diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /Documentation/cpusets.txt | |
download | linux-stable-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz linux-stable-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2 linux-stable-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'Documentation/cpusets.txt')
-rw-r--r-- | Documentation/cpusets.txt | 415 |
1 files changed, 415 insertions, 0 deletions
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt new file mode 100644 index 000000000000..1ad26d2c20ae --- /dev/null +++ b/Documentation/cpusets.txt @@ -0,0 +1,415 @@ + CPUSETS + ------- + +Copyright (C) 2004 BULL SA. +Written by Simon.Derr@bull.net + +Portions Copyright (c) 2004 Silicon Graphics, Inc. +Modified by Paul Jackson <pj@sgi.com> + +CONTENTS: +========= + +1. Cpusets + 1.1 What are cpusets ? + 1.2 Why are cpusets needed ? + 1.3 How are cpusets implemented ? + 1.4 How do I use cpusets ? +2. Usage Examples and Syntax + 2.1 Basic Usage + 2.2 Adding/removing cpus + 2.3 Setting flags + 2.4 Attaching processes +3. Questions +4. Contact + +1. Cpusets +========== + +1.1 What are cpusets ? +---------------------- + +Cpusets provide a mechanism for assigning a set of CPUs and Memory +Nodes to a set of tasks. + +Cpusets constrain the CPU and Memory placement of tasks to only +the resources within a tasks current cpuset. They form a nested +hierarchy visible in a virtual file system. These are the essential +hooks, beyond what is already present, required to manage dynamic +job placement on large systems. + +Each task has a pointer to a cpuset. Multiple tasks may reference +the same cpuset. Requests by a task, using the sched_setaffinity(2) +system call to include CPUs in its CPU affinity mask, and using the +mbind(2) and set_mempolicy(2) system calls to include Memory Nodes +in its memory policy, are both filtered through that tasks cpuset, +filtering out any CPUs or Memory Nodes not in that cpuset. The +scheduler will not schedule a task on a CPU that is not allowed in +its cpus_allowed vector, and the kernel page allocator will not +allocate a page on a node that is not allowed in the requesting tasks +mems_allowed vector. + +If a cpuset is cpu or mem exclusive, no other cpuset, other than a direct +ancestor or descendent, may share any of the same CPUs or Memory Nodes. + +User level code may create and destroy cpusets by name in the cpuset +virtual file system, manage the attributes and permissions of these +cpusets and which CPUs and Memory Nodes are assigned to each cpuset, +specify and query to which cpuset a task is assigned, and list the +task pids assigned to a cpuset. + + +1.2 Why are cpusets needed ? +---------------------------- + +The management of large computer systems, with many processors (CPUs), +complex memory cache hierarchies and multiple Memory Nodes having +non-uniform access times (NUMA) presents additional challenges for +the efficient scheduling and memory placement of processes. + +Frequently more modest sized systems can be operated with adequate +efficiency just by letting the operating system automatically share +the available CPU and Memory resources amongst the requesting tasks. + +But larger systems, which benefit more from careful processor and +memory placement to reduce memory access times and contention, +and which typically represent a larger investment for the customer, +can benefit from explictly placing jobs on properly sized subsets of +the system. + +This can be especially valuable on: + + * Web Servers running multiple instances of the same web application, + * Servers running different applications (for instance, a web server + and a database), or + * NUMA systems running large HPC applications with demanding + performance characteristics. + +These subsets, or "soft partitions" must be able to be dynamically +adjusted, as the job mix changes, without impacting other concurrently +executing jobs. + +The kernel cpuset patch provides the minimum essential kernel +mechanisms required to efficiently implement such subsets. It +leverages existing CPU and Memory Placement facilities in the Linux +kernel to avoid any additional impact on the critical scheduler or +memory allocator code. + + +1.3 How are cpusets implemented ? +--------------------------------- + +Cpusets provide a Linux kernel (2.6.7 and above) mechanism to constrain +which CPUs and Memory Nodes are used by a process or set of processes. + +The Linux kernel already has a pair of mechanisms to specify on which +CPUs a task may be scheduled (sched_setaffinity) and on which Memory +Nodes it may obtain memory (mbind, set_mempolicy). + +Cpusets extends these two mechanisms as follows: + + - Cpusets are sets of allowed CPUs and Memory Nodes, known to the + kernel. + - Each task in the system is attached to a cpuset, via a pointer + in the task structure to a reference counted cpuset structure. + - Calls to sched_setaffinity are filtered to just those CPUs + allowed in that tasks cpuset. + - Calls to mbind and set_mempolicy are filtered to just + those Memory Nodes allowed in that tasks cpuset. + - The root cpuset contains all the systems CPUs and Memory + Nodes. + - For any cpuset, one can define child cpusets containing a subset + of the parents CPU and Memory Node resources. + - The hierarchy of cpusets can be mounted at /dev/cpuset, for + browsing and manipulation from user space. + - A cpuset may be marked exclusive, which ensures that no other + cpuset (except direct ancestors and descendents) may contain + any overlapping CPUs or Memory Nodes. + - You can list all the tasks (by pid) attached to any cpuset. + +The implementation of cpusets requires a few, simple hooks +into the rest of the kernel, none in performance critical paths: + + - in main/init.c, to initialize the root cpuset at system boot. + - in fork and exit, to attach and detach a task from its cpuset. + - in sched_setaffinity, to mask the requested CPUs by what's + allowed in that tasks cpuset. + - in sched.c migrate_all_tasks(), to keep migrating tasks within + the CPUs allowed by their cpuset, if possible. + - in the mbind and set_mempolicy system calls, to mask the requested + Memory Nodes by what's allowed in that tasks cpuset. + - in page_alloc, to restrict memory to allowed nodes. + - in vmscan.c, to restrict page recovery to the current cpuset. + +In addition a new file system, of type "cpuset" may be mounted, +typically at /dev/cpuset, to enable browsing and modifying the cpusets +presently known to the kernel. No new system calls are added for +cpusets - all support for querying and modifying cpusets is via +this cpuset file system. + +Each task under /proc has an added file named 'cpuset', displaying +the cpuset name, as the path relative to the root of the cpuset file +system. + +The /proc/<pid>/status file for each task has two added lines, +displaying the tasks cpus_allowed (on which CPUs it may be scheduled) +and mems_allowed (on which Memory Nodes it may obtain memory), +in the format seen in the following example: + + Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff + Mems_allowed: ffffffff,ffffffff + +Each cpuset is represented by a directory in the cpuset file system +containing the following files describing that cpuset: + + - cpus: list of CPUs in that cpuset + - mems: list of Memory Nodes in that cpuset + - cpu_exclusive flag: is cpu placement exclusive? + - mem_exclusive flag: is memory placement exclusive? + - tasks: list of tasks (by pid) attached to that cpuset + +New cpusets are created using the mkdir system call or shell +command. The properties of a cpuset, such as its flags, allowed +CPUs and Memory Nodes, and attached tasks, are modified by writing +to the appropriate file in that cpusets directory, as listed above. + +The named hierarchical structure of nested cpusets allows partitioning +a large system into nested, dynamically changeable, "soft-partitions". + +The attachment of each task, automatically inherited at fork by any +children of that task, to a cpuset allows organizing the work load +on a system into related sets of tasks such that each set is constrained +to using the CPUs and Memory Nodes of a particular cpuset. A task +may be re-attached to any other cpuset, if allowed by the permissions +on the necessary cpuset file system directories. + +Such management of a system "in the large" integrates smoothly with +the detailed placement done on individual tasks and memory regions +using the sched_setaffinity, mbind and set_mempolicy system calls. + +The following rules apply to each cpuset: + + - Its CPUs and Memory Nodes must be a subset of its parents. + - It can only be marked exclusive if its parent is. + - If its cpu or memory is exclusive, they may not overlap any sibling. + +These rules, and the natural hierarchy of cpusets, enable efficient +enforcement of the exclusive guarantee, without having to scan all +cpusets every time any of them change to ensure nothing overlaps a +exclusive cpuset. Also, the use of a Linux virtual file system (vfs) +to represent the cpuset hierarchy provides for a familiar permission +and name space for cpusets, with a minimum of additional kernel code. + +1.4 How do I use cpusets ? +-------------------------- + +In order to minimize the impact of cpusets on critical kernel +code, such as the scheduler, and due to the fact that the kernel +does not support one task updating the memory placement of another +task directly, the impact on a task of changing its cpuset CPU +or Memory Node placement, or of changing to which cpuset a task +is attached, is subtle. + +If a cpuset has its Memory Nodes modified, then for each task attached +to that cpuset, the next time that the kernel attempts to allocate +a page of memory for that task, the kernel will notice the change +in the tasks cpuset, and update its per-task memory placement to +remain within the new cpusets memory placement. If the task was using +mempolicy MPOL_BIND, and the nodes to which it was bound overlap with +its new cpuset, then the task will continue to use whatever subset +of MPOL_BIND nodes are still allowed in the new cpuset. If the task +was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed +in the new cpuset, then the task will be essentially treated as if it +was MPOL_BIND bound to the new cpuset (even though its numa placement, +as queried by get_mempolicy(), doesn't change). If a task is moved +from one cpuset to another, then the kernel will adjust the tasks +memory placement, as above, the next time that the kernel attempts +to allocate a page of memory for that task. + +If a cpuset has its CPUs modified, then each task using that +cpuset does _not_ change its behavior automatically. In order to +minimize the impact on the critical scheduling code in the kernel, +tasks will continue to use their prior CPU placement until they +are rebound to their cpuset, by rewriting their pid to the 'tasks' +file of their cpuset. If a task had been bound to some subset of its +cpuset using the sched_setaffinity() call, and if any of that subset +is still allowed in its new cpuset settings, then the task will be +restricted to the intersection of the CPUs it was allowed on before, +and its new cpuset CPU placement. If, on the other hand, there is +no overlap between a tasks prior placement and its new cpuset CPU +placement, then the task will be allowed to run on any CPU allowed +in its new cpuset. If a task is moved from one cpuset to another, +its CPU placement is updated in the same way as if the tasks pid is +rewritten to the 'tasks' file of its current cpuset. + +In summary, the memory placement of a task whose cpuset is changed is +updated by the kernel, on the next allocation of a page for that task, +but the processor placement is not updated, until that tasks pid is +rewritten to the 'tasks' file of its cpuset. This is done to avoid +impacting the scheduler code in the kernel with a check for changes +in a tasks processor placement. + +There is an exception to the above. If hotplug funtionality is used +to remove all the CPUs that are currently assigned to a cpuset, +then the kernel will automatically update the cpus_allowed of all +tasks attached to CPUs in that cpuset with the online CPUs of the +nearest parent cpuset that still has some CPUs online. When memory +hotplug functionality for removing Memory Nodes is available, a +similar exception is expected to apply there as well. In general, +the kernel prefers to violate cpuset placement, over starving a task +that has had all its allowed CPUs or Memory Nodes taken offline. User +code should reconfigure cpusets to only refer to online CPUs and Memory +Nodes when using hotplug to add or remove such resources. + +There is a second exception to the above. GFP_ATOMIC requests are +kernel internal allocations that must be satisfied, immediately. +The kernel may drop some request, in rare cases even panic, if a +GFP_ATOMIC alloc fails. If the request cannot be satisfied within +the current tasks cpuset, then we relax the cpuset, and look for +memory anywhere we can find it. It's better to violate the cpuset +than stress the kernel. + +To start a new job that is to be contained within a cpuset, the steps are: + + 1) mkdir /dev/cpuset + 2) mount -t cpuset none /dev/cpuset + 3) Create the new cpuset by doing mkdir's and write's (or echo's) in + the /dev/cpuset virtual file system. + 4) Start a task that will be the "founding father" of the new job. + 5) Attach that task to the new cpuset by writing its pid to the + /dev/cpuset tasks file for that cpuset. + 6) fork, exec or clone the job tasks from this founding father task. + +For example, the following sequence of commands will setup a cpuset +named "Charlie", containing just CPUs 2 and 3, and Memory Node 1, +and then start a subshell 'sh' in that cpuset: + + mount -t cpuset none /dev/cpuset + cd /dev/cpuset + mkdir Charlie + cd Charlie + /bin/echo 2-3 > cpus + /bin/echo 1 > mems + /bin/echo $$ > tasks + sh + # The subshell 'sh' is now running in cpuset Charlie + # The next line should display '/Charlie' + cat /proc/self/cpuset + +In the case that a change of cpuset includes wanting to move already +allocated memory pages, consider further the work of IWAMOTO +Toshihiro <iwamoto@valinux.co.jp> for page remapping and memory +hotremoval, which can be found at: + + http://people.valinux.co.jp/~iwamoto/mh.html + +The integration of cpusets with such memory migration is not yet +available. + +In the future, a C library interface to cpusets will likely be +available. For now, the only way to query or modify cpusets is +via the cpuset file system, using the various cd, mkdir, echo, cat, +rmdir commands from the shell, or their equivalent from C. + +The sched_setaffinity calls can also be done at the shell prompt using +SGI's runon or Robert Love's taskset. The mbind and set_mempolicy +calls can be done at the shell prompt using the numactl command +(part of Andi Kleen's numa package). + +2. Usage Examples and Syntax +============================ + +2.1 Basic Usage +--------------- + +Creating, modifying, using the cpusets can be done through the cpuset +virtual filesystem. + +To mount it, type: +# mount -t cpuset none /dev/cpuset + +Then under /dev/cpuset you can find a tree that corresponds to the +tree of the cpusets in the system. For instance, /dev/cpuset +is the cpuset that holds the whole system. + +If you want to create a new cpuset under /dev/cpuset: +# cd /dev/cpuset +# mkdir my_cpuset + +Now you want to do something with this cpuset. +# cd my_cpuset + +In this directory you can find several files: +# ls +cpus cpu_exclusive mems mem_exclusive tasks + +Reading them will give you information about the state of this cpuset: +the CPUs and Memory Nodes it can use, the processes that are using +it, its properties. By writing to these files you can manipulate +the cpuset. + +Set some flags: +# /bin/echo 1 > cpu_exclusive + +Add some cpus: +# /bin/echo 0-7 > cpus + +Now attach your shell to this cpuset: +# /bin/echo $$ > tasks + +You can also create cpusets inside your cpuset by using mkdir in this +directory. +# mkdir my_sub_cs + +To remove a cpuset, just use rmdir: +# rmdir my_sub_cs +This will fail if the cpuset is in use (has cpusets inside, or has +processes attached). + +2.2 Adding/removing cpus +------------------------ + +This is the syntax to use when writing in the cpus or mems files +in cpuset directories: + +# /bin/echo 1-4 > cpus -> set cpus list to cpus 1,2,3,4 +# /bin/echo 1,2,3,4 > cpus -> set cpus list to cpus 1,2,3,4 + +2.3 Setting flags +----------------- + +The syntax is very simple: + +# /bin/echo 1 > cpu_exclusive -> set flag 'cpu_exclusive' +# /bin/echo 0 > cpu_exclusive -> unset flag 'cpu_exclusive' + +2.4 Attaching processes +----------------------- + +# /bin/echo PID > tasks + +Note that it is PID, not PIDs. You can only attach ONE task at a time. +If you have several tasks to attach, you have to do it one after another: + +# /bin/echo PID1 > tasks +# /bin/echo PID2 > tasks + ... +# /bin/echo PIDn > tasks + + +3. Questions +============ + +Q: what's up with this '/bin/echo' ? +A: bash's builtin 'echo' command does not check calls to write() against + errors. If you use it in the cpuset file system, you won't be + able to tell whether a command succeeded or failed. + +Q: When I attach processes, only the first of the line gets really attached ! +A: We can only return one error code per call to write(). So you should also + put only ONE pid. + +4. Contact +========== + +Web: http://www.bullopensource.org/cpuset |