chained port on the PD/CD drive and also an
+Imation Superdisk connected to port 0x278. You could give the following
+options on your boot command:
+
+ pd.drive0=0x378,1 pf.drive0=0x278,1 pf.drive1=0x378,0,36
+
+In the last option, pf.drive1 configures device /dev/pf1, the 0x378
+is the parallel port base address, the 0 is the protocol registration
+number and 36 is the chain ID.
+
+Please note: while PARIDE will work both with and without the
+PARPORT parallel port sharing system that is included by the
+"Parallel port support" option, PARPORT must be included and enabled
+if you want to use chains of devices on the same parallel port.
+
+2.2 Loading and configuring PARIDE as modules
+
+It is much faster and simpler to get to understand the PARIDE drivers
+if you use them as loadable kernel modules.
+
+Note 1: using these drivers with the "kerneld" automatic module loading
+system is not recommended for beginners, and is not documented here.
+
+Note 2: if you build PARPORT support as a loadable module, PARIDE must
+also be built as loadable modules, and PARPORT must be loaded before the
+PARIDE modules.
+
+To use PARIDE, you must begin by
+
+ insmod paride
+
+this loads a base module which provides a registry for the protocols,
+among other tasks.
+
+Then, load as many of the protocol modules as you think you might need.
+As you load each module, it will register the protocols that it supports,
+and print a log message to your kernel log file and your console. For
+example:
+
+ # insmod epat
+ paride: epat registered as protocol 0
+ # insmod kbic
+ paride: k951 registered as protocol 1
+ paride: k971 registered as protocol 2
+
+Finally, you can load high-level drivers for each kind of device that
+you have connected. By default, each driver will autoprobe for a single
+device, but you can support up to four similar devices by giving their
+individual co-ordinates when you load the driver.
+
+For example, if you had two no-name CD-ROM drives both using the
+KingByte KBIC-951A adapter, one on port 0x378 and the other on 0x3bc
+you could give the following command:
+
+ # insmod pcd drive0=0x378,1 drive1=0x3bc,1
+
+For most adapters, giving a port address and protocol number is sufficient,
+but check the source files in linux/drivers/block/paride for more
+information. (Hopefully someone will write some man pages one day !).
+
+As another example, here's what happens when PARPORT is installed, and
+a SyQuest EZ-135 is attached to port 0x378:
+
+ # insmod paride
+ paride: version 1.0 installed
+ # insmod epat
+ paride: epat registered as protocol 0
+ # insmod pd
+ pd: pd version 1.0, major 45, cluster 64, nice 0
+ pda: Sharing parport1 at 0x378
+ pda: epat 1.0, Shuttle EPAT chip c3 at 0x378, mode 5 (EPP-32), delay 1
+ pda: SyQuest EZ135A, 262144 blocks [128M], (512/16/32), removable media
+ pda: pda1
+
+Note that the last line is the output from the generic partition table
+scanner - in this case it reports that it has found a disk with one partition.
+
+2.3 Using a PARIDE device
+
+Once the drivers have been loaded, you can access PARIDE devices in the
+same way as their traditional counterparts. You will probably need to
+create the device "special files". Here is a simple script that you can
+cut to a file and execute:
+
+#!/bin/bash
+#
+# mkd -- a script to create the device special files for the PARIDE subsystem
+#
+function mkdev {
+ mknod $1 $2 $3 $4 ; chmod 0660 $1 ; chown root:disk $1
+}
+#
+function pd {
+ D=$( printf \\$( printf "x%03x" $[ $1 + 97 ] ) )
+ mkdev pd$D b 45 $[ $1 * 16 ]
+ for P in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+ do mkdev pd$D$P b 45 $[ $1 * 16 + $P ]
+ done
+}
+#
+cd /dev
+#
+for u in 0 1 2 3 ; do pd $u ; done
+for u in 0 1 2 3 ; do mkdev pcd$u b 46 $u ; done
+for u in 0 1 2 3 ; do mkdev pf$u b 47 $u ; done
+for u in 0 1 2 3 ; do mkdev pt$u c 96 $u ; done
+for u in 0 1 2 3 ; do mkdev npt$u c 96 $[ $u + 128 ] ; done
+for u in 0 1 2 3 ; do mkdev pg$u c 97 $u ; done
+#
+# end of mkd
+
+With the device files and drivers in place, you can access PARIDE devices
+like any other Linux device. For example, to mount a CD-ROM in pcd0, use:
+
+ mount /dev/pcd0 /cdrom
+
+If you have a fresh Avatar Shark cartridge, and the drive is pda, you
+might do something like:
+
+ fdisk /dev/pda -- make a new partition table with
+ partition 1 of type 83
+
+ mke2fs /dev/pda1 -- to build the file system
+
+ mkdir /shark -- make a place to mount the disk
+
+ mount /dev/pda1 /shark
+
+Devices like the Imation superdisk work in the same way, except that
+they do not have a partition table. For example to make a 120MB
+floppy that you could share with a DOS system:
+
+ mkdosfs /dev/pf0
+ mount /dev/pf0 /mnt
+
+
+2.4 The pf driver
+
+The pf driver is intended for use with parallel port ATAPI disk
+devices. The most common devices in this category are PD drives
+and LS-120 drives. Traditionally, media for these devices are not
+partitioned. Consequently, the pf driver does not support partitioned
+media. This may be changed in a future version of the driver.
+
+2.5 Using the pt driver
+
+The pt driver for parallel port ATAPI tape drives is a minimal driver.
+It does not yet support many of the standard tape ioctl operations.
+For best performance, a block size of 32KB should be used. You will
+probably want to set the parallel port delay to 0, if you can.
+
+2.6 Using the pg driver
+
+The pg driver can be used in conjunction with the cdrecord program
+to create CD-ROMs. Please get cdrecord version 1.6.1 or later
+from ftp://ftp.fokus.gmd.de/pub/unix/cdrecord/ . To record CD-R media
+your parallel port should ideally be set to EPP mode, and the "port delay"
+should be set to 0. With those settings it is possible to record at 2x
+speed without any buffer underruns. If you cannot get the driver to work
+in EPP mode, try to use "bidirectional" or "PS/2" mode and 1x speeds only.
+
+
+3. Troubleshooting
+
+3.1 Use EPP mode if you can
+
+The most common problems that people report with the PARIDE drivers
+concern the parallel port CMOS settings. At this time, none of the
+PARIDE protocol modules support ECP mode, or any ECP combination modes.
+If you are able to do so, please set your parallel port into EPP mode
+using your CMOS setup procedure.
+
+3.2 Check the port delay
+
+Some parallel ports cannot reliably transfer data at full speed. To
+offset the errors, the PARIDE protocol modules introduce a "port
+delay" between each access to the i/o ports. Each protocol sets
+a default value for this delay. In most cases, the user can override
+the default and set it to 0 - resulting in somewhat higher transfer
+rates. In some rare cases (especially with older 486 systems) the
+default delays are not long enough. if you experience corrupt data
+transfers, or unexpected failures, you may wish to increase the
+port delay. The delay can be programmed using the "driveN" parameters
+to each of the high-level drivers. Please see the notes above, or
+read the comments at the beginning of the driver source files in
+linux/drivers/block/paride.
+
+3.3 Some drives need a printer reset
+
+There appear to be a number of "noname" external drives on the market
+that do not always power up correctly. We have noticed this with some
+drives based on OnSpec and older Freecom adapters. In these rare cases,
+the adapter can often be reinitialised by issuing a "printer reset" on
+the parallel port. As the reset operation is potentially disruptive in
+multiple device environments, the PARIDE drivers will not do it
+automatically. You can however, force a printer reset by doing:
+
+ insmod lp reset=1
+ rmmod lp
+
+If you have one of these marginal cases, you should probably build
+your paride drivers as modules, and arrange to do the printer reset
+before loading the PARIDE drivers.
+
+3.4 Use the verbose option and dmesg if you need help
+
+While a lot of testing has gone into these drivers to make them work
+as smoothly as possible, problems will arise. If you do have problems,
+please check all the obvious things first: does the drive work in
+DOS with the manufacturer's drivers ? If that doesn't yield any useful
+clues, then please make sure that only one drive is hooked to your system,
+and that either (a) PARPORT is enabled or (b) no other device driver
+is using your parallel port (check in /proc/ioports). Then, load the
+appropriate drivers (you can load several protocol modules if you want)
+as in:
+
+ # insmod paride
+ # insmod epat
+ # insmod bpck
+ # insmod kbic
+ ...
+ # insmod pd verbose=1
+
+(using the correct driver for the type of device you have, of course).
+The verbose=1 parameter will cause the drivers to log a trace of their
+activity as they attempt to locate your drive.
+
+Use 'dmesg' to capture a log of all the PARIDE messages (any messages
+beginning with paride:, a protocol module's name or a driver's name) and
+include that with your bug report. You can submit a bug report in one
+of two ways. Either send it directly to the author of the PARIDE suite,
+by e-mail to grant@torque.net, or join the linux-parport mailing list
+and post your report there.
+
+3.5 For more information or help
+
+You can join the linux-parport mailing list by sending a mail message
+to
+ linux-parport-request@torque.net
+
+with the single word
+
+ subscribe
+
+in the body of the mail message (not in the subject line). Please be
+sure that your mail program is correctly set up when you do this, as
+the list manager is a robot that will subscribe you using the reply
+address in your mail headers. REMOVE any anti-spam gimmicks you may
+have in your mail headers, when sending mail to the list server.
+
+You might also find some useful information on the linux-parport
+web pages (although they are not always up to date) at
+
+ http://www.torque.net/parport/
+
+
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/blockdev/ramdisk.txt
new file mode 100644
index 000000000000..6c820baa19a6
--- /dev/null
+++ b/Documentation/blockdev/ramdisk.txt
@@ -0,0 +1,165 @@
+Using the RAM disk block device with Linux
+------------------------------------------
+
+Contents:
+
+ 1) Overview
+ 2) Kernel Command Line Parameters
+ 3) Using "rdev -r"
+ 4) An Example of Creating a Compressed RAM Disk
+
+
+1) Overview
+-----------
+
+The RAM disk driver is a way to use main system memory as a block device. It
+is required for initrd, an initial filesystem used if you need to load modules
+in order to access the root filesystem (see Documentation/initrd.txt). It can
+also be used for a temporary filesystem for crypto work, since the contents
+are erased on reboot.
+
+The RAM disk dynamically grows as more space is required. It does this by using
+RAM from the buffer cache. The driver marks the buffers it is using as dirty
+so that the VM subsystem does not try to reclaim them later.
+
+The RAM disk supports up to 16 RAM disks by default, and can be reconfigured
+to support an unlimited number of RAM disks (at your own risk). Just change
+the configuration symbol BLK_DEV_RAM_COUNT in the Block drivers config menu
+and (re)build the kernel.
+
+To use RAM disk support with your system, run './MAKEDEV ram' from the /dev
+directory. RAM disks are all major number 1, and start with minor number 0
+for /dev/ram0, etc. If used, modern kernels use /dev/ram0 for an initrd.
+
+The new RAM disk also has the ability to load compressed RAM disk images,
+allowing one to squeeze more programs onto an average installation or
+rescue floppy disk.
+
+
+2) Kernel Command Line Parameters
+---------------------------------
+
+ ramdisk_size=N
+ ==============
+
+This parameter tells the RAM disk driver to set up RAM disks of N k size. The
+default is 4096 (4 MB) (8192 (8 MB) on S390).
+
+ ramdisk_blocksize=N
+ ===================
+
+This parameter tells the RAM disk driver how many bytes to use per block. The
+default is 1024 (BLOCK_SIZE).
+
+
+3) Using "rdev -r"
+------------------
+
+The usage of the word (two bytes) that "rdev -r" sets in the kernel image is
+as follows. The low 11 bits (0 -> 10) specify an offset (in 1 k blocks) of up
+to 2 MB (2^11) of where to find the RAM disk (this used to be the size). Bit
+14 indicates that a RAM disk is to be loaded, and bit 15 indicates whether a
+prompt/wait sequence is to be given before trying to read the RAM disk. Since
+the RAM disk dynamically grows as data is being written into it, a size field
+is not required. Bits 11 to 13 are not currently used and may as well be zero.
+These numbers are no magical secrets, as seen below:
+
+./arch/i386/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
+./arch/i386/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
+./arch/i386/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
+
+Consider a typical two floppy disk setup, where you will have the
+kernel on disk one, and have already put a RAM disk image onto disk #2.
+
+Hence you want to set bits 0 to 13 as 0, meaning that your RAM disk
+starts at an offset of 0 kB from the beginning of the floppy.
+The command line equivalent is: "ramdisk_start=0"
+
+You want bit 14 as one, indicating that a RAM disk is to be loaded.
+The command line equivalent is: "load_ramdisk=1"
+
+You want bit 15 as one, indicating that you want a prompt/keypress
+sequence so that you have a chance to switch floppy disks.
+The command line equivalent is: "prompt_ramdisk=1"
+
+Putting that together gives 2^15 + 2^14 + 0 = 49152 for an rdev word.
+So to create disk one of the set, you would do:
+
+ /usr/src/linux# cat arch/i386/boot/zImage > /dev/fd0
+ /usr/src/linux# rdev /dev/fd0 /dev/fd0
+ /usr/src/linux# rdev -r /dev/fd0 49152
+
+If you make a boot disk that has LILO, then for the above, you would use:
+ append = "ramdisk_start=0 load_ramdisk=1 prompt_ramdisk=1"
+Since the default start = 0 and the default prompt = 1, you could use:
+ append = "load_ramdisk=1"
+
+
+4) An Example of Creating a Compressed RAM Disk
+----------------------------------------------
+
+To create a RAM disk image, you will need a spare block device to
+construct it on. This can be the RAM disk device itself, or an
+unused disk partition (such as an unmounted swap partition). For this
+example, we will use the RAM disk device, "/dev/ram0".
+
+Note: This technique should not be done on a machine with less than 8 MB
+of RAM. If using a spare disk partition instead of /dev/ram0, then this
+restriction does not apply.
+
+a) Decide on the RAM disk size that you want. Say 2 MB for this example.
+ Create it by writing to the RAM disk device. (This step is not currently
+ required, but may be in the future.) It is wise to zero out the
+ area (esp. for disks) so that maximal compression is achieved for
+ the unused blocks of the image that you are about to create.
+
+ dd if=/dev/zero of=/dev/ram0 bs=1k count=2048
+
+b) Make a filesystem on it. Say ext2fs for this example.
+
+ mke2fs -vm0 /dev/ram0 2048
+
+c) Mount it, copy the files you want to it (eg: /etc/* /dev/* ...)
+ and unmount it again.
+
+d) Compress the contents of the RAM disk. The level of compression
+ will be approximately 50% of the space used by the files. Unused
+ space on the RAM disk will compress to almost nothing.
+
+ dd if=/dev/ram0 bs=1k count=2048 | gzip -v9 > /tmp/ram_image.gz
+
+e) Put the kernel onto the floppy
+
+ dd if=zImage of=/dev/fd0 bs=1k
+
+f) Put the RAM disk image onto the floppy, after the kernel. Use an offset
+ that is slightly larger than the kernel, so that you can put another
+ (possibly larger) kernel onto the same floppy later without overlapping
+ the RAM disk image. An offset of 400 kB for kernels about 350 kB in
+ size would be reasonable. Make sure offset+size of ram_image.gz is
+ not larger than the total space on your floppy (usually 1440 kB).
+
+ dd if=/tmp/ram_image.gz of=/dev/fd0 bs=1k seek=400
+
+g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.
+ For prompt_ramdisk=1, load_ramdisk=1, ramdisk_start=400, one would
+ have 2^15 + 2^14 + 400 = 49552.
+
+ rdev /dev/fd0 /dev/fd0
+ rdev -r /dev/fd0 49552
+
+That is it. You now have your boot/root compressed RAM disk floppy. Some
+users may wish to combine steps (d) and (f) by using a pipe.
+
+--------------------------------------------------------------------------
+ Paul Gortmaker 12/95
+
+Changelog:
+----------
+
+10-22-04 : Updated to reflect changes in command line options, remove
+ obsolete references, general cleanup.
+ James Nelson (james4765@gmail.com)
+
+
+12-95 : Original Document